that the results of such (three-dimensional) simulations can

be used to investigate the in-plane morphology of samples

showing the interference effects described above. It was
shown that ‘destructive interference’ of the spinodal waves
corresponds to the existence of a region close to the cenier
of the film consisting of a large number of droplets of either
of the two phases. This occurs in Fig.4c¢ and can be
understood as the compromising reaction of the system to
competing surface fields which tend to enrich the particular
layer by one and the other phase at the same time. The
resulting disorder disappears as soon as the film thickness
approaches a value where both surface fields favor the same
phase to be enriched at any given plane in the film (Fig, 4d).
‘Constructive interference’ therefore corresponds to an
almost perfectly layered structure.

In summary, we have investigated the effects of the
boundary surfaces on the spinodal decomposition in thin
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dPEP voiume fraction vs. depth profiles for different films thicknesses
d as determined by NRA: {(a) d=>1000am, (b) &=3574nm, (c)
d =474 nam, {d} d = 282 mm, (e) d = 240 nm. The solid lines represent
the model (f) discussed in the text, convoluted with a Gaussian of in-
creasing full width at half maximum. The locations of the Si substrates
are indicated by the vertical lines. (All substrates were stripped from
oxide prior to film deposition)

the film thickness matches about t.3 times the characteristic
wavelength of the surface spinodal waves (Fig. 4d). We can
easily model these results by superposing two damped
cosines originating at the {wo boundary surfaces of the
films with all parameters but the fitm thickness kept cons-
tant (solid lines in Fig. 4). This is shown in Fig. 4f for the
partientar film thickness realized in Fig. 4¢. The model no
longer describes the experimental data, however, when the
film thickness is further decreased. This discrepancy can be
seen in Fig. 4e and is observed in all samples thinner than
about 280 nm, To understand this effect, we may compare
the total film thickness to the most probable wave length at
early times. As the wave vectors of the surface spinodal
waves approach the bulk value at # = 0, we may extrapolate
the data for gp, y, obtained from light scattering ex-
periments on bulk PEP/dPEP samples [14] to { = 0. We es-
timate gg py(f =0)=3.6% 1072 A" for T=321K, cor-
responding to A, (f = 0) = 174 nm. Since the substrate sur-
face is covered by a PEP-rich layer in contrast to the
polymer/vacuum interface, a minimal film thickness of
doin = 1.5 A, (f = 0) = 261 nm is needed in order to realize
a composition wave with gp pyp(f =0). As the film
thickness falls below this limit, the system is forced to de-
compose with a larger characteristic wave vector, which
then is determined by the macroscopic dimensions of the
film.

Finally, we shall mention that the above results on the
thickness dependence are in quantitative agreement with
cell-dynamical simulations, mapped on the polymer system
under consideration [6, 10]. With a detailed discussion be-
ing beyond the scope of this paper, it is worth mentioning

films of a binary polymer mixture. The surface layer
formed during the decomposition process was found to
follow a ¢'* growth law in accordance with recent
theoretical predictions. For sufficiently thin films, it was
shown that the entire phase morphology can be determined
by surface effects.
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A Ginzgburg-Landau model of non-conserved order parameter dynamics is analyzed. The model involves three

different phases: a stable high-temperature phase, a stable low-temperature phase and a metastable phase. It is

shown that a macroscopic portion of metastable phase can be formed by a dvnamic instability which spiizs the

front separating the stable high- and low-temperature phases. The presence of an external field blocks this

metastable phase formation and leads to a non-monotonic behaviour of the metastable phase portion as a func-
tion of time.

Usually metastable phases are produced by fast tempera-
ture quenches. The common picture is that due to kinetic
obstacles the stable phase does not have enough time io
form and a macroscopic portion of metastable phase can be
created. There are many concrete examples of metastable
phases in physics and metallurgy [1] and for more than a
century [2] experimental and technical experience on
creating metastable crystalline structures and glasses from
the melt has accumulated. It is, however, only recently that
theorefical mechanisms have been studied. Two general
mechanisms have been proposed [3]: First, the rucleation
rate of metastable germs may be larger than that of stable
germs. Second, the growth rate of the metastable phase ex-
ceeds that of the stable phase,

It is the purpose of this article to review briefly a third
mechanism for the formation of a metasiable phase which
was proposed recently [4 — 6]. The corresponding scenario is
that upon rapid cooling the metastable phase nucleates at
the growing interface between the stable high-temperature
phase (0} and the stable low-temperature phase (2) and then
grows faster than the stable low-temperature phase. This is
directly connected to a splitting instability of the 02-front
which splits into two independent 01 and 12 interfaces both
of which moving with a different velocity such that a
macroscopic portion of the metastable phase can be formed
dynamically.

