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A microscopic theory of surface melting is described and applied 1o Lennard-Jones systems, Qur approach is
based on density functional theory with the hard sphere fluid as a reference system. In particular we use a
weighted density approxmation which vields an accurate Lennard-Jones bulk phase diagram. Within a practically
Iree mimmization of the functional, we find suriace melting of a Lennard-Tones cryseal for different surface
orientatiens. Furthermore the hard-sphere crvsial-fuid interface and the hard-sphere crystal at a hard wall are
explored with density funcuional theory, [t is found that the crystal-tluid surface tension of hard spheres 15 ex-
tremely smalil and ihat the hard wall prefers 1o be covered by a hard-sphere-solid ar solid-liquid coexistence.

I. Imtroduction

How does a crystal melt if it is heated up slowly? One
may conjecture that bulk melting may be initiated ar point
defects, vacancies, grain-boundaries or at the crystal sur-
face which is a natural and omnipresent defect in the
crystalline order. This is based on the common experience
that liguids may easily be undercooled due to kinetic
obstacles of nucleation but crystals can hardly be overhear-
ed. The idea that the crystalline surtace plays a decisive role
to initiate melting gains further support from the ex-
perimental observation that silver crystals (melting temper-
ature 1234 K) coated by a thin film of gold (melting temper-
ature |337 K) can be substantially overheated [1].

Let us focus on an idealized pianar and eguilibrium situa-
tion of surface melting. A semi-infinite three-dimensional
crystal in coexistence with its gas is heated up along the
sublimation line until the temperature T approaches the tri-
ple point temperature T7 where the liguid phase becomes
thermodynamically stable. The distance to the triple poing
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is conveniently measured by the reduced temperature dis-
tance

Lr:—?;u{] . (1)
Tt

4

The crystal is cut along a fixed plane with an area A4, the
position perpendicular to this plane is z. The structure of
the solid-gas interface can be characterized by the parallel-
integrated particle number density p ~ (2) which is obrained
from the full density p(F) via

I
p*iz)=—[dedyp(r) . (2)
A 4

Typically the parallel-integrated density for a solid-gas in-
terface far away from the triple point consists of sharp
peaks reflecting the periodic crystal lattice while it equals
the gas bulk density in the gas phase. Between the two
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phases there is a sharp interface typically invelving only a
few crystalline lavers. As one approaches the triple point,
two different situations can occur. In the first case, the non-
melring case, there is no drastic change in the structure of
the solid gas interface at T = Ty, i.e. the solid remains
nonwet at its surface, even at T, and there is a sharp solid-
gas interface. Apart from a broadening of the solid peaks
due to the higher temperature, the parallel-integrated densi-
ty across the solid-gas interface then is very similar to the
one far from the triple point. In the second case, near T+,
a quasiliquid faver intervenes between the solid and the gas
exhibiting a certain temperature-dependent width [, Surface
melting is complere, if [ diverges as r—0. Of course, the
behaviour depends on the orientation of the crystalline
plane. Surface melting is more likely in looser packed
planes, since in denser packed planes the atoms are bound
more tightly and disorder cannot be induced easily. Thus
the following questions are relevant: Does the crystal melt
from its surtace or not? What is the detailed structure of the
solid-quasiliquid-gas interface? [f complete melting occurs,
what is the divergence law for [{¢) as r—{(?

The problem of surface melting originates from [842,
when Faraday [2] started investugations on melting and
freezing of pieces of ice. In 1910, Tammann [3] pointed out
that the surface has a decisive role to initiate bulk crystal
melting. Later in 1942, Stranski [4] concretzed this idea by
macroscopic, gualitative considerations, including the de-
pendence on the orientation of the solid plane. In the last
decade, new powerful surface-sensitive experimental meth-
ods for studying microscopic aspects of surface structure
were developed and thereby surface melting became a
topical problem. Several recent experimental and theoreti-
cal results are reviewed in Refs. [5 - 7]. As an important ex-
ample, the surtace melting of ice which was controversial
for a long time has recently been clarified. Ice is probably
the material where surface melting has most practical ap-
plications ranging from charge transfer between ice
crystallites in thunderstorm clouds and frost heaves to ice-
skating. Reproducible X-ray scattering experiments by Lied
et al. [8] strongly indicate thart ice is an example of complete
surface melting for every high-symmetry surface orienta-
tion.

As a simple model for rare gases, a svstemn with a Len-
nard-Jones (L)) pair-potential

% 12 [}
Vir) = 4¢ q) —(f (3)

is often considered. There have been a number of computer
simulations for the LJ system [7] but they are still inconclu-
sive due 1o small svstem size. Among theoretical approaches
we mention a lattice theory [9], a density functional theory
[10] and combination of a density functional and van der
Waals theory [11, 12]. Apart from the latter approach the
theories sutfer from an inadeguate bulk phase diagram for
the LJ system which is a necessary starting point for a quan-
titative theory of surface melting. In this paper, we propose

a density functional theory for surface melting which pro-
vides an accurate Lennard-Jones bulk phase diagram and
improves the results of Ref.[12] substantially. In fcc
crystals, surface melting is found to occur for the (100) and
{110} orientations.

