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Abstract 

Despite the large differences in mass, length and time scales, suspensions of 
spherical colloidal particles in a solvent share many features of simple 
atomic liquids, including structure, phase behaviour and even the transition 
to a glassy state at high concentrations. The analogies, but also the differ- 
ences, will be illustrated by a few recent applications of the Statistical 
Mechanics formalism of simple liquids to sterically or charge-stabilized, 
concentrated colloidal suspensions. Examples include sedimentation equi- 
librium and non-linear screening of charged colloids by counterions. 

Physica Scripta. Vol. T45, 242-244, 1992. 

A Statistical Mechanics Approach to Colloidal Suspensions 
H. Lowen 

Sektion Physik der Universitat Munchen, Theresienstrak 37, D-8000 Miinchen 2, Germany 

and 

J.-P. Hansen 

Laboratoire de Physique, Ecole Normale Supkrieure de Lyon, 69364 Lyon Cedex 07, France 

1. Introduction 

A colloidal suspension consists of “mesoscopic” particles in 
the sue range 10 5 c 5 lo3 nm, if c denotes a characteristic 
diameter, that are dispersed in a suspending fluid. We shall 
henceforth consider rigid, spherical monodisperse colloidal 
particles. The main objective of this paper will be to illus- 
trate that, despite the large differences in mass, length and 
time scales, colloidal suspensions share many features of 
simple atomic liquids. In a Statistical Mechanics approach 
to colloidal suspensions, one starts from an ab initio basis 
involving the interparticle forces. For an interparticle dis- 
tance r > c, there is an attractive contribution from the van 
der Waals interaction. In order to prevent irreversible floc- 
culation, a stabilization mechanism is needed. There are 
essential!y two different methods : (a) steric stabilization and 
(b) charge stabilization. As regards steric stabilization, the 
colloidal particles are coated with polymer brushes and this 
leads to an “entropic” repulsion that can, to a good approx- 
imation, be modelled by a simple hard-sphere (HS) inter- 
action: 

CO for r < c 
0 for r > c 

V(r)  = 

Charge stabilization results when radicals at the colloidal 
surface ionize in a polar suspending fluid, forming highly 
charged macroions (carrying typically 100-1OOO elementary 
charges) and a counterion field. For low macroion densities, 
linearized Poisson-Boltzmann theory [ 13 leads to an effec- 
tive screened Coulomb interaction between macroions 
which is the electrostatic part of the celebrated DLVO 
potential 

V(r) = Z*2 exp (-Kr)/Er (2) 

where IC’ = 4np, q2/Ek, T is the inverse Debye-Huckel 
screening length and Z* = Z exp (~0/2)/(1 + ~ c / 2 ) .  Here, q, 
pe denote the counterion charge and number density and Z 
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is the bare macroion charge. Moreover, E is the dielectric 
constant of the solvent and T is the temperature (typically 
room temperature). Often, the van der Waals interaction is 
practically suppressed by “index-matching” leaving the two 
simple pairwise potential models (1) and (2) for investigating 
the structure of sterically resp. charge stabilized colloidal 
suspensions. Since simple atomic liquids [2 ] are described 
by similar pair potentials, it becomes immediately clear that 
there must exist direct analogies with atomic systems: in 
particular, the pair structure is similar; however, it varies on 
a length scale such that diffraction experiments of visible 
light rather than X-rays are necessary. Furthermore, the 
phase diagram is similar; there are, in general, gas, liquid, 
crystal and glassy phases for colloidal suspensions. In par- 
ticular, computer simulation studies [3 ] have revealed that 
the HS system exhibits a liquid phase up to a packing frac- 
tion q = npo3/6 = 0.49 (where p is the number density) and 
then shows a first order phase transition to a (fcc or hcp) 
solid with q = 0.54. These theoretical values are in good 
agreement with recent observations on sterically stabilized 
colloidal particles [4] where also a glassy state beyond 
q = 0.60 was found. For the Yukawa system (2), on the 
other hand, a bcc to fcc transition occurs in the solid for 
increasing K [SI. 

