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ABSTRACT

It was frequently claimed that polarons should undergo a formal phase transition
from a mobile to a localized state, if the electron-phonon coupling parameter o
exceeds some critical value. We disprove this assertion for the class of Fréhlich
models. To do so, we analyze the perturbation series of the reduced propagator up
to infinite order in & and establish its analytical behaviour for all values of . Our
results can be generalized to the case of magnetopolarons, polarons in an external
potential and to polaronic excitons.

1. Introduction

Polarons are the eigenstates of a coupled electron-(LO)phonon system. They
are quasiparticles in the sense of Landau’s! definition and well established by many
experiments. The theoretical basis for a description of polarons was provided by
a famous paper of Fréhlich, Pelzer and Zienau?; these authors proposed a specific
particle-field model, which now bears Fréhlich’s name. Before long, this model proved
to be of basic importance for various branches of solid-state physics and has attracted
the attention of numerous physicists until today. The corresponding Hamiltonian .

reads as follows:

H = Hp + Hp, + Hj, (1)
- Where

Hp = a0 (2)
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Hpp = Y ho(k) al(k)a(k), (3)
k

\/gz{g(k) a(k) ™" + h.c.} . @
k

Hy

il

Here, p and r indicate momentum and position of the electron; k, w(k) and a(k)
denote the wave vector, dispersion and the field operator of the phonon, V is the
quantization volume. The space dimension D is arbjtrary. Finally, g(k) is the
electron-phonon coupling function, a dimensionless coupling parameter /a being
extracted. Without loss of generality, we may assume g(k) to be real. The standard
model], introduced by Fréhlich, Pelzer and Zienau? assumes additionally

D=3 wk)=w o= ﬁﬂ‘/%@% (5)

Our discussion, however, is not restricted to that case (see sections 3 and 4).

We insert a technical remark: At the moment, the volume V will be kept
finite to guarantee a discrete wave-vector spectrum. The reason is that thereby
we can avoid technical subtleties in connection with trace operations, which will
be introduced below. We stress, however, that there exists no principle difficulty
to use a mathematically well defined, continuous k-vector version of H from the
very beginning. Formally, all k-summations in egs. (3) and (4) have to be replaced
by integrations and in addition g(k)/v/V by g(k)/(2x)¥2. Publications of a more
mathematical character usually prefer this starting point (see section 2). Later on
(in section 3) we shall evaluate all k-summations in the limit V — oo.

In this article we shall discuss the analytical properties of polaron observables
as functions of o and other parameters. Functional-integration techniques will prove
extremely useful, as can generally be experienced in connection with polaron physics.
The extraordinary power of the method was already demonstrated in the early, pi-
oneering paper of Feynman®. In combination with a variational principle, Feynman
received results for the ground-state energy, which represent the state of the art until
today. We choose the same starting point as Feynman and introduce the matrix

element

U(rje, B) = trpp <r|e 27 [0 > (6)

of the reduced propagator. Here, trps ... indicates the trace operation concerning
phonons, r and 0 are parficle positions and B is a positive parameter; this may be
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interpreted as formal inverse temperature. Static and dynamical properties of the
system are derivable from U/(r; cx, B) in a familiar way. One should notice that

Ur-ria,B) = trpp <r|e”BH |y > (7)

holds because of translational symmetry; insofar eq. (6) covers the general case.

It proves useful to relate I/ (r; @, B) to the readily accessible quantity U(r; 0, B)
of an uncoupled electron-phonon system. Then, functional integration may be used
to derive (see, e.g. Schultz?)

