Colloidal suspensions driven by external fields
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* Abstract. Colloidal suspensions have been proven to play a pivotal role of model systems in order to understand the principles
© of equilibrium phase transitions such as freezing and fluid-fluid demixing. Qoe of the main reasons for that is that real-
;- space studies are possible thanks to the mesoscopic length scale of the particle size. The same model character of-colloidal
suspensions holds in non-equilibrium situations as e.g. represented by an external driving field (such as shear, gravity, an

. electric and/or magnetic field). In this paper some current examples of non-equilibrium transitions are reviewed where recent

. progress has been made by theory and computer simulation. In particular, we discuss the competition between phase separation

_and lane formation in driven colloidal mixtures, crystal nucleation in charged suspensions under shear and chain formation of
“ two-dimensiona! superparamagnetic suspensions induced by an external magnetic field.

INTRODUCTION

-Suspensions of mesoscopic colloidal particles are excel-
ent realizations of classical statistical modets since their
:Iriteractions are tunable. One further advantage of col-
“loidal suspensions lies in the fact that the particle con-
“figurations can be watched in real-space, e.g. by using
confocal microscopy, which enables a direct compari-
- Son between experiments and theory. While in the past
“two decades most of the investigations of colloidal dis-
-persions were done in the bulk either under equilibrium
“¢onditions or regarding the kinetic glass transition in or-
3'de'_r 1o explore the thermodynamics, structure and bulk
~phase behaviour, more recent studies exploit the fasci-
‘nating possibility to expose colloids to external driving
fields [1, 2] and to study thus non-equilibrium dynamics
n a controlled way. One of the most intriguing possibil-
“Ities is to fix and move the colloidal particles by using
‘optical tweezers. In nen-equilibrium situations, however,
the dynamics of the colloids will enter explicitly. Hence
-atheoretical description is more difficult as long as the
long-ranged hydrodynamic interactions induced by the
-solvent flow will play a significant role.
- In'this paper we review some progress in the area of
olloidal suspensions driven by external fields. In partic-
_ular, three examples are discussed in detail, all of which
¢ to do with certain aspects of slow dynamics in such
omplex fluids. It is known that binary mixtures of col-
dal suspensions when driven by a constant external
d (such as gravity or an electric field) can exhibit for-
lation of particles lanes provided the driving forces act-

mg on the two different particles species differ. These
fanes can be intuitively understood by watching pedes-
trian motion in pedestrian zones [3] and are also meso-
scopic analogs to the so-called two-stream instability in
plasmas [4]. Here we study the competition between lane
formation in a fluid-fluid phase-separating mixture and
study the effect of anisotropic coarsening which is a slow
dynamical process. The second topic concerns the pres-
ence of a shear field. It is known that typically a col-
loidal solid is molten by shear. But if the shear rate is
reduced such shear-molten fluids can recrystallize into
a solid. The question is how crystal nucleation rates are
affected by shear. Since nucleation is a rare event, this
intimately has to do with slow dynamics. Finally we
study the chain formation in anisotropically interacting
magnetic colloidal spheres exposed to an external mag-
netic field. If the attraction between the particles is strong
enough they form chains and the chains form aggregates.
The dynamics towards the agregates is very slow and
the question is whether the aggregates finally crystatlize
into a lattice [5] or whether a liquid-chain phase is stable
[6,7,8].

COMPETITION BETWEEN LANE
FORMATION AND PHASE SEPARATION
IN DRIVEN COLLOIDAL MIXTURES

Spinodal decomposition of a phase-separating binary
fluid mixture is a well-studied dynamical coarsening
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FiGURE 1. Simulation snapshots for a) 1 = 0.15, b) 7 =
22575, ¢) 1 = 6.7575, d} t = 29.257,. Simulation parameters
are: K6 =234, Uy = 15, £5 =120, po” = 0.4 N, = N, =
4000, A= 1.6

process which slows down significantly until complete
separation into two macroscopic portions of two flu-
ids is reached [9]. Typically the structure grows with a
power-law in time. When combined with another non-
equilibrium situation, new pattern structures and growth
laws do arise. One example is phase separation under
shear [10], another situation occurs if the mixtures is
driven by a constant external force which acts differently
on the two different particle species. An experimental re-
alization of such a situation is a sedimenting and phase-
separating colloid-polvmer mixture [11]. In the absence
of phase separation, i.e. for a stable mixed fluid, it has
been shown by computer simulation [12, 13, 14] and by
theory [15] that - upon a critical force difference - the
mixture spontancously forms lanes containing only par-
ticles moving alike. The direction of the lanes is along
the driving force direction.

