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method [15]. Looking at Eg.(1), since exactly at the
boundary the mass flow J is always zero (no solule is
drained from the boundaries or moves into them), we have
that instantaneously the gradient is the steady-state one.
As the time progresses, the thickness of the layers adjoin-
ing the boundaries where the steady-state gradient is at-
tained gets larger and larger and eventually the whole
height of the sample has the same gradient,

The basic hypothesis we want to test is whether during
transients, effects are present other than those described by
the theory for the steady-state behaviour. In other words, if
at a given instant a layer of fuid has a given concentration
gradient, is the scattered intensity the same one would
expect as if that layer was i steady-state conditions or are
there additional effects? If we assume that the former
hypothesis is valid, then from a qualitative point of view it
1s easy to understand why the curves show little change in
the rollofl position and exhibit only a variation of the
scattered infensity level. We can crudely divide the cell
height into regions where we have the {same) steady-state
gradient and regions where the gradient is zero, Then
things would make sense, since the rolloff1s dictated by the
magnitude of the gradient (which as we said is the same),
while the intensity is actually controlled by the height over
which the steady gradient is attained, and this grows as
a function of time, until it eventually attains a terminal,
steady-state value.

Let us see if we can test the hypothesis above on a more
guantitative basis. We can estimate the scattered intensity
by assuming that the overall effect is the sum of the
contributions, layer by layer, taking into account the vari-
ous gradients in the layers as described by Eq. (6), the
calculation being carried out as a function of time. We
have to integrate Eq.(3) between the boundaries. When
that is done, we find that asymptotically the value of the
scattered intensity cxirapolated at zero ¢ vectors should
behave as an exponential:
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Fig. 4 Time cvolution of the nonequilibrium forward scattered inten-
sity. The solid line 18 the best it ol the data with Eq. (8)

When the actual data for this quantity are pletted as
a function of time, a fairly good fit with an exponential is
obtained (see Fig. 4). The experimentally derived estimate
for the diffusion coefficient D that appears in Eg. (8} turns

ott to be D = 3.6 x 107 % em?/s to be compared with the'

estimated value from literature data D = 1.3 x 10~ ¢ cm?/s
[13]. We consider the agreement as fair, since there are so

many approximations, especially those stemming from:
neglecting the concentration and temperature dependence

of D and ky over the cell height.

In conclusion, the preliminary data we present here on-

time-dependent nonequilibrium fluctuations indicate that
no additional effects other than those associated to the
presence of a stress induced gradient and described by the
steacly-siate theory are present. ' :
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Abstract The [reezing transition of
hard sphere colloids confined between
two parallel hard plates is studied for
different plate distances ranging from
one 1o two particle diameters. Using
Monte Carlo simulations and free
volume theory, the fuli phase diagram
is obtained exhibiting solid-to-solid

Freezing in confined suspensions

strongly first order, both strong and
extremely weak transitions occur
between different crystalline struc-
tures. These predictions should be
experimentally observable in confined
suspensions of sterically stabilized or
highly salted charge-stabilized
colloidal particles.

transitions between buckled, rhombic

and laycred crystals involving several
triangular or square layers. While the

Key words Confined fluids — freezing
transitions — colloidal suspensions

fluid freezing transition is always

latroduction

if & fluid is confined on a microscopic scale, the location of
its phase transitions can be significantly shifted with re-
spect to that of the bulk system. While this effect is well-
known and well-studied for the liquid-vapour transition
[1] where capiflary condensation can stabilize the liguid
phase at the expense of the gas it 1s much less clear how the
freezing transition is affected by a confinement. Recent
studies indicate [2, 37 that the direction of the shift of the
fluid freezing line depends delicately on the range and
nature of the wall-fluid interaction. Another significant
shift 1s expected for the (dynamical) glass transition in
a confined system, see e.g. Ref. [4] for a computer simula-
tion study and a compilation of literature.

