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Umbrella sampling in non-equilibrium computer simulations
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Abstract

We describe the application of the umbrella sampling technique well known from equilibrium Monte Carlo to dyna
non-equilibrium simulations. This method is used specifically to calculate the nucleation barrier of Brownian Yukawa p
in a homogeneous shear flow.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Umbrella sampling is an often used tool in equil
rium simulations to obtain information of processes
events that require extremely long simulation times
be observed. An example of such a process is nu
ation of a stable phase in an unstable bulk phase.
to fluctuations in a super-cooled liquid, for examp
one can observe the continuous formation and ann
lation of small crystalline structures. Even though su
a super-cooled system is only meta-stable, the sys
will in general not crystallize immediately. Accord
ing to classical nucleation theory[1,2], there are two
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counteracting contributions at work. On the one ha
the system gains free energy by forming a small cr
talline cluster, because the free energy per particle
the crystal is lower than that of the surrounding l
uid. On the other hand, the formation of a nucleus w
also require the creation of an interface between
crystalline nucleus and the liquid, which will cost fre
energy. The result of these two counteracting contr
tions is that it is unfavorable for small nuclei to gro
bigger, but once a nucleus is large enough, the
ical nucleus size, the other effect takes over and
nucleus will prefer to grow larger.

In terms of statistical physics this means that a
cleus will have a very low probability to be found,
other words has a very low Boltzmann weight. The
fore one would need in general very long simulat
times in order to observe a nucleation event. Tha
is nevertheless possible to simulate such rare ev
.

http://www.elsevier.com/locate/cpc
mailto:hlowen@thphy.uni-duesseldorf.de


R. Blaak, H. Löwen / Computer Physics Communications 169 (2005) 64–68 65

lla
as

er
on,
n.
t it
ter-

e
dif-
red
rgy
that
har-
hat
By
he
tain
ose
ion.

it
we
-

p-
der
il
an
ribe

b-
ica

re-
le
n-
dy

par-

h

e-

-
to

r-
he
ne
rs,
cle
ap-

at it

e
-
he
eus
on
ght
be

um
led
ier
hs
de-

not

a-
ce

the
r of
s in
t of

vent
ion
u-
ow
unt
in-

p-

ny
re-
izes
and obtain sufficient statistics is due to the umbre
sampling technique in Monte Carlo simulations. It h
been introduced by Torrie and Valleau[3] and is based
on the sampling of a modified Hamiltonian. Rath
than performing the system with its natural interacti
an additional potential is added to the Hamiltonia
This biasing potential is chosen in such a way tha
restricts the system to the part of phase space of in
est. In the case of nucleation[4], one can for instanc
use a harmonic-shaped potential depending on the
ference of the size of the nucleus with some prefer
size. For this biased Hamiltonian, the minimum ene
state will be one where the size of the nucleus is
of the preferred size that has been chosen. The
monic part that has been added will now prevent t
the cluster shrinks too much or grows too large.
performing simulations for different parameters of t
bias, i.e. the preferred cluster size, one can now ob
information on clusters of any size, even though th
clusters might never appear in an unbiased simulat

Umbrella sampling, however, as it stands is anequi-
librium technique. As such one would expect that
cannot be used in non-equilibrium situations. Here
will explain why and how it can work in a dynam
ical simulation. More specifically, the way it is a
plied in the case of simulating crystal nucleation un
shear[5,6]. Although we explain the method in deta
and specifically for the use in crystal nucleation, it c
be easily be applied to other situations. We desc
such situations in the last chapter.

2. Umbrella sampling in non-equilibrium

In order to obtain information on rare, non-equili
rium processes one needs to make use of dynam
simulations, since Monte Carlo simulations are
stricted to equilibrium situations only. One possib
example is molecular dynamics, another is Brow
ian dynamics, which we used in recent work to stu
the problem of nucleation under shear. We used
ticles that interact via the Yukawa potentialV (r) =
εe−κr/κr , with r the interparticle distance,κ the in-
verse screening length, andε the interaction strengt
has been fixed toε = 1.48 × 104kBT . For the in-
teraction we used a cut-off distancerc = 10/κ . The
equations of motion in Brownian dynamics also d
pend on the short-time diffusion constantD, and linear
l

shear is applied via the shear rateγ̇ . For a more exten
sive description of the model we refer the reader
Refs.[5,6].

