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Abstract 

The interaction between charged colloidal particles is known to be dominated by Coulomb interactions which are 
screened by the microscopic counterions. For highly diluted systems linear screening theory leads to the familiar 
DLVO (Derjaguin-Landau-Verwey-Overbeek) pair potential between spherical suspensions. For concentrated suspen- 
sions, however, nonlinear screening effects resulting in effective counterion-induced many-body forces between the 
macroparticles become important. An "ab initio" theory is discussed which fully describes these nonlinear effects. 
Furthermore, some results for freezing of charged colloidal suspensions are presented both in three and two spatial 
dimensions. 
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I. Introduction 

Monodisperse suspensions of spherical macropar- 
ticles in a microscopic solvent represent excellent 
representations of simple one-component liquids on a 
mesoscopic length scale [1]. In particular, a concen- 
trated suspension exhibits similar structural correla- 
tions than that of  convenient classical liquids. For high 
density (resp. low temperature), a fluid suspension 
freezes into a regular crystal of macroparticles. Once 
the effective interparticle forces between the colloidal 
macroparticles are known, one can proceed along the 
same way as known for classical fluids in order to pre- 
dict the phase diagram, etc., using classical statistical 
mechanics. These interparticle forces include a term 
stemming from the van-der-Waals attraction as well 
as a repulsive force needed to stabilize the colloidal 
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suspension against irreversible coagulation. For steri- 
cally stabilized suspensions, the repulsive forces are 
conveniently written in terms of a simple excluded 
volume tenn. For charged suspensions, the Coulomb 
interaction is responsible for the repulsive forces. 
These Coulombic forces, however, are screened by 
the microscopic counterions and by added salt ions. 
In general, the counterion screening is a highly non- 
linear effect leading to effective counterion-induced 
many-body forces between the charged colloidal 
particles (macroions) but in many cases a Yukawa 
form for the interaction pair potential is sufficient 
to describe the interaction. The aim of this paper is 
to review some important recent developments in 
the theoretical description of the effective interac- 
tions between the charged macro-particles as well 
as to summarize some aspects of the crystallization 
transition in colloidal suspensions. As far as details 
are concerned, the reader is referred to the original 
papers. 
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2. Effective interactions of charged colloidal 
suspensions 

2.1. The"primitive'model 

Most of the theoretical work starts from the so- 
called "primitive model". In this model, the solvent 
merely enters into the theory as a continuum screen- 
ing the electric interaction by its dielectric constant e, 
i.e. the discrete nature of the solvent particles is ne- 
glected. The microscopic counterions carrying charge 
-qe, on the other hand, are fully taken into account. 
Furthermore, the macroions are characterized by a 
core-radius R and a total charge Ze. The "primitive 
model" is a combination of excluded volume and 
Coulomb forces. Its pair potentials read: 

co for r ~<2R, (1) 
/Jmm(r) = Z2e2 for r > 2R, 

~:r 

{ ~c for r<~R, 
Vmc(r) = Zqe2 for r > R, (2) 

q2 e2 
Vcc - , ( 3 )  

8r 

where the indices m and c are for macroions and coun- 
terions, respectively. If nm and nc are the numbers 
of macroions and counterions per unit volume, global 
charge neutrality requires that 

Znm = qnc. (4) 

For given values of Z, q, R and e, the equilibrium prop- 
erties of the suspension depend on the temperatm'e T 
and the number density nm,  nc being determined by 
the constraint (4). 

Due to the strong charge asymmetry Z >> q in the 
primitive model, it is very difficult to access the static 
correlations of the macroions by theory or by direct 
computer simulation. It has been proved useful to in- 
tegrate out the counterionic degrees of freedom [2]. 
They one arrives at an effective Hamiltonian for the 
macroions defined by 

Hen" = --kB Y ln((exp ( -H/kB) T)c ) 

= K m  q- Vmm q- ~ ( [ p c ( r ) ] ; { "  }). (5)  

Here kB is Boltzmann's constant, H is the to- 
tal Hamiltonian of the primitive model and (.. ')c 

denotes a canonical average with respect to the coun- 
terions. Furthermore, Km is the kinetic energy of the 
macroions and 

Vmm = ~ Vmm(IRi - Rj[) (6) 
i <j 

is the potential energy due to the direct macroion- 
macroion interaction {Ri} denoting the macroion po- 
sitions. Finally, Y is the canonical free energy of the 
counterions in the external field Vext(r, {Rj }) made up 
by the macroions. It is known [1] that o~ can be repre- 
sented as a functional of the local counterion density 
field pc(r) depending additionally parametrically on 
the macroion positions {Ri}. Conveniently, ~" can be 
split into a sum of four terms as follows: 

J = -<d + ~x,  + .~cc + ~%orr, (7) 

where 

f ~*id = NB T drpc(r)[ln(A~o~(r))- 1], (8) 

/~ext =fdrpc(r)Vext(r,{Rj}) 

I" 
~ [drpc(r)Vmc(I r - R.:]), (9) 
J J 

q2e2 f f drdrtPc(r)pc(r') 
,*co - 2,: JJ It- r'l (10) 

In the "ideal" part (8), dc is the de Broglie thermal 
wavelength of the counterions; ~x t  describes the cou- 
pling of the latter to the macroions, while ~ c  is a 
mean-field contribution stemming from the Coulomb 
repulsion between counterions. 