Different kinds of confinement are conceivable: the
liquids can be inside a porous material (like vycor glass or
silica gels), inside a spherical or cylindrical cavity or in
between two parallel smooth plates. In the following we
shall mainly study a system confined between two parallel
walls but we add also some qualitative remarks for other

confinements, [n between two walls, the effective dimen-
sionality of the confined fluid may be continuously inter-
polated between three and two by varying the plate
distance from macroscopic towards molecular spacings.
This may also help to explain why the freezing transition
in such a confining geometry is difficult to understand: In
sirictly three- or two-dimensional fluids it was found that
the freezing and melting transition can be quite different.
While it is & usual first-order traasition in 3D, it may be
a two-stage continuous transition in 2D with an inter-
mediate hexatic phase possessing long-ranged bond-ori-
entational order [5]. Hence it 1s a priori unclear which of
these two situations is realized in between two and three
dimensions although there are certain indications that an
intermediate phase can persist between two and three
dimensions provided it occurs in the pure 2D case. The
orientational symmetry of such an intermediate phase may
be sixfold (“hexatic phase™) as well as fourfold {“tetratic
phase™), threefold ("iriatic phase™ or twofold (“duatic
phase™).

Colloidal suspensions represent excellent model
liquids on a mesoscopic length scale. They possess many
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advantages over molecular {microscopic) liquids: First,
they can be easily confined between parallel glass plates.
On a mesoscopic scale these plates are much smoother
than in any confinement of microscopic fluids. The larger
size of colloidal spheres aliows one lo watch their positions
in real space using video microscopy, see e.g. Refs. [6-13].
What is known from this work is that many different
crystalling phases can become stable as one varies the plate
separation. In the experimental work [7], the following
cascade of solid-to-solid transitions was found

O VAR (TR B I I T VA {1}

This implies an alternation of crystals involving n square
fayers (1) with crystals consisting of n+ 1 layers of
stacked two-dimensional triangular lattices (4).

Theoretical work, on the other hand, is much less
comprehensive and was mainly done in the framework
of a hard-sphere model confined between hard walls:
Pieranski and coworkers have calculated the close packing
density [14] and used a cell model to calculate some
solid-to-solid transitions [15]. The structure of the con-
fined hard sphere fluid was investigated by Percus [16]
and Wertheim et al. [17] without addressing the freezing
transition. Finally, within a Landau approach, a transition
from a crystalline moenolayer to buckled solid phase was
recently pointed cut by Chou and Nelson [18].

In this paper we present calculations of the full phase
diagram for the confined hard-sphere model for arbitrary
density and moderate plate distances lying between one
and two sphere diameters. The phase diagram exhibits
4 rich structure with a finid phase and many different solid
phases including buckled, rhombic and layered erystalline
structures, We find that the sequence (1) suggested by the
experiments is in fact more complicated since additional
buckled and rhombic phases may also occur. We have also
addressed the question after the order of the solid-to-solid
transitions. In fact they can be strongly first order as well
as very weakly first order. The results are obtained using
extensive Monte Carlo (MC) simulations. We also present
a simple theory for the phase diagram, combining free
volume theory of the crystaliine phase with an effective-
diameter theory of the fluid phase, which yields qualitative
and semi-quantitative agreement with our exact simula-
tion data. At least for our model studied we do not find an
indication for an intermediate phase with algebraically
decaying bond-orientational order. A part of this work has
been published already elsewhere [19].

The paper is organized as follows: In the second section
we propose and define our model. Then we describe our
Monte-Carle simulation technigue in the third section.
Then. in the fourth section, we summarize our results and
discuss our simple theory in terms of a cell model ia the
fifth section. We conclude in the sixth section. One peculiar

emphasis of our paper is to give a survey on other passible
fascinating transitions in confining geometry. This is
finally done in the seventh section.

The model: hard spheres between hard plates

Our model consists of N hard spheres of diameler ¢ con-
fined between parallel hard plates with area A and gap
thickness H = (h + 1}o, such that i = 0 corresponds to the
2D timit of hard disks. Since temperature is irrelevant for
excluded-volume interactions, the only thermodynamic
quantities are the reduced particle density py = Noif{AH)
and the effective reduced plate separation h. The particle
coordinate perpendicular to the plates is z, with — ho/2 <
7 < he/2. In the limit h — oo, the effect of the confining
plates vanishes and the 3D bulk hard sphere system is
recovered.

