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Interactions and phase transitions of colloidal
dispersions in bulk and at interfaces

By H. LOWEN, E. ALLAHYAROV, J. DZUBIELLA, C. VON FERBER,
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Recent progress in the theory and computer simulation of effective interactions and
phase transitions of colloidal dispersions is reviewed. Particular emphasis is put
on the role of the discrete solvent in determining the effective interaction between
charged colloids, bulk fluid—fluid phase separation of star-polymer—colloid mixtures,
and on interfacial freezing transitions of sterically stabilized colloids on patterned
substrates.
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1. Introduction

Colloidal dispersions represent excellent model systems with a clear separation of
length-scales between microscopic degrees of freedom (such as solvent particles,
counter- and salt-ions, monomers of grafted polymer chains, etc.) and the mesocopi-
cally sized colloidal particles. Typically, one is only interested in colloidal properties
such as, for example, structural correlations or phase transitions of the colloidal par-
ticles. In this case, only thermodynamic averages with respect to the microscopic
degrees of freedom are needed, resulting in effective interactions between the col-
loids. In this paper, we apply this concept to different situations of colloidal science,
highlighting recent progress in the theory and computer simulation of effective inter-
actions between charged colloidal suspensions, as well as mechanisms of fluid—fluid
phase separation in mixtures of colloids and polymers. Finally, we also address inter-
facial freezing transitions induced by a periodic substrate pattern.

The paper is organized as follows. The role of a molecular solvent on the effective
interactions is emphasized in §2. The effective interactions in star-polymer—colloid
mixtures and their impact on fluid—fluid phase separation are briefly sketched in § 3.
Finally, we describe recent results on surface freezing of neutral colloidal particles on
topographically structured templates in §4, and conclude in §5.

2. Influence of a granular solvent on the effective
interaction between charged colloids

(a) General remarks: modelling on different levels

Basically, the theoretical model for the description of charged colloidal particles can
be done on five different levels (for a recent review, see Hansen & Loéwen (2000)).
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Figure 1. Different levels for the modelling of spherical charged colloidal particles. (a) level 1,
DLVO; (b) level 2, PB; (c) level 3, PM; (d) level 4, hard-sphere solvent model; (e) level 5, dipolar
solvent. For further explanation, see the text.

The higher the level, the more realistic the model is, and, at the same time, the more
complicated the computational effort. Any higher level includes the lower levels as
special cases. This is shown schematically in figure 1.

(1)

The simplest approach is the linear counterion screening theory, which results
in an analytical Yukawa pair potential for the effective interaction between col-
loids, as given by the electrostatic part of the celebrated Derjaguin—Landau—
Verwey—Overbeek (DLVO) theory (Derjaguin & Landau 1942; Verwey & Over-
beek 1948). In the absence of added salt, this potential, as a function of the
distance between a colloidal pair, reads

i exp(—r(r — 0,)
(14 Lkop)2er

Vir) = , (2.1)

with an inverse Debye-Hiickel screening length k = \/4mwp.q2/eksT. Here, q,
(gc) is the polyion (counterion) charge, o}, is the polyion radius, and € is the
dielectric constant of the solvent. Furthermore, p. is the counterion bulk num-
ber density and kg7 is the thermal energy. On this level, only the colloidal
particles are considered explicitly.

The next level is the nonlinear Poisson—Boltzmann (PB) approach, which
includes a full treatment of the counterion entropy but still works on a mean-
field level. By a suitable linearization, one recovers the DLVO theory as a
special case. On the PB level, the colloids and the averaged counterion density
field are considered explicitly.
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(3) In the ‘primitive’ model (PM), one treats the counterions explicitly, arriving
at the two-component model of strongly asymmetric electrolytes. The number
density of the counterions is linked by global charge neutrality to the polyion
charge and number density. This approach includes full counterion correlations.
Ignoring these, the PM reduces to the PB level. The solvent, on the other hand,
only enters via a continuous dielectric background. In detail, the input pair
potentials are

< (5. )
Vi (r) = 00 for r < 5(0i +0j), (2.2)
¢iq;/er otherwise,

with (ij) = (pp), (pc), (cc), and o, denoting the diameter of the counterions.