Here we study the competition between phase separa-
tion and lane formation. We consider a two-dimensional
model system interacting via a set of Yukawa pair poten-
tials

The asymmetric binary colloidal mixture comprises
N, + N, Brownian colloidal particles in an area S [12].
N, particles are of type 1, the other N, are of type 2 with
partial number densities p; = N, /S and p, =N, /S. Inthe
following we set p, = p, = p. The colloidal suspension
is held at fixed temperature T via the bath of microscopic
solvent particles. Two colloidal particles are interacting

via effective Yukawa potentials as follows:

v, (1) exp(~K{r— o))
gV i
i,T =U,0; , )

r

where {if} = {11),(12),{22). Here r is the center-to-
center separation, Uy is the interaction strength measured
in terms of the thermal energy kT and « is the inverse

screening length. The set of diameters, s s nonadditive
and given by
), =0y =0 (2
0y, = 01+ A} (3

where A is the dimensionless nonadditive parameter.

The dynamics of the colloids is completely over-
damped Brownian motion. The friction constant is £ =
3nn o with 1 denoting the shear viscosity of the solvent.
The constant external force acting on the ith particle of
species j, ﬁ;.U ), has the same amplitude but an opposite
direction for the both constituents of the binary mixture.
Itis I*_i,(l) = F&, and 1_5;_(2) = —F&, where ¢, is a unit vector
along the y-direction of the system.

The stochastic Langevin equations for the colloidal
trajectories 7/ (£} (j = 1,2) (with i = 1,...,N, for j = 1
andi=1,... N, for j =2)read as
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where j' is the complementary index to j (f =1 if
j=2and j = 2if j = 1). The right-hand-side includes
all forces acting onto the colloidal particles, namely the
force resulting from inter-particle interactions, the exter-
nal constant force, and the random forces KUU) describ-
ing the collisions of the solvent molecules with the ith
colloidal particle of species j. The latter are Gaussian

random numbers with zero mean, Ki(f) = 0, and variance

(Ki(k))a(t)(l(}”)) p(t') = 2kTES, 18,8, 8(r—1). (5)
The subseripts o and B stand for the two Cartesian com-
ponents. Note that within this simple Langevin picture,
hydrodynamic interactions are ignored.

We solve the Langevin equations of motion by Brow-
nian dynamics simulations [16, 17, 18] using a finite
time-step and the technique of Ermak [19, 20]. We use
a square cell of length £ with periedic boundary condi-
tions. The typical size of the time-step Ar was 0.00027;,
where T, = £07/kgT is a suitable Brownian timescale.
We simulated typically 2 x 10* time steps which corre-
sponds to a simulation time of 47,

A set of different snapshots are presented in Figure 1
for different times. The starting configuration at f = 0
(see Fig. 1.a) is a completely mixed configuration as
equilibration for A = 0 and F = 0. One clearly sees an
anisotropic coarsening due to the external drive. Two ex-
treme lmit can be understood in more detail: first, if the
driving field is much smaller than the fluid-fluid equilib-
rium line tension ¥, then the traditional isotropic phase
separation will dominate at small times. At an interface
the external field will then lead to a Rayleigh-Taylor in-
stability leading to finger fomation inside the phase sep-
arated region. This is presumbaly what has been seen
in experiments of sedimenting colloid-polymer mixtures
[11] and was checked for pure interfacial situations [21].
On the other hand, if the driving force is much larger than
v, the system directly relaxes into the laning state.

CRYSTAL NUCLEATION UNDER
SHEAR

In the last years, remarkable progress has been made to
calculate the free energy barrier for crystal nucleation via
smart simuiation methods using the umbrella sampling
technique. In three spatial dimensions, resuits for the
homogeneous crysial nucleation rate and the siructure
of the critical nucleus were obtained for Lennard-Jones
sytems {22], hard spheres [23] and Yukawa particles
[24]. Under linear shear flow of a given shear-rate ¥, the
nucleation rate is expected to change drastically since
usually a crystal is getting less stable with respect to a
fluid phase (shear-thinning or shear-induced melting).