Monte-Carlo simulation

In our Monte-Carlo simulations, we use the canonical
ensemble with particle numbers ranging from N = 192 to

7 — 4608 in order to check sysiematically for finite-size
effects. Careful attention is paid to the boundary condi-
tions, which are crucial in a system exhibiting structural
phase transitions. To allow any pericdically ordered struc-
ture to fit into the simulation box for a suitable particle
number N, the box is allowed to change its shape in the
course of the simulation while its volume is fixed. The area
in the Yateral plane is a parailelogram with periodic bound-

ary conditions, MC moves concerning its angles and as-

pect ratio are performed, so that the system can relax fo
equilibrium via shearing and squeezing. Between 10 and
100 million MC steps per particle were computed to deter-

mine the equation of state for fixed h in the region of

a phase transition. Phase transitions are detected by look-
ing for van der Waals loops in the equation of state for

fixed i By performing a Maxwell construction, the corre- :

sponding density jump is calculated by equating both the

lateral pressures py, = — H ‘dF/dA (F denoting the

Helmholtz free encrgy) and the chemical potentials of the
coexisting phases. As a consistency check, we have also

used the single occupancy cell method [20] for b =0.85
finding the same phase boundaries. In addition, we have -
monitored the behavior of suitably defined order para- -
meters in order to characterize the emerging crystaliine
phases. We introduce a set of double-indexed complex °

order parameters ¥, defined via

N
[Pmn = <-!\'T1 Z E‘I’n(o{}|exp(im arg ‘P”(gf)]> ' (2)

x=1

Here ¢ ...» denotes a canonical average and W, (x) =

N, lzﬁ expl(iné,p), where the sum is over N, neighbours of
particle # possessing lateral distances smatler than 1.2¢
and having opposite signs in their z-coordinates and ©,, is
the angle between the bond of particles » and S and an
arbitrary axis. The quantity ¥,,, tests for solid structures
with an m- n-fold rotational symmetry. By calculating the
order parameter set {¥,.,} during the simulation, one can
readily distinguish between different local surroundings of
particles and thus identify the crystalline structure. An
abrupt change in the order parameters signals a phase
transition. The fluctuations of the order parameters are
measured by means of an order parameter susceptibility

an(jv) = ‘N(Q!’Umni2> - <| Tmubz) »

depending on the particle number N. Tt will be used to
investigate the order of weak phase transitions. (The de-
pendence of ¥, and y,., on the thermodynamic variables
gy and h is suppressed in the notation.) The following two
scenarios are cenceivable: In the case of a continuous
phase transition, diverging fluctuations are observed at the
critical point, and yu.lpy — pi") = Of course, di-
verging fluctuations are only encountered in the thermo-
dynamic limit N — oo, which is not directly accessible in
computer simulations. Hence we study the dependence of
Zmn ON the system size N, In the discontinuous case, on the
other hand, entering the coexistence region would simply
mix the susceptibilities of the coexisting phases according
to the relative weight of both phases Y (og) = %l P4 +

(1 = Dl 05 &= oy om (05 — pe)/ (05 — pi¢). (here
the superscripts 1 and 2 stand for the low- and high-
density coexisting phases). Conseguently, no divergence is
encountered as N — o

Results

In Fig. 1, the resulting phase diagram is shown in the plane
spanned by the reduced particle density py and the effec-
tive plate spacing h. The region in phase space is naturally
limited by the close-packed density (dashed line). Different
symbols represent different system sizes showing that the
dependence on system size is only weak. For h =0, in
agreement with recent simulations of Weber et al. [21], we
recover the first-order freezing transition of hard disks into
a triangular lattice. As h 1s Increased, the fluid freezes first
into one triangular layer and with increasing density sub-
sequently undergoes a further firsi-order transition into
a crystalline structure of buckled lines (h). For intermedi-
ate h, the fluid freezes into two layers of a square lattice