The quantity of interest is the probabilityP(n) to
find a nucleus ofn crystalline particles in a supe
cooled liquid. Here to all particles that belong to t
crystalline nucleus need to be identified. This is do
with the aid of bond-orientational order paramete
which characterize the local environment of a parti
of interest. It is clear that even in the case that one
plies linear time-independent shear, the quantityP(n)

is a well defined function in the steady state, and th
will only depend on the external pressurep, the tem-
peratureT , and the shear ratėγ . For zero shear, on
can relate the functionP(n) to the chemical poten
tial. It will show a maximum, which corresponds to t
nucleation barrier and determines the critical nucl
size. Note that the critical nucleus size will depend
the definition that is used for the nucleus. The hei
of the nucleation barrier, however, should hardly
sensitive to the definition that is being used[7]. The
reason is that one needs to determine the maxim
cost in chemical energy for a path from a super-coo
liquid to a crystallized system. The nucleation barr
is the minimum over all possible crystallization pat
of this maximum chemical energy, and does not
pend on how the nucleus is defined.

Since in the presence of shear the system is
in equilibrium, the probabilityP(n) cannot longer be
related to a chemical potential. But in terms of prob
bilities, the critical nucleus can still be identified, sin
it corresponds to the least probable nucleus size.

In a conventional simulation one would prepare
system in an initial state and simulate for a numbe
time steps while measuring the number of particle
the nucleus. The obvious problem is that the amoun
time steps in order to observe a single nucleation e
will in general be astronomical, unless the nucleat
barrier is very small. Moreover, once the critical n
cleus size is exceeded, the nucleus will rapidly gr
and crystallize the system. Therefore a large amo
of simulations is required to obtain good statistical
formation, specially close to critical nucleus size.

We can solve this time problem with a trick. Su
pose we want to measure the probabilityP(n) close to
a cluster sizen0. To do this, we need to simulate ma
trajectories of dynamical simulations whereby we
strict our measurements to the range of nucleus s
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of interest. But rather than starting over and over ag
with a super-cooled liquid and wait until a sufficient
large nucleus is grown, we restrict the simulation
grow dynamical paths close to the preferred sizen0.
This is achieved with the help of a biasing fun
tion Pbias(n,n0) and works as follows. We perform
normal dynamical simulation for a time that is lon
enough for particles to attach to or de-attach from
nucleus, but short enough so that relative small nu
are not fully dissolved or that an over-critical nucle
crystallizes the full system. The data we obtain in su
a time interval can be used for measurements. At
end of the time-interval we determine the number
particles in the nucleusnnew and compare that with th
cluster-sizenold at the begin of the time interval. W
now select either the original configuration or the
nal configuration with which we will continue the ne
time-interval. This selection is based on the relat
probabilitiesPbias(nold, n0)/Pbias(nnew, n0), where a
suitable choice for the biasing function would
Pbias(n,n0) = exp(−α(n − n0)

2) with α the strength
of restrainment. A proper normalization of the bia
ing probability is not required, since only the relati
probabilities are used.

In the conventional umbrella sampling techniqu
one needs to weight all measured quantities with
instantaneous Boltzmann factor due to the bias th
applied. Also in the present case we need to eval
weighted averages. This is, however, not the ins
taneous biasing probability, but the one at the be
of the time-interval, because within a time-interval t
biasing function is not being used and therefore
weight should not be modified.

Fig. 1shows a schematic representation of the g
eral idea, which shows the size of the nucleus as fu
tion of time. The curves show dynamical paths that
generated without a bias. The bias is applied on reg
time-intervals denoted by the points. The filled poi
represent accepted configurations and are conne
by the solid curve, which forms a long-time path. T
dotted curves represent short-time paths of which
final configuration (open points) are rejected by
bias, where after the most recent accepted config
tion is restored. The shape of the bias ensures tha
size of the nucleus is restricted, represented by the
izontal dashed lines, although excursions beyond th
are allowed.
Fig. 1. Schematic representation of the umbrella sampling, w
shows the size of the nucleus as a function of the time. The s
line shows the long time trajectory, while the dotted curves indic
small time-intervals. The points are configurations that are subje
to the bias and can be rejected (open points) or accepted (
points). The bias ensures the confinement in nucleus size, whi
represented by the dashed lines.

When at the end of the time-interval the origin
configuration is restored, one needs to ensure tha
next time-interval a different path will be followed
In the case that Brownian dynamics is used, this
achieved in a natural manner by the random for
acting on the particles. For molecular dynamics t
would not work, because there is no such rand
process available. A possible solution here would
the usage of different velocities. The usage of t
method also depends critically on the assumption
the process to be Markovian, i.e. the clusters sho
change sufficiently in order to sample an represe
tive part of the phase space.