Il. Density Functional Theory

We start from the grand canonical free energy functional
2[p] of an inhomogeneous system with local density p(r),
temperature 7, and chemical potential . The basic varia-
tional principle establishes the existence of an excess free
energy functional ... (7] such that the equilibrium density
minirizes the grand canonical free energy functional,

Q0p1 = Fexclp1+ [ &' 1o AUV g (P)
—u—kgT+kgTIn (A p (M) . (4)

The minimum of £2[#] equals the real grand canonical free
energy. In (4), A denotes the thermal wavelength and
V.u(F) is an external potential, e.g. a wall potential. In
general, the explicit form of Fee:[2] is not known and one
has to rely on approximartions. One of the best schemes pro-
posed to date is the weighted density approximation (WDA)
[13],

Fenclo] = | P rp(F) (27 . (5)

where ¥(p) denotes the excess free energy per particle for
any homogeneous density; the weighted density g(F) is
given implicitly by

IRy =1 rwlIF=F' 1 BENPFN . (6)

The weight function wir,p) is normalized and chosen in
such a way that the known liquid structure factor 5(k,p) is
reproduced by the functional in the limit of a uniform den-
sity.

With the concrete form for the functional £2[p] specified,
one calculates bulk phase diagrams by comparing the liquid
free energy with that of a solid where the minimizing densi-
ty consists of sharp peaks on a crystalline lattice. In prac-
tice, the width of Gaussian peaks and the lattice constant of
the crystalline lattice are usually chosen as variational pa-
rameters describing the density distribution.

The WDA describes hard-sphere freezing and the results
for the coexisting liquid and crystalline densities agree quite
well with the simulational data. The LJ bulk phase diagram
i5 accurately obtained if one treats the L]-potential within
hard-sphere pertubation theory [14]: The LJ potential is ap-
proximated by a sum of two Yukawa potentials [15] and
split into a repulsive and an attractive part following the
prescription of Weeks, Chandler and Anderson [16]. The
repulsive core is approximated by an effective temperature-
dependent hard sphere diameter d(T) obtained from the
Barker-Henderson formula [17]. The attractive potential
V,lr) is treated in a mean field fashion:
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where 2y, is the WDA expression for hard spheres with
diameter ¢, Here we have introduced another weighted den-
sity,

24 F=F'|
ﬁir’}=—r—j£d}r‘prr"}(1 ~%)c—)m— F=F1) . (8

Therefore the last term in (7) vanishes in the homogeneous
liguid. Yysip) and ¥, () are the excess free energies per
particle of the hard sphere and the L] homogeneous liquid.
For the former we take the analvtic Percus-Yevick expres-
sion, for the latter quite accurate results are also available
[18]. The unit step function &(r) is introduced in (7) in
order to avoid self-interaction effects in the solid.

The protile of the hard-sphere solid-fluid interface and its
surface tension has been calculated within the WDA by
Curtin [19]. He used two variational parameters for the in-
terfacial density profile. This procedure was then also ap-
plied to LJ-solid-fluid interfaces [20].

In the present work we perform a free minimization [21]
where we parameterize the solid density field in a periodi-
cally repeated slab by a large number N, = 10° of grid
points and minimize the functional with respect to N, vari-
ables. This does not give significantly different results for
the bulk phase diagrams but it drastically affects the surface
tensions. Thus, free minimization is required for calculating
the structure of interfaces and investigating surface melting
accurately.

[11. Solid-Fluid and Solid-Gas Interfaces
[II.A. Hard Spheres

The bulk phase diggram of a hard-sphere system (with
diameter o) is temperature-independent and shows a strong
first-order freezing transition from a fluid to a close-packed
crystal. The corresponding liquid and solid densities
(7 =094d7°, p,=1.04d™") are known from computer
simulation. With the Percus-Yevick expressions for S(k,p)
and ¥{p) and a constraint which avoids configurations of
overlapping hard spheres [12], the results of the WDA,
2, =089d" 7 and p, = 1.02d™ %, are close to the ‘exact’
values. Note that a free minimization has been performed
in the space of periodic densities. However, there is prac-
tically no shift in the coexistence densities as compared to
a Gaussian parameterization. We studicd this density distri-
bution in some detail [21]. The small anisotropy in the solid
peak has the wrong qualitative behaviour in comparison
with computer simulations. Hence the WDA is not able o

reproduce such subtle features of the solid density distribu-
tion.