- {20 via a strong [irst-order transition and then transforms

into the buckling phase (b). The latter transition is marked
by A-symbols indicating phase boundaries, where the
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Fig. 1 Simulated phase diagram for hard spheres of reduced density
25 between parallel plates with effective reduced distance h. Symbols
indicate different system sizes: N = 192{+); N = 384, 512 (o) N =
376(a) N = 1024, 1156 (). Six phases occur (fluid, 1A, b, 20, r and
?__A). The closed-packed density is marked by a dashed line. Solid
hnes'arc guides to the eye. Thin horizontal lines represent two-phase
coexistence

equation of state shows no van der Waals loop, but the
order parameter ¥, exhibits anomalous behaviour. The
order parameter ¥, is shown in Fig. 2 for fixed plate
separation distance i = 0.62 as a lunction of density pg.
The function ¥5;(py) increases in a relative small density
interval py = 0.87 — 0.9 from a value close to zero to
a [inite value of about 0.04. We find that the fluctuations
on the low-density side vanish with a law o 1/,/N and
tend to zero in the thermodynamic limit N— oc. We thus
conclude, that the 20-phase is thermodynamically stable
for low densities. In contrast, on the high-density side, no
decrease of W,; as a function of particle number N is
observed; from the finite-size systems’ data we can con-
clude that a value clearly larger than zero is reached as
N — o, and the buckling structure with only two-fold rota-
tional symmetry is stable. We thus conclude that a phase
transition happens between 200 and b, signalled by a rapid
increase of the order parameter ¥, as a function of density
pur As a function of N, the increase happens more rapidly
{with a larger slope) and is shifted towards higher densities.

Having demonstrated the existence of 2(0-b phase
transition, we are now concerned with its order. Therefore
the order parameter susceptibility is considered. In Fig. 3
the susceptibility y,; as a function of density py is shown
for plate separation distance h = 0.62. The susceplibility
has small, but finite values in the low-density 200- and

* high-density buckling phase. In between the pure phases

a prenounced maximum occurs that can be interpreted in
terms of fluctuations driving the system from one phase to
the other. In contrast to the finite-size dependence of the
order parameter itself, its susceptibility shows only weak
dependence on system size. Although statistical errors
are present, there is no indication up to N = 4608 of a
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Fig. 2 Behaviour of the order parameter ¥, across the 201-b phase
boundary as a function of density py for plate separation distance
h = 0.62. There are four different system sizes shown N = 288, 512,
1152, 4608
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Fig. 3 Finite-size dependence of the order parameter susceptibility
721 for particle numbers N = 288, 512, 1152, 4608 and plate scpa-
ration k= 062, The maximum of the curves remains finite as a
function of N

divergence in the thermodynamic limit. We thus conclude,
that although we cannot resolve a probably miniscule
density jump from the equation of state, the phase
transition between the 20 and the buckling structure is of
first order. However, for i = 0.6, for example, we can
exclude a density jump Apy larger than 0.0004. Hence the
2[1 — b transition is extremely weak.

For even higher h, a transition occurs from the 2[7
phase inte a crystal with two triangular layers (2A).
Finally there is a new stable crystalline phase which we call
rhombic () since its unit cell is a rthombus. Tt is a close-
packed structure but its stability also extended towards
slightly smaller densities. The 200 — r and 2A -» r transi-
tions are again very weak.

Let us add some more details for the Lwo less common
phases b and r. Typical particie configurations and the
corresponding unit cells are depicted in Figs. 4a and b.