(4) If the solvent is treated explicitly, but only crudely modelled as neutral hard
spheres of diameter o, one arrives at the so-called hard-sphere solvent model
(HSSM). This level includes the discrete molecular structure of the solvent (its
granularity), but ignores its polarizability, as well as all its multipole moments
(Kinoshita et al. 1996). Still, the dielectricity of the solvent is treated as a
continuous background. In the limit o5 — 0, the solvent is a decoupled ideal
gas and one gets the PM as a special case. The interactions on this level are
the same as in (2.2), but now with (ij) = (pp), (pc), (ps), (cc), (cs), (ss), where
the solvent is neutral, ¢; = 0.

(5) Finally, one may describe the polar solvent with a permanent dipole moment. A
suitable model is hard-sphere dipoles, the so-called dipolar solvent model (Lado
1997; Weis 1998) or a Stockmayer liquid (Groh & Dietrich 1994, 1995). On this
level, the screening of the Coulomb interactions (i.e. the dielectric constant €)
is an output and not an input. With quantum chemistry, one may even reach
a higher level with a full microscopic description of the solvent interactions
(Marx 1999; Marx et al. 2000).

We note that there are two important ‘intermediate’ cases. First, nonlinear screen-
ing effects resulting from PB theory can be partly incorporated into a Yukawa poten-
tial similar to (2.1), but with ‘renormalized’ parameters leading to the concept of
colloidal charge renormalization, as quantitatively elaborated by Alexander et al.
(1984). We call this approach the Poisson—Boltzmann—Yukawa model (PBYM).

Hence this approach is between levels 1 and 2. It is consistent with experimental
data in dilute bulk solutions with monovalent counterions (Hartl & Versmold 1988;
Palberg et al. 1995; Crocker & Grier 1994; Grier 1998; Kepler & Fraden 1994).
Second, one may consider the solvent-averaged primitive model (SPM) by tracing
out the hard-sphere solvent exactly from level 4 and approximately only include the
pairwise part, similar to the old McMillan—-Mayer approach for electrolyte solutions
(McMillan & Mayer 1945). The SPM includes solvent-depletion forces (Biben et al.
1996; Dickman et al. 1997; Dijkstra et al. 1998, 1999; Gotzelmann et al. 1999) on
the pairwise level, in addition to the traditional PM interactions, but the solvent
particles are not considered explicitly.

(b) Comparison of the HSSM with the PM

In almost any theoretical study (Allahyarov et al. 1998; Linse & Lobaskin 1999;
Messina et al. 2000) of the effective interaction between charged colloids, the PM
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was used. The reason for this modelling is that the effective interaction is studied for
mesoscopic distances between the colloids, where one could expect that the molec-
ular nature of the neutral solvent averages out and only the long-ranged Coulomb
interaction may play the dominant role. A more subtle inspection shows, however,
that the solvent may have an important influence by pushing counterions towards the
colloidal surface via hydration forces. One may still believe in the PM by reducing the
colloidal charge ¢, by the amount of counterions accumulated on the colloidal sur-
faces and treating only the rest explicitly as mobile counterions within the PM. Still,
this separation into fixed and mobile counterions is questionable as the counterions
are highly correlated near the polyionic surfaces.

We have tested the validity of the PM by doing extensive computer simulations
on the higher level 4 using the HSSM. These require an enormous number of solvent
particles, so that one is restricted to moderate size asymmetries between colloidal and
solvent spheres. Together with a solvent bath method, which is described elsewhere
(Allahyarov & Lowen 2001), one can achieve size asymmetries of 14:1 at significant
solvent-packing fractions corresponding to charged micelles. Explicit results for the
averaged force F'(r) between a pair of charged polyions as a function of their mutual
distance r are presented in figure 2a,b. The parameters are T = 298 K and ¢ = 81
(water at room temperature), with oy = 3 A, ¢s = 0.3 and 0. = 6 A.

For nearly touching polyions (full curves in the insets of figure 2), the force
exhibits oscillations on the scale of the solvent diameter due to solvent layering
leading to attraction for touching polyions as the solvent depletion part exceeds the
bare Coulomb repulsion. For larger distances and monovalent counterions, the force
is repulsive. Simulation data for the PM are also included which overestimate the
force. The repulsion is even stronger in the PBYM and in DLVO theory. For divalent
counterions, on the other hand, there is attraction within a range of several polyion
diameters. This attraction is mediated by the discrete solvent as the PM yield repul-
sive forces. The SPM, on the other hand, almost perfectly fits the simulation data
and thus includes the essential effects of the discrete solvent. As expected, the PBYM
and the DLVO theory overestimate the force and do not lead to attraction.