Mext, let us discuss the structure of the hard-sphere sofid-
liguid interface. Unfortunately there are no computer
simulation data neither for the interface structure nor for
the surface tension. We have performed a density func-
tional calculation in a finite slab with periodic boundary
conditions. In order 1o avoid interaction with the periodi-
cally repeated interfaces, the width in z direction was chosen
to be about 25 d. For the (100) orientation, free minimiza-
tion of the WDA-functional vields a parallel-integrated den-
sity which is shown in Fig. 1. The lateral-integrated density
profile is broader than and differs qualitativelv from the
restricted two-parameter Ansarz of Curtin [19]. Also the
minimal lateral density pn(z)=Min, ,,p(F) is depicted
which measures lateral ordering: it equals the bulk liquid
density in the liguid phase and drops to very small values in
the solid phase. The oscillation mismarch of p,(z) with
respect to 2 = () in the interfacial region indicates that the
interfacial profile is quite complex which cannot be parame-
terized by an Ansarz with few variational parameters. In
fact, due to the free minimization, the resulting solid-liquid
surface tension (¥, =0.04kgT/d") i5 much smaller than
Curtin’s result (y, = 0.66kg T/d*), Thus the WDA predicts
a very small surface tension which may be the reason why
¥q 1s difficult to compute by simulations.
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Fig. |
Parallel-integrated density o * (2) (upper curve) and minimal density
P (2) (lower curve) versus z for a hard-sphere crysial-fluid interface in

(100)-orientation, obtained within the WDA, The densities are in units
of d -}

As a further example we also consider hard-spheres at a
hard wall. Recent molecular dvnamics simulations [22] in-
dicate that a hard wall prefers to be covered by a crystal
rather than by a liquid if the bulk density is in the liquid-
solid coexistence region. We have calculated within WDA
the surface tension of a wall-liquid system, y¥, and, for
the first time, that of a wall-solid system, ¥, the densities
being at coexistence [23]. It turns out that yg =
~2.92ky T/d*, y = —3.58ky T/d? 50 that

}r:i > :’ru.-: + ?5| {9}
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implving that a hard wall prefers to be covered by the solid
phase in accordance with the results of computer simula-
tion. Therefore y2 is not a true thermodvnamic surface
tension but corresponds to a metastable situation, Thus the
WDA describes complete wetting of a hard wali by a hard-
sphere crystal correctly.

[IL.B. Surface Melting of the Lennard-Jones system

Using the hard-sphere perturbation theory described in
Chap. [l and the WDA-functional for hard spheres, the
resulting bulk phase diagram of the Lennard-Jones svstem
is found to be in good agreement with results from com-
puter simulations. For instance, the triple point lemperature
isat Ty =0.75&/kg in the WDA which compares weil with
the simulation result (77 =0.70e/ky) [24]. However, the
theory suffers from the face that the treatment of the attrac-
tive 1ail in perturbation theory is somewhart arbitrary.

The free minimization of the WDA-functional for a slab
with periodic boundary conditions vields parallel-integrated
density profiles displaved in Fig. 2, Two reduced tempera-
tures rand the ( 100) and (1 10) surface orientations of the L]
fce erystal have been investigated. As =0 both orientations
exhibit surface melting. The first few crystailine lavers
become liquid-like and the width /{¢) of the liguid film in-
creases. For the LJ potential, /{r) diverges as —lIn¢ with a
Crossover to a power-law divergence oy - 3 far very small
L]

One also sees the influence of different surface orienta-
tions in Fig. 2. For the same reduced temperature ¢, the
looser packed (1 L0} plane is much more disordered than the
(100} plane. The solid-liquid surface tension at the triple
point is found to be ¥4™ =0.30z/0" for the (100} and
;;_"”' =0.27&/a" for the (110} orientation. These values
are in reasonable agreement with the simulational dara:
i =034e/a” and yY'"" =0.368/a° [25]. However,
there is a caveal in a direct comparison since the LJ-poten-
rial was truncated differently in the simulation and in our
theory. For comparison, the two-parameter variational An-
sarg of Curtin [20] yields 4" =0.43e/¢” and we find
again that free minimization is mandatory in the study of
interfacial propertics.

The liguid-gas surface tension at the triple point is
Vig = 0.4d4e/c” for the WDA; the simulational result is
ﬂgt[}.ﬁa.-"a! [26]. Thus Vig 18 only poorly reproduced by
the density functional theory. However, one should also
note that the simulation data have a rather larce statistical
error. An unexpected feature of the liquid-gas density pro-
file at z/o =2 in Fig. 2c is an oscillatory behaviour at the li-
quid side of the profile. This appears 1o be an intrinsic pro-
perty of the free liquid-gas interface [27].

[n conclusion, a weighted density functional approach
has been proposed and applied to density profiles of intet-
faces in hard-sphere and Lennard-Jones svstems. Free
minimization is necessary to obtain the correct solid-liguid
surface tension for hard spheres. Also surface melting and
the corresponding orientation-dependent profile of the
solid-gas interface of a Lennard-Jones svstern has been ob-
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Parallel-integrated density g = (z) versus = for a LJ svstem obtained
from hard-sphere perturbation theory of the WDA. a) Reduced tem-
perature £ = 1072 and (100)-orientation; b} f=4x10°% and (100)-
arientation; c) f = 4x 107 and (1 l0)-orientation

tained. The present theorv can be generalized to address
grain-boundary and edge meling of Lennard-Jones
crystals., However, for such situations one needs a large
system in two directions and the storage capacity required
for a free minimization of the functional with a reasonable
grid resolution is ar the limits of present-day compurters.
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