The way we use the biasing function, is a sim
trick to generate many appropriate initial configu
tions, without the necessity to generate full trajector
from the liquid state. The only problem that now r
mains, is to create a number of starting configurati
with suitably sized nuclei. Also here we can direc
make use of the same technique, because starting
the liquid we apply the biasing function with a sm
preferred sizen0. By slowly increasing its value, th
nucleus will be forced to grow in a controlled way
any size we like to have.

For a given simulation, we keep the biasing fun
tion fixed. Therefore any quantity we measure is o
obtained in a relative small range of nucleus siz
For a measurement of the dimension of the nucl
this is not a problem, but for the determination



R. Blaak, H. Löwen / Computer Physics Communications 169 (2005) 64–68 67

)

rate

t
art
the
ore
oes

e-
g

the
o

ver-
arts
tch

re.

that
nu-
an

d to
liza-
y-
er
ro-
fined

ca-
ove

uld
like

ncy

ar-

al-
ic,
t
tate.

eous
ea-
old
r in
just
en
ear,
y
ed.
e-
Fig. 2. The relative probabilityP(n) of a cluster of sizen with re-
spect to the preferred cluster sizen0 stemming from the biasing
function used by the umbrella sampling technique.

Fig. 3. Negative logarithm of the probabilityP(n) of finding a clus-
ter ofn solid-like particles normalized byP(1) for fixed dimension
less pressureβp/κ3 = 0.24 (β = 1/kBT is the inverse temperature
and different applied dimensionless shear ratesγ̇ /κ2D. The insets
show typical snapshots of critical nuclei for the largest shear
and the zero shear case. (Taken from Ref.[6].)

the function P(n) it is. The reason is simply tha
from a single simulation we only obtain a small p
of the function. The probability measured before
acceptance criterion of the bias is applied, theref
does not have the appropriate normalization, but d
give the correct relative probabilitiesP(n)/P (n0).
By performing several simulations for different pr
ferred cluster-sizesn0, we obtain different overlappin
patches ofP(n). An example of that is shown inFig. 2,
where we have plotted the negative logarithm of
functionP(n). The values ofn0 have been chosen t
be multiples of 10 particles, and the strengthα in the
biasing function is chosen such that there is some o
lap of successive patches. Since the overlapping p
of the patches should be identical, one is able to ma
all patches together with a simple fitting procedu
The result of that is shown inFig. 3, where the negative
logarithm of the functionP(n) is shown for different
shear rates. From this figure one can understand
small shear rates lead to an increase in the critical
cleus size and a lower relative probability, hence
increase in the nucleation barrier[5,6].

3. Other applications

The method explained here can also be applie
other problems or systems. One obvious genera
tion is the inclusion of solvent-mediated hydrod
namic interactions in the colloidal dynamics. Anoth
possible application is that of the problem of hete
geneous nucleation, e.g., in a sheared system con
between two plates or near a single wall[8]. In fact
as far as the umbrella part is concerned, no modifi
tions are required, and the method as outlined ab
can directly be used.

Let us here describe an application, which wo
require some modifications. Suppose one would
to investigate the process of nucleation inoscillatory
shear[9], where the shear depends via a freque
ω on the time, i.e.γ̇ = γ̇0 sin(ωt). Here, one would
expect that, given a sufficient time, the system is ch
acterized by the pressurep, the temperatureT , the
amplitude γ̇0, and its frequencyω. The probability
functionP(n) of observing a nucleus of sizen is also
here properly defined. It is, however, important to re
ize that this function is a time average of the period
time-dependent functionP(n, t), caused by the fac
that we do not have a time-independent steady s
In principle, the functionP(n, t) can be obtained in
the same manner as in the case of a homogen
shear field. The main difference is simply that we m
sure a two-parameter function, so if we restore an
configuration we also need to reset time and shea
the proper manner. Whether one would need to ad
the biasing function or not will depend on the chos
parameters for the oscillatory shear. For small sh
the functionP(n, t) will probably not depend strongl
on time and a time-independent bias can still be us
In other cases it might be useful to introduce a tim
dependent biasing function.
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A further improvement on the simulation schem
can be obtained by using the so-called parallel te
pering technique[10]. In this scheme several system
at different biasing parameters are simulated in pa
lel. In addition to the simulations as described befo
one also allows for configurations from different bia
ing parameters to be swapped. The result is that nu
that by some fluctuation grow big, will be continue
with a higher biasing parameter, while nuclei that ha
shrunken will continue at lower preferred cluster siz
The result is an even larger variation in configurat
space, leading to better statistics.
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