In conclusion, although the interaction range of a hard-sphere solvent is small,
the depletion attraction of the counterions towards the colloidal surfaces favours an
accumulation of counterions near the polyions. This, in turn, leads to a different
screening, resulting in a different long-range part of the colloid—colloid interaction.
For divalent counterion, even over-screening may occur, leading to attraction. This
attraction is absent in the PM.

3. Phase separation in star-polymer—colloid mixtures

We now turn to an example of a bulk phase transition, in particular to fluid—fluid
phase separation in mixtures of neutral sterically stabilized particles and star poly-
mers in a good solvent. We aim at a description on the level of two particle species
having integrated out the monomer (and solvent) degrees of freedom.

The corresponding effective potentials are determined by a computer simulation
of two particles. The colloid—colloid interaction is hard-sphere like,

oo for r < ocos
Vee(r) = . 3.1
() {O otherwise, (3.1)
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Figure 2. Reduced distance-resolved force F(r)op/ksT versus reduced distance r/cp,. The inset
shows the same for nearly touching polyions of molecular distances. (a) Monovalent counterions
and op:0cios = 10:2:1. (b) Divalent counterions and op:0c:0s = 14:2:1. The further parameters
are |gp/qc| = 32 and ¢, = 5.8 x 1073, Solid line with error bars, full solvent bath simulation;
long-dashed line, SPM; short-dashed line, PM; open circles, DLVO theory; dot-dashed line,
PBYM.

where oo is the colloid diameter. The star—star interaction has been the focus of
intense recent research. By molecular simulation resolving the monomers explicitly
(Jusufi et al. 1999) and by theoretical scaling arguments and neutron scattering data,
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Figure 3. Force between a star polymer and a hard sphere for an arm number f = 32 and
size ratio ¢ = osp/0con = 0.1. The points are results from a molecular simulation, fitted with

the theoretical force (line) corresponding to (3.3). With R4, a non-vanishing core size of the
simulated star is subtracted.

a simple analytical form for the effective star—star interaction was derived. It reads
(Likos et al. 1998)

1 ( . >+ . for r <
—In( — T or r < ogp,
Osp 1+ 3Vf ?
Via(r) = S kpT 2 N Jf (3:2)
1( Sp) exp( (r— O'Sp)> otherwise,
1 + 5\/.][‘ T QUSp

and was used to calculate the bulk phase diagram of star polymers (Watzlawek et
al. 1999). Here, oy, is the corona diameter and f the arm number of the stars.
This potential was generalized recently to two different arm numbers (von Ferber et
al. 2000a) and triplet interactions have been shown to be small in semi-dilute star-
polymer solutions (von Ferber et al. 2000b). The major problem is a quantitative
description of the star-polymer—colloid interaction. We have again used molecular
simulation to obtain the effective force acting on a star polymer near a hard sphere.
The averaged force as a function of the colloid—star-polymer separation is presented
in figure 3. The corresponding effective potential, in turn, is well described by an
analytical function of the form

00 for r < Locon,
2z 472
Ocoll —ln<0 >_<o'2_1>(§1_é)+£2
Vvsc(r) _ )\kBTfS/z co sp sSp L 1
2r for Socon <7 < 5(05p + 0con),
1 —erf(2
&a( erf(2r2)) otherwise,
1 — erf(kosp)

(3.3)
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Figure 4. Binodals for the mixing—demixing transition in a star-polymer—colloid mixture for two
different size ratios ¢ = osp/0con and an arm number f = 32. n; with ¢ = sp, coll defines the
packing fraction of the particles.

where z = r— %O—coll is the distance from the centre of the star polymer to the surface
of the colloid. The constants are

and 52 = @

1+ 2k202, KOsp

&1

exp(r®02,)(1 — erf(kogp)),

while A and  are fit parameters. The radius of gyration is Ry = o0g,/1.32, fixed for
all arm numbers f and size ratios ¢ = osp/0con. Taking these three potentials as
an input, we have employed the Rogers—Young closure scheme to access the liquid
structure and the thermodynamics of the star-polymer—colloid mixture. A fluid—fluid
phase separation was found, which is shown for an arm number of f = 32 in figure 4.
This picture is consistent with recent experimental data (Dzubiella et al. 2001). Star
polymers are hybrid objects between hard-sphere colloids and coils of linear polymer
chains such that one can continuously switch between these two cases by changing
the arm number f. While in hard-sphere mixtures the fluid—fluid phase separation
is preempted by freezing (Dijkstra et al. 1998), it is stable for linear polymer chains
(Lekkerkerker et al. 1992) for suitably large polymer coils. Our case of star polymers
is intermediate but still exhibits fluid—fluid phase separation.