Fig. 4 Typical configurations of (a) the buckling phase, and (b) the
rhombic phase

Both siructures possess twefold rotational symmetry
Interestingly enough both the buckling and the rhombie
phase are highly degenerare. For the buckling phasely

there is linear buckling (constituted by a single rectangular -
unit cell), periedic zig-zag buckling (built up from left and -
right kites) and a random succession of both {shown in-
Fig. 4a). Still, in the horizontal direction, there is strict .
periodicity. Likewise, the thombic phase can appear to be *
linear rhombic (with a single rhombic elementary cell),

zig-zag rhombic (with an alternating succession of the two

rhombi) and again a radom succession of both as shown in
Fig. 4b. All of these structures are close packed at the .

corresponding values of h. Away [rom close packing we

cannot distinguish within our simulation which of these
phases is the thermodynamically stable one since the free-
energy differences are too miniscule. Let us remark that
this is quite similar to the 3D hard-sphere crystal, where
the three close-packed structures fce, hep, and random
stacking are extremely close in free energy and the actual
crystalline structure depends on the history of the sample.
We emphasize that the fluid {reezing transition is first
order. In fact we checked that bond-angle orientational
correlation functions with two-, four- and six-fold sym-
metry decay exponentialty with distance in the fluid phase
and reach a finite platean value in the solid phase. At
least for a system size of N < 1136, we never found
an intermediate “duatic”, “tetratic” or “hexatic” phase
characterized by an algebraic decay of the corresponding
otientational correlation. This fact, of course, does not
exciude the occurrence of such phases in iarger systems
and in systems that are governed by softer interactions.

Free volume theory
Cell model for crystalline phases

The cell model exploits the physical picture of a solid
with particles being located around given lattice sites
[15,22,23]. It enables one to determing the thermody-
namically stable crystalline structure and its equation of
state approximately. Furthermore, it provides an exact
upper bound on the free energy.

I principle, the theoretical problem: of hard spheres in
confined geometry consists of computation of the config-
urational integral over N 3D spatial coordinates, the integ-
rand being the Boltzmann factor, which is in the case of
hard bodies either unity for allowed configurations or zero
if at least two particies overlap. Adopting the cell model,
we first impose 2 candidate lattice structure with given
average density gy and plate separation H. In general, this
structure will depend on a set of free geometric parameters
{a;}, e.g. angles, ratios of {attice constants, etc. Second. the
micgration regime of each particle in the configurational
mtegral is restricted from the total volume V to a smaller
region in space around each lattice site, called the [ree
volume cell. Thereby the cell size is chosen small enough,
so that any two neighbouring spheres restricted within
their respective cells cannot penetrate each other, hence
the integrand of the restricted configurational integral is
unity, the N integrals decouple and yield v, where v, is
the spatial volume of one cell. Clearly, the expression
— kg T In{v;/A?) provides an upper bound on the exact
(Helmholtz) free energy per particle, A denoting the ther-
mal de Broglie wave length. To optimize this bound, we
minimize it with respect to the set of free parameters {a;}.

We checked the available analytical expression for v for
the 1A-, b-, 20-phases against an exact numerical proce-
dure [24]. A modification 15 done for the 14A-phase [15]
where we inserted a different effective diameter ¥, =
a/1 — h*/6 into the expression for the [A-free volume in
order to enlarge the free volume for two touching spheres
with differcnt z-coordinates.

As the deviation of the cell modet result from the exact
free energy is expected to depend only weakly on the
explicit crystal structure, and only free energy differences
enter in the calculation of the phase diagram, phase
boundaries between different crystalline phases are ex-
pected to be reasonably reproduced within the cell model.

Effective-diameter fluid theory
The fluid m slab geomelry is approximately treated as

a strictly two-dimensional hard-disk system with an effec-
tive diameter ¢* obtained from the implicit relation

hei2 hoi2
o =g’ — f dzy j dzy(z) — 2,)° plz;, 0¥}
— {2 —ha{2
x plza, a*pulh + 1o ™2 (3

where the one-particle density profile p(z, 0*) is given by
oulh -+ 1)y expla{e®)z?)/ A" (2(c*)) with the normalization
Ao) = V/rr?,fmomtaz erﬁ(.\f:xhaﬁ) and o{c*®) = npgmlh + Dgle®)/
o, erfi(x) denoting the imaginary error function. Here,
glo*y = {1 — n(o%)2/(1 —n{c*))? is the contact value of
the 2D pair correlation function within scaled particle
theory, and #i{c*) = (zid)pg(h + Da*?/a? is the effective
area fraction of the 2D system. The expression (3) takes
into account the fact thal lwo spheres can be laterally
closer than ¢ if they differ in their z-coordinates. Finally
the Helmholtz free energy is obtained via integration of
dF/dA = =k Tpy(i + W) (1 + mpylh + Na*2g(e®)/267)/0*
guaranteeing the correct second virial coefficient in the
low-density limit. The Integration constant Fy is empiri-
cally chosen to fit the location of the hard-disk freezing
fransition.