Ulr;a, B) =. U(r;O,B)xZ(r,a,B), (8)
where
Z(I‘,(I,B) = (exp(*sf)) : (9)

The right-hand side is a specific expectation value; the general definition is

J 6°R exp(~50[R]) A[R]
J 6PR exp(~54[R])

(4) (10)

In (10), [6PR... is to indicate Wiener-Feynman integration over all real, closed
D-dimensional paths R(7) with R(0) = R(1) = 0. Moreover,

1 |
. m
SU[R'] = /0 dr % R2(T) P %—2—5 , (11)
2 1 p1 - , ’
SiR] = - 95‘2’9(’“”2/ f drdr' G(r ~ ') ¢KIRE)-RE =70
k g Jo
| (12)

and

cosh [Bhw(k) (1/2 — | 7])]
2 sinh (Bﬁw(k)/iZ)

G(1) (13)
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The functional integral (9), containing the noninstantaneous self interaction S 1R},
is the central quantity of this article. To the best of present knowledge, it cannot be
evaluated in closed form. However, one should notice that eq. (9) is ideally suited
as a starting point for a perturbative treatment of the electron-phonon interaction:
Inserting the power series for exp(—S;), one arrives immediately at a power-series
representation of Z(r, «, B) and U(r; , B) as a function of @, if the integration can
be done term by term and if the generated series exists. Provided this is true, one
may use the familiar mathematical theorems for power series to derive the analytical
properties of many polaron observables of interest. This will be done in section
3: We found it useful to premise a short compilation 6f functional-analytic results
concerning the Hamiltonian (1); the main reason is that these results seem to be
widely unknown, but are highly relevant in the context of analyticity problems. In
section 4 we list some extensions of the results, which we shall present in section 3.

2. Some analyticity results of operator theory

As indicated above, we use a continuous k-vector version of the Hamiltonian
H. Because of translation symmetry H commutes with the operator

Pt = p+ /de ik aT(k) ak) = p+Ppy (14)

of total momentum. Following Lee, Low and Pines®, we can profitably use this fact
to eliminate the electron coordinates from H; we define the unitary transformation

U = exp(— %.I"Pph) (15)

and caleulate P}, := U~'P,,,U/ and H' := U~ HU. The result is

P;at = P, (16)
H = Hy + Hpy + H, (17)
where
P (P - PPh)2
Hy = 5 , (18)

H = va / d% { g(k) a(k) + hoc.} . (19)
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Conservation of total momentum is now equivalent to [H',p] = 0 and permits us
to restrict H' to that subspace of the total Hilbert space, which is spanned by the
eigenfunctions of p with a given eigenvalue RQ. This restriction leads to the Hamil-
tonian

) ‘ _ 2
@ = PP < my) e (20)

of Lee, Low and Pines. Clearly, H' (Q) is defined on the Fock space of phonons alone,
the electron coordinates being eliminated. Moreover, it is sufficient to discuss H’ (Q
instead of H. Let E(w, Q) be the ground-state energy of H'(Q). The reader will
notice that the existence of E(q, Q) is directly connected with a proper mathematical
definition of H'(Q), which in turn presupposes the specification of admissable func-
tions w(k) and g(k). For the moment, we take the existence of E{a, Q) for granted.
Even more: assume E(a, Q) to be a simple eigenvalue of H'(Q), the corresponding
eigenfunction being (o, Q). One may then ask: What is the domain of analyticity
of F(e, Q) and (e, Q) as functions of a,Q? The complete answer is contained in
the following statement: Assume

W(k) Zw > 0, Ld(k])*i'(.d(kg) EW(lkl-{-ng 3 (21)
lg(k)f? |
f %k T+ < © (22)

to be valid, where a := \/h[/mw is the polaron radius. Then, the ground-state energy
E(a,Q) of H'(Q) ezists and is an isolated, simple eigenvalue for 0 < a < 00,
R2Q%/2m < hw. E(, Q) and (e, Q) are real analytic functions of @, Q in the
spectfied domain (as for a proof, we refer to Frohlich® and the detailed discussion of
Spohn” and Gerlach and Léwen®). -

Clearly, this statement provides a qualitative analytical analysis of the stan-
dard model (5) for optical polarons. More general, one will notice that many ground-
state observables can be calculated as derivatives of E{a, Q) with respect to Q or as
expectation values of type (¢(c, Q)| X | ¥{c, Q) ), X being an operator independent
of @ and Q. As examples, we mention the polaron mass, the polaron radius and the
mean phonon number associated with ¥(a, Q). The above statement assures us that
these observables are smooth functions of a,Q, provided A*Q?/2m < hw is valid.
Interestingly enough, the latter condition can totally be removed for D = 1,2 and
under slightly stronger conditions as (21), (22); for D = 3, the domain of () can be
extended, but @ remains finite (see Spohn®).
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3. On the Pertubation Series of the Polaron Functional Integral