4. Surface freezing of colloids on periodically patterned substrates

Phase transitions can also occur at interfaces. For example, there is a wealth of wet-
ting phenomena (Evans 1990; Dietrich 1988). One peculiar case is the surface freezing
transition. For hard-sphere colloids, it has been shown that a hard structureless wall
induces precrystallization, i.e. few crystalline layers on top of the wall show up, even
if the bulk density is below the freezing point of the fluid (Courtemanche & van Swol
1992; Courtemanche et al. 1993). The question we address in this section is whether
and how this prefreezing effect is influenced by a topographically periodic surface
pattern. We model this pattern by a periodic array of fixed hard spheres on a two-
dimensional triangular or rhombic lattice. In fact, by ‘gluing’ colloidal spheres onto
a periodic pattern, such surface structures can indeed be realized experimentally
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Figure 5. Geometry of the triangular and rhombic substrate pattern consisting of fixed hard
spheres in a plane. The rhombic pattern results from the triangular one by distorting the lattice,
as indicated by the arrows, such that the area A of the unit cell remains constant.

(Arora & Rajagopalan 1997; van Blaaderen et al. 1997; Burmeister et al. 1997; Mio
& Marr 1999).

The surface structure is sketched in figure 5. A triangular crystal that exactly fits
the bulk face-centred cubic crystal coexisting with the fluid at the bulk freezing point
is used as one possible substrate pattern. We also consider patterns that are distorted
such that the area A. of the unit cell does not change. In detail, in the triangular
case, the lattice constant aa is 1.10750 (o denoting the hard-sphere diameter), with
a height ha. The rhombic pattern has a lattice constant a smaller than aa, but a
larger height h. We characterize the rhombic distortion via the lateral strain

am(5) ()

Hence the whole system is completely characterized by the reduced bulk hard-sphere
pressure P* = Po?®/kgT and the lateral strain €. Monte Carlo simulations with
suitable-order parameters (Heni & Lowen 2000) are used to detect freezing in dif-
ferent layers adjacent to the wall. We find a cascade of freezing transitions in the
different layers. There is complete surface freezing for the triangular substrate. Com-
plete freezing is possible as there is no additional strain that hinders growth of a full
bulk solid upon approaching coexistence. The onset of surface freezing in the first
adjacent layers occurs already at bulk pressures P* that are 29% smaller than the
coexistence pressure P, while the onset of precrystallization for a flat wall occurs at
pressures that are only ca. 3% smaller than P. For a rhombic pattern, on the other
hand, surface freezing is incomplete, since the additional lateral strain results in a free
energy penalty, which prevents further growth of the crystalline layers. The resulting
crystalline phase inherits its structure directly from the underlying substrate pattern
and is unstable as a bulk phase.

Our simulation results are summarized in figure 6, where the location of the first
four layering transitions is shown in the plane spanned by AP* = P¥ — P* and €2|. A
simple phenomenological approach that combines elasticity theory of the solid with
thermodynamic arguments of wetting (Heni & Lowen 2000) yields a linear relation
between AP* and 62‘ for the freezing transitions in the same layer. The slope can be
expressed by elastic constants and thermodynamic quantities. This simple theory fits
the simulation data quite well. If the lateral strain €| exceeds a critical value, there
is no surface crystallization at all, since the elastic distortion is too large to produce
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Figure 6. Location of the first four layering transitions in the plane spanned by AP* and eﬁ.
The symbols represent simulation data with their statistical error. The straight lines are the
theoretical predictions. The deviation between simulation and theory for high eﬁ in the first
layer is due to harmonic elastic effects that are not accounted for in the theory.

even a single crystalline layer. The system prefers to stay in the inhomogeneous fluid
phase in this case.