What one sees directly is that g depends non- 
linearly on {Ri} since the equilibrium density p~°)(r) 
obtained by minimizing ~ with respect to pc(r) 

8~'VSpc rc=~,<" ( r )=  0 (11) 

depends implicitly on {Ri}. In particular, this depen- 
dence will be nonquadratic. This immediately implies 
that there effective many-body forces between the 
macroions induced by nonlinear counterion screening. 

Up to now, the expression for Heet is exact. If 
one would know an explicit expression for ~o~r, 
one could use this effective Hamiltonian to calculate 
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static macroion-correlations exactly. Unfortunately, 
however, one does not know the explicit form of the 
correlation functional ~corr and one has to rely on 
approximations which are discussed now further. 

2.2. Linear screening." the DL VO-potential 

The simplest approximation is to neglect ~corr com- 
pletely and to perform a quadratic expansion in the 
density around the mean density n~ which is a valid 
procedure for weak inhomogeneities (e.g. for highly 
diluted macroions): 

f 
,~iid ~ Fo q- J dr{kBT{ln(A3nc)[pc(r) - n c ]  

kBT 
+ ~ - [ p c ( r )  - n~]2}. 

Znc 
(12) 

For pointlike macroions the minimizing equilibrium 
counterion density can be found analytically [2] be- 
ing a linear superposition of screened Coulomb (or 
Yukawa) orbitals: 

P~°)(r'{Ri})=~i Z~c2exp(~ q4r~ -R-~ , (13) 

where 

~c 2 - 4~q2e2nc (14) 
ekB T 

is the Debye-Hiickel screening constant. In this case 
the effective interaction between the macroions is pair- 
wise with the effective pair potential [2] 

Z2 e 2 
Vem~m(r) = exp (--xr).  (15) 

g,r 

If the macroions have a finite core additional of 
radius R additional approximations again lead to an 
effective Yukawa pair potential where Z has to be 
replaced by 

Zefr -  Zexp (~cR) (16) 
1 + t c R  

resulting in the famous DLVO-expression for the elec- 
trostatic part of the interaction between the macroions. 
Consequently, the quadratic expansion is equivalent 
to linear screening in the spirit of Debye-Hiickel the- 
ory. However, for moderate macroion concentrations, 
the Debye-Hiickel theory breaks down. 

2.3. Nonlinear screening: Many-body forces 

If one treats ,~iid exactly avoiding the quadratic ex- 
pansion but again neglects ~o~  completely then one 
gets the familiar Poisson-Boltzmann theory. It can 
easily be shown that the resulting equations for the 
minimizing density and the effective macroionic forces 
are equivalent to Poisson's equation in electrostatics 
and Boltzmann's equations in thermodynamics. On 
this level, counterion-induced many-body forces be- 
tween the macroions are present. A computer simula- 
tion based on Poisson-Boltzmann theory was recently 
performed by Fushiki [3] to obtain the macroion pair 
correlations. 

A better approximation is to adopt the local density 
approximation for O~o~r : 

~corr = kBT / dr pc(r)gJ~p(T, pc(r)). (17) 

In Eq. (17), T~'~p denotes the reduced excess free 
energy per ion of a homogeneous fluid of point ions 
in neutralizing, uniform background which is known 
from Monte-Carlo simulations of the bulk plasma. 
Using a Car- Parrinello method, a computer simulation 
was performed by L6wen et al. [2] and the macroionic 
correlations were obtained for different parameters in 
the salt-free case [2] as well as in the case of added 
salt [4]. This calculation is called "ab initio" simula- 
tion since it takes into account counterion correlations 
explicitly. 

An even better approximation would a weighted- 
density approximation for the counterion plasma [1]. 
This, however, has not yet been implemented as a 
computer simulation. 

2.4. Optimal effective pair-potential 

During an "ab initio" simulation, one may store 
typical macroion positions and the associated many- 
body forces induced by nonlinear counterion screen- 
ing. It is tempting to fit these many-body forces by a 
pair potential. The potential which represents then the 
best fit is the optimal pair potential for the description 
of the macroion forces. Interestingly enough, it was 
found [4] that this optimal pair potential is very close 
to a Yukawa potential. If one discusses macroionic 
pair correlations (e.g. the liquid structure factor) the 
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optimal pair potential is sufficient as a model for the ef- 
fective macroion interactions. Hence, the Yukawa po- 
tential is justified on the basis of the primitive model. 
It has to be noticed, however, that the amplitude and 
the screening constant entering into the optimal po- 
tential differ in general from their DLVO expressions 
(16) and (14). They also depend on the thermo- 
dynamic phase, i.e. they are different in the solid and 
in the fluid phase. 