In this section we perform a detailed perturbative discussion of the matrix el-
ement U(r; o, B), which we introduced in eq. (6) and represented by a functional in-
tegral in egs. (8) and (9). Clearly, it is sufficient to study the properties of Z(r,a, B).
To do so, let us consider

. N 1 N 1
In(ryon B) = () =(=81") = 3 = ((=5)") . (23)

Now, — S} is positive definite; this can easily be proven, if one inserts a Fourier series
representation for G(r — ') into eq. (12). Moreover, direct inspection of S; shows

that we may represent
1
SU=S) = a*fu(e, B), (24)

where f,(r, B) is some positive function to be discussed below. Combining (23) and
(24), we find that Zn(r,a, B) is strictly positive and monotonically increasing as
function of N (r, a and B being fixed). If we can prove that Zy(r, o, B) is uniformly
bounded from above by some function C(r, a, B) < 00, we can apply the monotone
convergence theorem to assure that imy_,o, Zn(r, o, B) =: Zoo(r, @, B) exists and

o0

Z(r,0,B) = Y o"fu(r,B). | (25)

n=0

On the other hand, we may assume that Z(r,a,B) exists. Then, Z(r,a,B) >
Zn(r, e, B) is automatically true and (25) holds again. Insofar, Z(r, o, B) exists if
and only if this is true for Z(r, o, B).

Consequently, we examine (25) in more detail. We anticipate that the func-
tional-integral part in f,(r, B) can be evaluated in closed form (see eq. (30) below).
This leaves us with a finite-dimensional integral, which depends analytically on B, if
B >0 is fulfilled.

We now perform an analytical continuation: Despite its introduction as a
function of positive « and B, the right-hand side of (25) may be discussed as an
infinite series of complex o and B. This complex series converges absolutely for all &
and 0 < ReB < oo, if (and only if) the original series (25) converges for 0 < o < o0,
0 < B < oo. To prove this, one has to recall that f,.(r, B) is positive, if B is positive;
for complex B, one derives
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8 < (22) o meB) (26

by direct inspection. , :
Having in mind that fa(r, B) is an analytical function of B for 0 < ReB < oo,
we may state the following result: (25) exists as a compler series for all a and
0 < ReB < oo and represents an analytical function of a and B in the quoted
domain, if (25) exists as a real series for0<a<oo,0< B < oo and arbitrary r.

The remaining task is to assure the convergence of the real series (25). We
mention two sufficient conditions for the ezistence of (25) as a real series of a, B
andr for0 < o < 00,0 < B < 00 and arbitrary r:

V2
/ d"k lg(—kl‘— < (short-range case) ,
w(k)
(27)
or
wk) 2w>0, |g(b)P kP! < const, (long-range case) .
(28)

To prove this assertions, we begin with the comparatively simple case of short-range
coupling, To get an upper bound on an arbitrary term in the series (25), we may
replace the exponential factor in 1[R] by 1 (see eq. (12)). Using condition (27), a
positive function C'(B) < oo exists such that

f(r,B) < C(j )" (29)

Clearly, this inequality proves the convergence of (25).

The case of long-range coupling is much more involved. Inserting the formula
(12) for S; into {(=S1)™), the functional integral is of Gaussian type and can be
evaluated. We find for general g(k) and n >0 (fp = 1):

£08) = 5 (G0s) [, otk

(2m)3
1 hZZ n
X / dTl...dTgn E’.}‘.’p{—”—"-ﬂi Aj[(Tl,...,Tgn)kj'kf}
V0 m Hi=1
x T Giroyr = ma3) exp { (m2j1 = m25) k; - 1} (30)

=1
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Here, the matrix A;i is defined as

1 )
Ajl(Tla- . -,Tzn) = Z{l T2fmr — th[-l- Ith—l —szl - I—TZj—l - 7‘21-1'