Phase diagram

The theoretical phase diagram is shown in Fig, 5, It looks
simitar to the exact simulation data reproducing the stabil-
ity of the six different phases found in the simulation. Al}
transitions are first order. The density gap between b - 20
and r — 2A is extremely small, for instance, Ap; = 0.00047
at i = 0.72 for the b -» 20 transition, Also the fluid — 1A
and 1A — b transitions are guantitatively correct. An-
other interesting property concerns the above-mentioned
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Fig. § Same as Fig. | bul now obtained [rom effective-diameter and
cell theory. The dotted lines represent a situation with three coexist-
ing phascs

degeneracy of the b and » phases. Indeed, also away from
close packing, the free volumes are identical for different
realizations of the b and r phases and hence the cell model
cannot distinguish between the subspecies. One can thus
conclude that the cell model, which requires much less
numerical effort than a direct simulation, gives reliable
results as far as the topology of the phase diagram of
confined hard-body systems is concerned. Some details of
the phase diagram, however, are not reproduced. The
slope of the 202 — b line is positive in simulation but
negative in cell theory. Hence the cell theory overestimates
the stability of the buckled phase. Furthermore, the agree-
ment of the flnid—solid coexistence region grows worse as
h increases since within effective-diameter theory we map
a multi-layer fluid onto a single-layer fluid.

Conclusions

In conclusion we have calculated the phase diagram of
hard spheres confined between two parallel hard plates for
small plate distances H ranging from one to two sphere
diameters. Although solely excluded volume interactions
enter in our model, it may also be used for softer inter-
actions as long as they can be mapped onto an effective
hard sphere system confined between effective hard plates.
The interaction of a charged suspension is Yukawa-like
[25-287 but image charges are also important if the diefec-
tric constant of the solvent and the confining plates differ
[25]. The screening length decreases with increasing salt
concentration of the solvent. Therefore a charged suspen-
sion between charged plates could be mapped onto an
effective hard-sphere system if the salt content is high.
However, one should be careful in details of the freezing
transition as far as an intermediate phase is concerned. It is
known that the softness of a pretty harsh interaction

o r~ ' is already sufficient to produce an intermediate

hexatic phase in 2D [29, 307 which is absent for hard
disks [21].
An experimental verification of the full phase diagram

18 highly desirable in confined sterically stabilized colloidal

suspensions or in charged but highly salted dispersions,
Using video microscopy or scattering methods one should
be able to resolve the order of the solid—solid transitions in
order to verify our predictions. Let us alse mention that
similar solid-to-solid transitions were recently found
[31, 32] for bilayer Wigner crystals in a double-quantum-
well system exposed to a strong magnetic field.

Outlook and open probiems

There are still many related questions open which we
summarize in the following:

Larger plate distances: mullilayer systems

The first problem obvicusly concerns the extenston of our
results to larger plate separations H, Here the situation
becomes more and more complicated due to two reasons,
First there are much more structures conceivable in pack-
ing spheres between larger spaced plates. Second all these
phases compete in free energy and the [ree energy differ-
ences can become tiny. Hence it is difficult and practically
impaossible to resolve these small differences by a computer
simulation. For a multilayer system, only the location of
the fluid—selid transition has been simulated [33] without
resolving the different solid phases. What is also known is
that for infinite plate separation a layer of finite thickness

of the metastable bulk crystal covers the plates. This pre-

crystallization eflect was demonstrated by van Swol and
coworkers [34].