3. Crystallization transition in charged colloidal 
suspensions 

3.1. Computer simulation 

Another sharp criterion of freezing was formulated 
in 1969 by Hansen and Verlet [8]. They found that 
the first maximum of the liquid structure factor has 
a constant amplitude of ~2.85 along the freezing 
line. 

A third criterion concerns a dynamical quantity: 
The ratio of the long-time to short-time self-diffusion 
coefficient in a Brownian (colloidal) fluid equals 
0.1 along the fluid freezing line. This criterion was 
found recently by Lrwen et al. [9] using Brownian 
dynamics computer simulations for Yukawa fluids 
as well as forced-Rayleigh scattering experiments on 
charge-stabilized colloidal suspensions. Also first at- 
tempts for a theoretical explanation have been pub- 
lished [10, 11]. 

Once the validity of an effective screened Coulomb 
or Yukawa pair interaction is guaranteed by the "ab 
initio" simulations one may ask how the freezing tran- 
sition looks like for such an interaction. For fixed 
Yukawa interaction and varying density and temper- 
ature, this question was answered by extensive com- 
puter simulation by Robbins and coworkers [5] and 
later on by Meijer and Frenkel [6]. It turns out that the 
system freezes into a BCC crystal if the interaction is 
soft and into an FCC crystal for harder interactions. 
Here the softness of the interaction is basically mea- 
sured by the exponential decay constant x times the 
mean particle distance. 

However, for charged colloidal suspensions, the 
Yukawa interaction parameters depend on the thermo- 
dynamic parameters and also on the phase itself. One 
may surmise that this induces an important shift in the 
fluid-solid coexistence line. This problem requires 
detailed future studies. 

3.2. Phenomenological criteria 

Empirical criteria for freezing and melting are 
highly desirable since they permit a quick and sim- 
ple estimation of the freezing parameters. The first 
phenomenological melting rule was proposed by 
Lindemann in 1910 [7]. It states that a solid melts 
if the ratio L of its root-mean-square-displacement 
and the average interparticle distance equals 0.1. 
This number is not completely universal; it may vary 
between 0.05 and 0.2 for different real and model 
systems [1]. 

3.3. Crystallization in two spatial dimensions 

Since the famous works of Kosterlitz and Thoules 
[12], Halperin and Nelson [13] and Young [14] 
(KTHNY), it is known that freezing in two spatial 
dimensions may be fundamentally different from the 
usual bulk freezing in three dimensions. In particular, 
2d-freezing may be a two-stage process of continuous 
phase transitions with an intermediate hexatic phase 
possessing long-ranged orientational order which 
contrasts to the first-order freezing transition in three 
dimensions. 

Computer simulations, however, reveal a rather 
puzzling structure [15]: there is at present no evi- 
dence for a hexatic phase for hard discs [16], but for 
softer interaction there are strong indications for an 
intermediate hexatic phase [17, 18]. 

Looking for simple phenomenological freez- 
ing rule in two dimensions, the Lindemann rule 
fails since the mean-square displacement in a two- 
dimensional crystal is infinite. Also the Hansen- 
Verlet rule is not fulfilled in two dimensions. The 
dynamical freezing rule, however, seems to be per- 
sistent also in two dimensions. For different soft- 
sphere systems in two dimensions it was shown 
[19] that the ratio of the long-time to short-time 
self-diffusion coefficient is close to 0.1 near freez- 
ing. Hence it is close to its three-dimensional 
counterpart and the dynamical freezing is the only 
criterion which is valid both in two and three 
dimensions. 
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4. Two interesting open questions References 

It would be interesting to investigate the interac- 
tions and the phase diagram for charged colloidal 
confined between charged plates. In principle an "ab 
initio" simulation is possible including many-body 
forces as well as the periodic image-charges. An 
optimal effective pair-potential may then be derived 
in an analogous way as described in Section 2.4. 
It is quite expected that the resulting optimal pair 
potential is again close to a Yukawa potential. In 
this case it would be very interesting to simulate the 
full phase-diagram of the 2d Yukawa system [20] 
particularly focussing on the hexatic phase. First at- 
tempts have been done by Naidoo and Schnittker 
[21 ]. The motivation in studying such a confined fluid 
is mainly stimulated by a direct comparison of the 
theoretical predictions with video-image experiments 
[22, 23]. 

Another interesting problem concerns the freezing 
transition in a system confined between two paral- 
lel plates admitting also two or more layers. There 
are quite interesting different crystalline phases con- 
ceivable as a function of the distance between the 
plates and the particle density. It would be very 
interesting to calculate the corresponding phase di- 
agram, e.g., of a hard-sphere system confined be- 
tween two parallel hard plates by theory or computer 
simulation. First results have already been obtained 
[24]. 
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