To see the splitting instability in its simplest setting we
follow Ref. [4] and consider usual Ginzburg-Landau dy-
namics for a one-component non-conserved dimensionless
order parameter g (x, r) (alias model A without noise). Inter-
facial dynamics is studied in one spatial dimension x as a
function of time # Ian the one-dimensional geometry any
roughening effects are neglected. The relaxational equa-
tions for the order parameter dynamics read

dg (x, 1) _ WFS Flg(x,0)]
ot &g

(1)
with the free energy functional

2

. < A

Flqe, 0] = | dx ‘L(M) Lrgmm| . o
0 2 Ox A

Here, A is a microscopic bulk correlation length which
determines the length scale, ¢ sets the energy scale and I is
an Onsager coefficient which sets the time scale. In the
following, all quantities are measured in these natural units.

To get expiicit results we make the following concrete
choice for the free energy density flg):

d
d;;;q(q—(ﬂ-S—b))(ﬂ}—H(q—1-5)(q—2) 3

with a control parameter bec{7p,~T) where 7y, is the
coexistence temperature between two stable phases (0) and
(2). Later on we shall briefly discuss how the explicit form
of f(g) influences the splitting instability. As can be clearly
seen in Fig. 1 where —f{¢g) is shown for different control
parameters b, three phases are involved:

a) the stable high-temperarture phase (0) (e.g. liquid) chosen
to beat g=0;

b) the stable low-temperature phase (2) (e.g. crystal) chosen
to beat g =2;

c) a metastable phase (1) lying at g = 1 in between the two
stable phases.

We are now looking for dynarnical solutions g (x, ¢} of (1)
with an arbitrary initial profile and boundary conditions

lim g{x,t)y=2 4
X — o

lim g(x,{)=0 (3)
X oo

for all r=0. In order to get an insight into the sphtting in-
stability let us discuss the existence of steady state solutions
between the phases 01, 12 and (2. These are profiles moving
with a constant interface velocity, vy, vy resp. vp. In
terms of steady state velocities the scenario of the splitting
instability can be understood as follows [4]: If vy vy,
then steady state motion of the O2-interface is possible with
a velocity vy, lying between vy, and vy5. On the other hand,
for vy <<vy there is no steady state solution for the 02-
interface. The 02-interface splits into two independent 01
and 12 interfaces which move asymptotically for large times
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Fig. 1
Free energy density —f(g) as a function of the order parameter g for
different control parameters bo< (T, — 7). The curves are shifted by an
arbitrary constant. From up to down the values of b are as follows:
a) b = 0.5, liguid spinodal line
b} b = b, =0.15419, critical value Tor interface splitting
¢} b =0, coexistence between phase 0 and 2
d) B = —0.23, region where phase 0 is stable.

with their corresponding steady state velocities vgy, ).
Since vy, >v;; the metastable phase front grows faster into
the unstable phase (0) than the stable phase grows into the
metastablie phase and a macroscopic poriion of metastable
phase is created dynamically. This portion grows linear in
time oc(vg —vy3)F. For vy = vy the splitting transition oc-
curs. The actual value of the steady staie velocities directly
depends on the detailed shape of f{(g}. This implies that
there is a critical control parameter b, corresponding to
U3 = vp. For the concrete choice (3), the vaiue of b is
0.15419. For b 7 b, the width of the 02 steady state front
diverges indicating a dynamical prewetting by the
metastable phase.

In Fig. 2, the width w(r) of the metastable phase interven-
ing between the stable high- and low-temperature phases is
shown as a function of time ¢ for different control parame-

30+
-
% 20-
2z
E 104
s
=
‘ 0 [ T
0 200 400
- Time
Fig. 2

Width of the layer of metastable phase versus time f for £ =0, 0.14,
0.16, and 0.18. Note that the critical control parameter is b, =
0.15419. Inset: Splitting of the 02 front for & = 0.18. Order parameter
g versus position x. The dashed curve is the initial stationary solution
for b = 0. The solid curve shows a profile for 7 = 10000 time units

ters b. For b< b, in the steady state regime, it converges to
a finite microscopic value; for b # b it diverges logarithmi-
cally «In(b,—h); and for b=b. it diverges to even
macroscopic vatues. Also, in the inset of Fig. 2, the time
evolution of a typical order parameter profile is shown
clearly showing the buildup of the metastable phase.