In our work, we have left out any possible transition
structure to three layers, which emerge at H > 1.82¢ for
high densitics. Even the density of close packing is not
known in this case. Recent experiments [11] suggest that
again quite exotic structures can be generated in three and
more layer systems. For instance, one strongly expects the
stability of a “super-buckled phase”™. This phase consists of
straight rows of triangles. in a two-dimensional cut per-

pendicular to the walls and normal to the row direction,
there are alternating {riangies of different orientation. Such -

a phase can be understood by packing Swiss “Toblerone™

chocolates into an intersecting buckled structure. The cor-
responding two-dimensional cut is sketched in Fig 6.

Phases involving more layers can possess an even more
exotic structure. After all, the simple sequence (1} is only
true for a path well in between the crystal melting density
and close-packed density but is not valid in general.
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Fig. 6 A sketch of the "Tobleronc” structure. The structure is peri-
odic in the directien perpendicular to the drawing plane

Ensemble of constant wall pressure

As a second problem, one can also think in terms of a
different thermodynamic ensemble where the pressure per-
pendicular to the walls is fixed instead of a fixed wall
separation H. The choice of the ensemble clearly depends
on the kind of experiment one is doing. In the new en-
semble of constant wall pressure, the phase transition lines
will shift a bit aithough the overall topology of the phase
diagram should not change. However, onc should bear in
mind that transition between phases belonging to different
wall separations are possible. Therefore additional phase
transitions are conceivable. One example of these are the
so-called stratification transitions found in Ref, [35]. We
finally remark that the Gibbs phase rule is not violated in
this ensemble since the relative portion of the three coexist-
Ing phases is uniquely determined by the wall pressure
exerted on the system.

Another complication is the wedge geometry which is
actually used in experiments [7]. Only il the relative {ilt
angle 1s small one can view the sample as one with parallel
plates.

Density functional theory for the phase diagram

The third problem is to do a more sophisticated theoret-
ical treatment involving classical density functional theory
of 3D bulk freezing [36] Many approximations for the
free energy density functional which describe 3D bulk
freczing arc now available. However, most of these ap-
proaches suffer from the fact that there are unphysical
divergencies if one shrinks the three-dimensional func-
tional towards tweo dimensions by applying an external
potential of two parallel hard walls. This was particularly
investigated by Rosenfeld, Tarazona and the present
authors [37]. It was found thal a geometrically based
density functional for hard spheres as originally proposed

- by Rosenfeld [38] does survive the 2D (and even the | D

and quasi-zero-dimensional} limit, This functional can be
modified to describe very accurately the bulk freezing
transition of hard spheres [37]. Hence one should take

-08 04 0 . 04 08

Fig. 7 Density profile of the hard sphere fuid in a planar slit of
reduced separation h = 1.8, Symbols are Monte-Carlo results, the
solid line is predicted by the fundamental-measure free energy den-
sity functional [38]

Rosenfeld’s functional in order to investigate the phase
diagram of hard spheres between hard plates. The probiem
of density parameterization can be avoided by adopting
the [ree minimization scheme as developed and applied in
Ref. [39] In order to demonstrate the ability of Rosen-
feld’s functional to describe accurately the density profile
we have confronted the density profiles in the fluid phase
as resulting from density functional theory with the results
from computer simulation, see Fig. 7. The agreement is
excellent, One should bear in mind, that theories relying
on weighted densities reproducing the direct correlation
function in 3D do fail in describing the correct number of
maxima in the density profile [40]. This gives a strong
indication that Rosenfeld’s functional is superior to other
approximations, at least in 4 situation of heavily confined
geometry.

Effect of gravity

Real suspensions are not completely density matched, i.e.
the mass densily of the solvent and that of the colloidal
particles differ in general resulting in a non-vanishing
buoyant mass M of the colloidal particles. This implies
that gravity comes into the game which typically acts
normal to the walls and leads to sedimentation. Gravity
can be modelled by adding an external potential linear in
the z-coordinate perpendicular to the plates. Including
gravity, the phase diagram becomes more complicated
depending also on the reduced coupling % = Mgo/kgT
where ¢ is the gravitational acceleration.