~ | 7e5 — 2| — 21351 — sz)(fzﬂl - Tz:)} (31)

and Gj(r) is the kernel function (13), k being replaced by k;. We remark that
inequality (26) can directly be derived from eq. (30). _

In a former publication!® two of the present authors studied the diagonal
element U(0; «, B) and calculated a uniform upper bound on f,(0, B). Because of
fa(r, B) < f(0, B) the present problem to find an upper bound on f,(r, B) can be
reduced to the former one. The final result is

Cy(B)*
: T

fulr,B) < Cy(B) (32)

where C1(B) and Cy(B) are finite positive functions of B. ‘Therefore, convergence of
(25) is guaranteed again.

We add a few comments: Firstly, the results of this section complement nicely
those of section 2. A direct comparison of the former conditions (egs. (21), (22)) and
the present ones (egs. (27), (28)) demonstrates that the "finite temperature” version
of the analyticity proof is surprisingly general. A main reason for this fact is the
simple o and B-dependence of the actions S, and 1- Secondly, we can exclude any
phase-transition like behaviour in the standard polaron systems; they are all covered
by the stated conditions. Phenomena as self trapping and mass stripping do not occur
within this frame. It is well known that a nonanalytical behaviour was reported in
many publications. Most of these results were obtained by variational methods; a
survey of the existing literature can be found in ref.8. Without underestimating the
merits of the variational results as such, the nonanalyticities have to be classified as
artifacts of the approximations made.
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4. Extensions

In this section we indicate some generalizations of the results in section 3. The
simplest one is concerned with an electronic coupling to several phonon branches,
e.g. acoustical and optical ones. For a long time such a system was thought to be
a candidate for phase-transition like behaviour. One proves by direct inspection of
S7, that the above analyticity statements can be correspondingly generalized, if the
quoted conditions (27) or (28) are fulfilled for every branch.

It is also simple to remove the condition of isotropy for w(k) and g(k). The
conditions (27) or (28) for w(k) and g(k) have to be replaced by generalized ones for
w(k) and g(k). A specific example, which was extensively treated in the literature, is
g(k) < [Mk|™'. Here M is areal, symmetric matrix with strictly positive eigenvalues.

Polarons in an external field have attracted a particular attention. We firstly
turn to magnetopolarons. A homogeneous magnetic field H will lead to & matrix ele-
ment U(r, o, H, B) instead of U(r, o, B). Eq. (9) will change insofar, as S; has to be
supplemented by a purely imaginary term, which depends linearly on H. Revisiting
our estimation procedure, one finds that |Zn(r,a,H, B)| is bounded by Zn(r, a, B).
Therefore, the convergence of the power series for Z(r,a,H, B) is guaranteed, if
the convergence of the power series for Z (r,«, B) is established. We conclude that
magnetopolaron observables as energy and mass show an analytical behaviour as
functions of o, H, B for 0 < a < 00, 0 < |H| < 00, 0 < B < o0, if the inequalities
(27) or (28) are fulfilled.

A scalar potential Av(r) is the second example for an external field. We have
extracted a dimensionless coupling constant A, which we assume to be positive. Again
one can generalize the analyticity proof, now for a matrix element U(r, o, A, B), if
the additional inequality

|5(k)| ¥* < const. | (33)

is true, where 9(k) denotes the Fourier transform of v(r).

It is interesting to compare these results with the ground-state results of
operator theory. They are completely analogeous with the exception of the last
example. If one discusses E(a, ), the ground-state energy as function of o and )\,
and assumes v(r) to be of short-range attractive type (strictly speaking, v(r) should
be an element of the Rollnik class), a nonanalyticity may occur at a certain value of
A. This phenomenon is a so-called pinning transition (as for details, we quote ref. 19),
Pinning does not occur for a long-range potential of e.g. Coulomb type. In view of
our above results we conclude that finite temperature destroys the pinning transition
under all circumstances, provided, inequality (33) is guaranteed.

We close with a short comment on excitons. Introducing a electron-hole po-
tential Av(r), we can repeat the analyticity results for the bound polaron.
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