However, there are also important differences compared 
to atomic systems. The dynamics are Brownian instead of 
Newtonian and this has a direct influence on the time- 
dependent correlations. For example, the scenario of the 
kinetic glass transition may be different [6]. An advantage is 
the possibility of “tuning” the interactions (e.g. by adding 
salt into a charge-stabilized suspension), whereas a dis- 
advantage is the intrinsic polydispersity in size and charge 
[7-91. Furthermore, for high macroion concentrations, the 
pair potential assumption (2) must break down and there 
are counterion-induced effective many-body-forces between 
macroions. 

In order to illustrate applications of the Statistical 
Mechanics formulation of simple liquids to colloidal suspen- 
sions, we select two recent topics. In Section 2, we discuss 
sedimentation equilibrium for the HS and Yukawa systems. 
Secondly, in Section 3, an ab initio description of nonlinear 
counterion screening in charge-stabilized colloidal suspen- 
sions is proposed that naturally incorporates effective many- 
body interactions between the macroions. 

2. Sedimentation equilibrium 

In this section, we briefly consider density profiles of colloi- 
dal fluids, characterized by the pair potentials (1) and (2), in 
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a constant gravitational or centrifugal field. Contrarily to 
atomic-size particles, the gravitational energy is easily com- 
parable to the thermal energy, i.e. the ratio a mgu/k, T is 
of order 1 where g is the gravitational acceleration and m is 
the buoyant mass of the colloidal particles. Provided the 
compressibility of the suspending fluid is negligible com- 
pared to the osmotic compressibility, one finds within the 
local density approximation (LDA) which is equivalent to 
local hydrostatic equilibrium that 

(3) 

where P is the osmotic pressure of the isothermal suspen- 
sion at altitude z.  P is directly related to the equation of 
state (EOS) Z(p) as P(z) = p(Z)k, TZ(p(z)). The validity of 
the LDA was tested by extensive Monte Carlo (MC) simula- 
tions for 0.1 5 a 5 1 for both HS and Yukawa systems by 
Barrat et al. [lo]. Coarse grained density profiles were cal- 
culated by convoluting the local density with a resolution 
function of width comparable to U in order to smooth out 
the oscillations at the bottom of the system due to layering. 
The MC data were in good agreement with the LDA 
assumption. More importantly, an inversion procedure was 
suggested, which allows to access the EOS which turns out 
to be rather sensitive to the exact form of the interparticle 
forces [ 10, 111. If the profile p(z) is measured experimentally, 
one can integrate and invert (3) in order to obtain the EOS 
Z(p). Hence density profiles could yield useful, though 
indirect information about the nature of the colloidal 
interaction. In the weak modulation limit a $ 1, thermody- 
namic perturbation theory leads to the linear response 
profile 

p(z) = po 1 - - - ( ;g;) (4) 

from the primitive model. In general, similar problems arise 
for high asymmetries [13]. One interesting fact is that the 
mean spherical approximation (MSA) yields an effective 
macroion pair-potential that has the screened Coulomb 
form (2) but with a different renormalized charge Z* that 
goes over to the DLVO charge in the limit of low macroion 
packing fraction q. 

Another complementary density functional approach 
exploits the high asymmetry and the fact that the counter- 
ions follow quasi-instantaneously the macroion motions 
[14, 151. This adiabaticity condition holds in fact rigorously 
in the limit of complete separation of time scales between 
the macro- and counterions. One then takes the counterion 
density field p,(r) as a dynamical variable. The general strat- 
egy is a combination of density functional theory for the 
counterions and Molecular Dynamics for the macroions. 
Classical density functional theory for the one-component 
plasma of counterions is used to find the equilibrium density 
p,(r) which depends parametrically on the macroion posi- 
tions. With this density one calculates the Hellmann- 
Feynman forces, i.e. the counterion-induced forces between 
the macroions. In general, this force consists of many-body 
interactions of arbitrary order (non-linear screening). It is 
only for a density functional quadratic in the counterion 
density that the pairwise DLVO potential is recovered. The 
macroions are then moved according to this force and to 
their bare Coulomb repulsion, and this procedure is re- 
peated many times in order to gather suficient statistics for 
the macroions. The Car-Parrinello method [ 161 was used 
for the practical implementation of this procedure, together 
with a classical pseudopotential idea [14, 151. Some of the 
results are shown in Figs 1-3, where the pair correlation 
function, g(r), of the macroions is shown for three different 
thermodynamic states. The results based on pairwise effec- 