In conclusion, the structure of a substrate pattern profoundly influences the sce-
nario of surface freezing. First, the onset of surface freezing can be significantly shifted
away from coexistence by using a pattern that favours the crystal, as the triangular
pattern in our study shows. Second, new surface phases, which are unstable as bulk
phases, can be generated by a suitable pattern, leading to incomplete freezing at
coexistence, as demonstrated for the rhombic pattern in our study. Third, surface
freezing can be completely suppressed if the pattern is unfavourable for the solid.

5. Conclusion and outlook

To summarize, the concept of the effective potential can be exploited to bridge the
length-scale gap omnipresent in colloidal applications, where the mesoscopic col-
loidal particles are coupled to many microscopic degrees of freedom. Once the effec-
tive potential is known, one may employ classical many-body theories (e.g. liquid
integral equation schemes) or ordinary computer simulations to access the struc-
tural correlations or phase transitions in colloidal dispersions. The big advantage
over molecular systems is that everything is shifted to a larger length-scale, so that
real-space methods can be applied experimentally and so that controlled external
perturbations such as well-characterized periodic substrate patterns can be realized.
In this respect, colloidal dispersions play an important role as model systems subject
to externally controllable fields.
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Discussion

S. SAFRAN ( Weizmann Institute of Science, Rehovot, Israel). One might be able to
relate the increasing complexity of four various ‘levels’ and the observation that the
interactions become more attractive as more detailed levels are calculated by noting
that higher levels include more degrees of freedom.

The inclusion of additional degrees of freedom must lower the free energy (or else
those degrees of freedom would just be ‘frozen out’). The decrease of free energy may
result in the increasing attractions (one would expect expulsions to increase the free
energy), but this argument is not yet rigorous.

H. LOWEN. Indeed, if one includes more degrees of freedom, the total free energy goes
down. This, however, does not imply that derivatives of the total free energy, with
respect to some parameters, will also decrease. The effective force is such a derivative.
In fact, one can find a simple counterexample in which, by adding additional degrees
of freedom, even repulsions in the effective force can arise. This is the case for a
binary mixture of hard spheres: with only one component, the effective interaction
is zero outside the core. With small spheres added, there is an oscillatory depletion
interaction, which can be both attractive and repulsive.

H. H. vON GRUNBERG (Fachbereich Physik, Universitit Konstanz, Germany). In
figure 1 you summarized the different models/approximations for an inhomogeneous
electrolyte solution: (a) Debye—Huckel approximation (DH), (b) Poisson—Boltzmann
(PB), (c) primitive model, (d) hard spheres for water molecules, and (e) hard-spheres
plus dipoles for water. Each of these five levels is understood to be an improvement
of the previous level; so, PB improves on DH, primitive model on PB, and so forth.
This means that you assume that a description of water as hard spheres with a
dipole moment (level (e)) is an improvement of the simple hard-sphere model for
water, thus implying that the steric effect of water molecules is more important than
effects caused by the dipole moments of water. Would one not expect that it is just
the other way round, i.e. the permanent dipole each water molecule has is a much
more important property than the mere steric effect of water accounted for by the
hard-sphere model? The first step to improve on a primitive model calculation would
then be a model where one takes account of the most prominent property of water,
namely that it is a strong dipole.

H. LOWEN. How to include real water in a realistic way in order to ‘improve’ the
primitive model is still a debate. Of course, the dipolar moment will be important.
In fact, as the dipolar moment results in a long-ranged interaction while a steric
interaction is short ranged, the dipole moment is much more important for a dilute
solvent. In a dense liquid, on the other hand, one might expect that the dipolar nature
averages out, establishing a nearly homogeneous dielectric background, and that thus
the excluded volume of the solvent molecules is the most prominent property. Still
more microscopic work is needed to clarify this issue.

C. W. OUTHWAITE (School of Mathematics, University of Sheffield, UK). On one of
your overheads you said the granular (or solvent) primitive model is justified. Could
you please explain how, as the status of this model between the McMillan—-Mayer
and Born—Oppenheimer description levels (figure 1), is to my knowledge not clearly
not understood at the statistical mechanical level.
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H. LOWEN. What I claimed was that the SPM was justified by comparing its pre-

dictions to the full granular solvent model. This SPM corresponds exactly to the
McMillan-Mayer description level.
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