The same splitting effect is also possible for several order
parameters. The case of two non-conserved order parame-
ters was explicitly examined by Tuckerman and Bechhoefer
i5].

The splitting instability is non-generic. Whether it occurs
or not depends on the detailed form of the free energy den-
sity f{g). In our chosen form (3), it does occur but in other
choices it does not. We simply mention that the choice (3)
represents a typical one with realistic free energy differences
and typical undercoolings. Thus in certain systems one
should see the splitiing instability and in other ones one
should not.

There are a number of possible mechanisms that limit the
growth of the metastable phase in reality. One of them is an
external field which is coupled to the order parameter. If the
order parameter is simply a scaled particle number density,
a gravitational field can be regarded as such a disturbing ex-
ternal field but other examples are also conceivable. The
Ginzburg-Landau model is readily generalized to the case of
a constant external field by adding the term a gx to the free
energy density function f{g) which thus becomes position
dependent. a plays the role of a coupling parameter. Fur-
thermore we now take a semi-infinite geometry x=0. For
different shapes of f{g), Bocquet and the author have
solved numerically the time evolution of the order parame-
ter profile in an external field [6]. The results depend on the
fact whether for & = 0 the interface motion is in the steady
state regime or in the regime where the splitting instability
OCCurs.

In the first case the interface motion is first steady state
like and then slows down due to the presence of the external
field. For very large times, it approaches its equilibrium
profile where the O2-interface position is positioned at a
tixed xg. xo decreases for increasing a. For large times, the
interface position approaches x; exponentially in time, i.e.
ocexp ( —1/7) with a characteristic decay time 7.

In the second case the width of the metastable phase first
grows up to a maximal width wy,,. W, increases with
decreasing coupling ¢ and can even reach mesoscopic
values. Then the width shrinks back again to a microscopic
layer exponentially in time. This interesting non-monofonic
behaviour of the width w(¢) is shown in Fig. 3 for three dif-
ferent parameter combingations, two of them being in the
regime where the splitting instability occurs for o = 0.

Some final remarks concern a possible experimental
verification in real growth experimenis. One possibility is to
study dynamics of sarface melting which was in a similar
framework discussed by the author and Lipowsky [7]. Li-
quid crystalline systems often provide a number of
metastable phases upon undercooling and may constitute
ideal candidates for an experimental verification of the
splitting instability [8]. Some unusual large layer thick-
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Fig. 3

Width of the layer of metastable phase, w(t), versus time 7 for & = 0.8
(solid line), & = 2 (dashed line}, and ¢ = 1 (dotted line}. The form of
f{q) is chosen such that the solid and dashed lines are in the regime
where the metastable phase forms by the splitting instability in the
field-free case whereas the dotted curve is in the steady-state regime.
The width is measured in terms of the width w(0} of an arbitrarily
chosen initial profile

nesses were observed at growing liquid-solid interfaces of
atomic materials by Bilgram and coworkers [9] which may
be related to the splitting instability. However, the latter ex-
periments may also be explained by diffusing gas microbub-
bles, see e.g. [10]. Another promising system are collpidal
suspensions where dynamics happens on a much larger

fimescale than for atomic systems. Here effects of an exter-
nal field on a growing metastable phase may also be detect-
able (for a possible experiment with different metastable
phases see [11]).
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Random sequential adsorption (RSA) models have been studied {i] due to their relevance to deposition processes
on surfaces. The depositing particles are represented by hard-core extended objects; they are not allowed to
overlap. Numerical Monte Carlo studies and analytical considerations are reported for 11 and 2D models of
mudtilayer adsorption processes. Deposition without screening is investigated; in certain models the density may
actually increase away from the substrate. Analytical studies of the late stage coverage behavior show the
crossover from exponential time dependence for the lattice case to the power law behavior in the comtinuvm
depositien. 2D lattice and continuum simulations rule cut some “exact” conjectures for the jamming coverage.
For the deposition of dimers on a 1 I} lattice with diffusienal relaxation we find that the limiting coverage (100%a)
is approached according to the ~ 1/)/f power-law preceded, for fast diffusion, by the mean-field crossaver regime
with the intermediate ~ 1/¢ behavior. In case of k-mer deposition (4 > 3) with diffusion the void fraction decreases
according to the power-law $ %=1 T the case of RSA of latrice hard squares in 2D with diffusional relaxa-
tien the approach to the full coverageis ~¢ /2. In case of RSA-deposition with diffusion of two by two square
objects on a 2D square lattice the coverage also approaches 1 according to the power law ¢ ~12 while on a finite
periodic lattice the final state is a frozen random regular grid of domain walls connecting single site defects.
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