where po is the uniform density of the unperturbed suspen- 
sion (a = 0), zT is the osmotic compressibility and xy its 
ideal limit (l/po k, T) [lo]. 

3. An ab initio description of counterion screening 

A Statistical Mechanics description of charged colloidal 

that involves the macroion and counterion degrees of & 
freedom explicitly, assuming a combination of excluded 
volume and Coulombic interactions. The .model is “primi- 
tive” insofar as the discrete structure of the solvent is com- 
pletely neglected; the solvent just enters through its 
dielectric constant that reduce the bare Coulomb forces. 
Nevertheless it is still much too complicated to be analyti- 
cally soluble and provides an ab initio basis for a theory or 
calculation of the macroion structure. The technical 
problem for solving the primitive model is the high asym- 
metry in charge of the macroions and counterions, Z/q  >> 1. 

3 

systems usually starts from the so-called “primitive model” - 2 
1 

0 
2 4 6 

By brute force simulations, one may try to derive the r / R  
macroion structure directly from the primitive model, which Fig. 1. Macroion-macroion pair correlation function g(r) os. reduced dis- 
accounts explicitly for the discrete nature of the counterions. tance r/R, where R = u/2 is the macroion radius. The parameters are 
Such a calculation is feasible for Z / q  x 20 [12], but T = 300K e = 78 (water), R = 5 3 m ,  Z = 200, = 0.1. For these param- 
becomes rapid]y untractable for higher asymmetries relevant eters, the colloidal system is a liquid. The full line is the data from the ab 

initio method. Furthermore results from a pairwise screened Coulomb 
potential are given. In particular, the corresponding data for the DLVO- for charged colloidal systems. 

Secondly, one can use liquid structure integral equations model (long-dashed), the MSA (short-dashed) and the WSC-model (dotted) 
for oppositely charged mixtures to predict the structure are shown 
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Fig. 2. Same as Fig. 1, but now for Z = 100, q = 0.3. For these parameters, 
the colloidal system is also a liquid 

tive potentials are shown for the DLVO-potential (2) (long- 
dashed line) and the MSA-potential (short-dashed line). The 
dotted line is the result of a screened Coulomb interaction 
model based on a Poisson-Boltzmann calculation for one 
macroion in a spherical Wigner-Seitz cell (WSC) [ 171. It can 
be seen that the MSA generally overestimates while the 
WSC-model underestimates the structure. The traditional 
DLVO-potential works well for suspensions of low macro- 
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Fig. 3. Same as Fig. 1, but now for Z = 300, q = 0.08. For these param- 
eters, the colloidal system is a bcc-solid 

ion density (Fig. l), but fails for higher macroion packing 
fractions (Fig. 2), and overestimates the structure of the col- 
loidal crystal (Fig. 3). 

4. Conclusions and perspectives 

The first generalization of the ab initio description which is 
presently being considered is the strong screening regime 
with an added salt [lS] where nonlinear screening effects 
are expected to be more pronounced. The general scheme is 
also applicable to other inhomogeneous situations or low 
dimensionality systems [ 181. This is presently under investi- 
gation. Another direction of important research is to clarify 
effects of polydispersity. One can also prepare well-defined 
bidisperse systems leading to interesting phase diagrams for 
these two-component colloidal alloys [ 191 that exhibit 
strong analogies with two-component mixtures of atomic 
liquids. Another extension of the density functional descrip- 
tion of counterions may prove very useful to investigate 
linear polyelectrolytes, in particular the subtle interplay 
between bare and electrostatic persistence lengths. 
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