One may ask whether the complicated superiatlice
structures found in recent experiments [117 which do not
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occur in our “free” phase diagram (x = 0) are due to
gravity. In order to check this one can siudy the case
o — 20 implying that gravity becomes dominant. In this
case, entropy becomes irrelevant and the stable configura-
tion simply minimizes the gravitational potential energy.
Even in this limit, the whole phase diagram depending on
h and py, is not known. It is, however, expected that the
typical siructure is a phase scparation involving dense-
packed triangular layers residing on the lower plate with
a coexisting part of the close-packed structure at the given
H. This statement can at least be proved in the range
where the buckied phase is closed packed. This is illus-
trated in Fig. 8. From this consideration one can conclude
that gravity does not induce complicated superstructures.
Still results for finite o are missing.

Hard cyhinders between parallel hard plates

Replacing the hard spheres by hard cylinders or hard
spherocylinders one oblains an even more complicated
system which can also be realized in the context of col-
loidal suspensions or microscopic anisotropic fluids [41].
Cylinders carry an additional orientational degree of free-
dom and the 3D bulk phase diagram involves different
mesophases, namely isolropic, nematic, smectic A, plastic
crystalling and other crystalline phases [42]. Confining the
system by parallel hard plates, the aspect ratio p of the
cylindersis an additional parameter (for spheres pis unity),
Even the closed-packed density is not known as a function
of p and H. There may be a multitude of possible phases
which are stable. One interesting phase transition is depic-
ted in Fig. 9 which happens il the plate separation is a bit
larger than the length of the cylinders. Then, due to simple
packing arguments, a transition occurs from crystalline
layers containing cylinders oriented parallel to the walls to
on¢ smectic or crystalline layer with rod orientations per-
pendicular Lo the walils. This transition is expected to
possess a large hysteresis since the structures are com-
pietely different.

In order to resolve all these interesting transilions one
should perform a simple free volume theory as well as an
extensive Monte-Carlo simulation for different aspect
ratios p.

Hard spheres in eylindrical and spherical cavities

if the cavity is spherical or c¢ylindrical the kind of
transitions are quite different. For a cylindrical cavity of
fixed diameter, the system is one dimensional. Then the
configurations have a helix structure, but there are no
phase transitions as the density is varied. Varying the

L

H
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8

Fig. 8 In the limit of strong gravity ¢ (heavy particles) there occurs
@ phase separation into triangular layers (lelt side) and close-packed
regions {right side)
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Fig. % Two possible phases for hard spherocylinders between parai-
lel plates with plate distance comparable to particle length: (a) one

smectic or crystalline layer with rod erientations perpendicular to

the walls, (b) two-layered close-packed structure with spherocylin-
ders aligned parallel to the confining walls

L%
OQE|

Fig. 10 Four hard spheres confined in a spherical cavity of dia-
meter D

cylinder radius R*, however, one can reach certain points-

where an anomalous behaviour can be found; the easiest

case s R* = ¢ which is the border where two neighbouring
spheres can exchange their position by hopping over each:
other. As far as we know, the close-packed density has not:

yet been calculated for R* > .

In a spherical cavity of diameter D, the number N of:
hard spheres which can be packed into the big sphere.

depends crucially on the ratio D/a, see Fig. 10. The close-
packed configuration is a dumb-bell for N = 2, a triangle

for N =3 and a tetrahedron for N =4. For N > 4,
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however, this configuration is non-trivial and not yet
known. The simpler two-dimensional problem of packing
circles into a circle is better understood [43]. Also, re-
cently, computer codes were developed and applied to
a similar problem of how to pack two-dimensional circles
into a square [44]. The solation for 1 < N < 20 was pre-
sented in Rel. [44] exhibiting really some unexpected con-
figuration for “odd” numbers N. A similar interesting

result should be obtained in thrce dimensions. These
dense-packed configurations should then be observable in
porous materials,
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