In a recent work [25], Brownian dynamics computer
simulations of charged colloids as modelled by a Yukawa
interaction without hydrodynamic interactions have been
performed to address this problem. The pair potential
reads as (see Egn. (1))

Vir) _, _exp(—k{r—o0))
kpT =Yoo r '
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The negative logarithm of the probability to find a solid-
like cluster containing n solid-like particle normalized
to unity for n = 1 is plotted versus n in Figure 2. It is
tempting to interpret this data as a free energy even in the
non-equilibrium steady-state situation setting the barrier
height and the critical nucleus size. We have tested our
Brownian dynamics data in the zero-shear limit against
Monte-Carlo data and find good agreement, see again
Fig. 2. For increasing shear rates ¥, the barrier and the
cluster size do increase. Further simulations will explore
the structure of the critical nucleus and will compare to
data to classical nucleation theory.
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FIGURE 2. The negative logarithm of the probability P(n)
of finding a cluster which contains » solid particles, normalized
to unity for n = 1. The solid curves correspond to Brownian
dynamics simuiations at different shear rates, the dashed line is
the result for Monte Carlo simulations without shear. Simula-
. . Pﬂ.3
tions were performed for k¢ = 3, Uyo = 20, pressure is T =

30 and from top to bottom shear rates 775 = 0.04,0.02,0.01,0.

TWO-DIMENSIONAL MAGNETIC
COLLOIDAL SUSPENSIONS IN AN
EXTERNAL MAGNETIC FIELD

Systems of colloidal particles at a liquid-gas interface
controlled by magnetic interactions are valuable realiza-
tions of two dimensional model systems to study the
properties of their phase transitions and response to ex-
ternal fields. Here we consider two-dimensional macro-
scopic assemblies of paramagnetic particles, each carry-
ing a magnetic moment m;, under the influence of an ar-
bitrary external magnetic field B.

The physical setup is schematically depicted in Fig. 3.
The total potential energy of the system reads as:

Vi = 3 [uolry) + aglrypomi,m ) = T B-my, ()
i<f f

where u,(r) is a truncated and shifted Lenard-Jones po-

tential which reads as

_ | 4g((Ray2- (%1)6) +¢& forr <20,
tolr) = o else.

(8)
with length and energy scale ¢, and ¢ and the dipole-
dipole interaction is:

1

g (T, ;M0 ) = A 1:3(§'mi)(r'mj) _mi'mj] -

Of particular interest are so-called super-paramagnetic
particles [26] for which the magnetic moment com-
pletely aligns with the external field, if the latter is strong
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FIGURE 3. Sketch of two super-paramagnctic particles con-
fined on a plane, under the influence of an external magnetic
field B. In (a), the field is perpendicular to the plane and only
the the isotropic part, ~ r—= of the interaction u 4q Survives. In
(b}, there is an in-ptane field component, rendering the interac-
tion anisotropic, # = u{r) in this case.

enough. In this case, we have m; = ¥B, the last term
in Eq. (7) becomes an irrelevant constant Ny B* and the
magnetic field plays the role of tuning the repulsions be-
tween the particles through its influence on the magni-
tude and orientation of the m,’s see Eq. (9) above.
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FIGURE4. Chain formation in two dimensional dipolar col-
loids as ebtained via a Molecular dynamics simulation. The
starting configuration was homogeneous. The total simulation
time was 35000¢" with 1* = 7/¢/0/+/m where m denotes the
mass of the particles.

Novel experimental methods have shed new light on
the statics and dynamics of two-dimensional systems of
interacting magnetic colloids [26, 27, 28]. In the fol-
lowing we shall concentrate of the chain formation of
two-dimensional super-paramagnetic colloids with an in-
plane external magetic field where other preliminary
computer simulations have already been published [29].
Snapshots of molecular dynamics simulations of N =
256 magnetic particles in an square box are presented in
Figure 4. The parameters are number density n* = nog =
0.1, the angle between the magnetic field and the plane

is zero. The relative strength of the dipol interaction with
respect 1o the thermal energy &, T is A = m” /g’ kT = 8.

Starting from a homogeneous disordered configura-
tion, one clearly sees the formation of chain-like configu-
rations. The results are obtained via molecular dynamics.
Although this is not the proper dynamics of the colloids,
it provides nevertheless qualitative insight into the dy-
namics of chain formation.

CONCLUSIONS

In conclusion, we have briefly described three differ-
ent examples of slow dynamics in colloidal suspensions
driven by an external field: i) phase separation kinetics
under an external driving field, ii) crystal nucleation un-
der shear, and iii) chain formation in an external mag-
netic field. They all demounstrate that the formation of
new complex structures such as phase-separating pat-
terns and critical nuclet which initiate crystal birth are
formed on time-scales which are considerably slower
than the typical time scale characterizing single parti-
cle diffusion. The self-assembly of many particles leads
to interesting structures on intermediate transient time-
scales.

We think that colloidal suspensions in non-eguilibrium
will be valuable model systems to study further funda-
mental questions of slow dynamics. In particular, pattern
formation in non-equilibrium and glass and gel forma-
tion tn external fields are key areas in which progress can
be expected in the near future.
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