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Abstract

We describe the application of the umbrella sampling technique well known from equilibrium Monte Carlo to dynamical,
non-equilibrium simulations. This method is used specifically to calculate the nucleation barrier of Brownian Yukawa particles
in a homogeneous shear flow.
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1. Introduction counteracting contributions at work. On the one hand

the system gains free energy by forming a small crys-

Umbrella sampling is an often used tool in equilib-  talline cluster, because the free energy per particle for
rium simulations to obtain information of processes or the crystal is lower than that of the surrounding lig-
events that require extremely long simulation times to yid. On the other hand, the formation of a nucleus will

be observed. An example of such a process is nucle- 5150 require the creation of an interface between the
ation of a stable phase in an unstable bulk phase. Duecystalline nucleus and the liquid, which will cost free

to quctuatlt:)ns in E:]SUper?COO|edf|quId,_ for e>:jampl_eh,_ energy. The result of these two counteracting contribu-
one can observe the continuous formation and annini- ' that it is unfavorable for small nuclei to grow

lation of small crystalline structures. Even though such bigger, but once a nucleus is large enough, the crit-

a_su_per-cooled system Is qnly _meta-s;_table, the SYStem; - nucleus size, the other effect takes over and the
will in general not crystallize immediately. Accord-

: : . nucleus will prefer to grow larger.
ing to classical nucleation theof{,2], there are two P e 9 g .
In terms of statistical physics this means that a nu-
- cleus will have a very low probability to be found, in
Correfpggdingﬁuthor- R dort.d other words has a very low Boltzmann weight. There-
" Lixf:‘)a ress: hlowen@thphy.uni-duesseldorf.de fore one would need in general very long simulation
1 Current address: Department of Chemistry, Cambridge Univer- f['mes in order to ob;erve a r.‘UCIeat'on event. That it
sity, Lensfield Road, Cambridge, CB2 1EW, United Kingdom. is nevertheless possible to simulate such rare events
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and obtain sufficient statistics is due to the umbrella shear is applied via the shear rgteFor a more exten-
sampling technique in Monte Carlo simulations. It has sive description of the model we refer the reader to
been introduced by Torrie and Vallef8] and isbased  Refs.[5,6].
on the sampling of a modified Hamiltonian. Rather The quantity of interest is the probabili®(n) to
than performing the system with its natural interaction, find a nucleus of: crystalline particles in a super-
an additional potential is added to the Hamiltonian. cooled liquid. Here to all particles that belong to the
This biasing potential is chosen in such a way that it crystalline nucleus need to be identified. This is done
restricts the system to the part of phase space of inter-with the aid of bond-orientational order parameters,
est. In the case of nucleati¢4], one can for instance  which characterize the local environment of a particle
use a harmonic-shaped potential depending on the dif- of interest. It is clear that even in the case that one ap-
ference of the size of the nucleus with some preferred plies linear time-independent shear, the quankity)
size. For this biased Hamiltonian, the minimum energy is a well defined function in the steady state, and that it
state will be one where the size of the nucleus is that will only depend on the external pressysethe tem-
of the preferred size that has been chosen. The har-peratureT’, and the shear ratg. For zero shear, one
monic part that has been added will now prevent that can relate the functio?(n) to the chemical poten-
the cluster shrinks too much or grows too large. By tial. It will show a maximum, which corresponds to the
performing simulations for different parameters of the nucleation barrier and determines the critical nucleus
bias, i.e. the preferred cluster size, one can now obtain size. Note that the critical nucleus size will depend on
information on clusters of any size, even though those the definition that is used for the nucleus. The height
clusters might never appear in an unbiased simulation. of the nucleation barrier, however, should hardly be
Umbrella sampling, however, as it stands isgqui- sensitive to the definition that is being usgd. The

librium technique. As such one would expect that it

reason is that one needs to determine the maximum

cannot be used in non-equilibrium situations. Here we cost in chemical energy for a path from a super-cooled

will explain why and how it can work in a dynam-
ical simulation. More specifically, the way it is ap-

liquid to a crystallized system. The nucleation barrier
is the minimum over all possible crystallization paths

plied in the case of simulating crystal nucleation under of this maximum chemical energy, and does not de-

sheal5,6]. Although we explain the method in detalil
and specifically for the use in crystal nucleation, it can

pend on how the nucleus is defined.
Since in the presence of shear the system is not

be easily be applied to other situations. We describe in equilibrium, the probability? (n) cannot longer be
such situations in the last chapter. related to a chemical potential. But in terms of proba-
bilities, the critical nucleus can still be identified, since
it corresponds to the least probable nucleus size.

In a conventional simulation one would prepare the
system in an initial state and simulate for a number of

In order to obtain information on rare, non-equilib- time steps while measuring the number of particles in
rium processes one needs to make use of dynamicalthe nucleus. The obvious problem is that the amount of
simulations, since Monte Carlo simulations are re- time steps in order to observe a single nucleation event
stricted to equilibrium situations only. One possible will in general be astronomical, unless the nucleation
example is molecular dynamics, another is Brown- barrier is very small. Moreover, once the critical nu-
ian dynamics, which we used in recent work to study cleus size is exceeded, the nucleus will rapidly grow
the problem of nucleation under shear. We used par- and crystallize the system. Therefore a large amount
ticles that interact via the Yukawa potentigékr) = of simulations is required to obtain good statistical in-
ee " /kr, with r the interparticle distance, the in- formation, specially close to critical nucleus size.
verse screening length, amdhe interaction strength We can solve this time problem with a trick. Sup-
has been fixed t& = 1.48 x 10%3T. For the in- pose we want to measure the probabikty:) close to
teraction we used a cut-off distaneg= 10/«x. The a cluster sizeig. To do this, we need to simulate many
equations of motion in Brownian dynamics also de- trajectories of dynamical simulations whereby we re-
pend on the short-time diffusion constdntand linear strict our measurements to the range of nucleus sizes

2. Umbrella sampling in non-equilibrium
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of interest. But rather than starting over and over again
with a super-cooled liquid and wait until a sufficiently
large nucleus is grown, we restrict the simulation to
grow dynamical paths close to the preferred sige
This is achieved with the help of a biasing func-
tion Ppias(n, no) and works as follows. We perform a
normal dynamical simulation for a time that is long
enough for particles to attach to or de-attach from the
nucleus, but short enough so that relative small nuclei
are not fully dissolved or that an over-critical nucleus
crystallizes the full system. The data we obtain in such time

a time interval can be used for measurements. At the Ei . . . .

. . . ig. 1. Schematic representation of the umbrella sampling, which
end of the time-interval we determine the number of shows the size of the nucleus as a function of the time. The solid
particles in the nucleus,ew and compare that withthe  line shows the long time trajectory, while the dotted curves indicate
cluster-sizengyg at the begin of the time interval. We  smalltime-intervals. The points are configurations that are subjected
now select either the original configuration or the fi- © the bias and can be rejected (open points) or accepted (filled

. . . ; . . points). The bias ensures the confinement in nucleus size, which is
nal configuration with which we will continue the next represented by the dashed lines.
time-interval. This selection is based on the relative
probabilities Pyias(r0ld, 20)/ Poias(finews 70), Where a
suitable choice for the biasing function would be
Poias(n, no) = exp(—a(n — np)?) with « the strength
of restrainment. A proper normalization of the bias-
ing probability is not required, since only the relative

When at the end of the time-interval the original
configuration is restored, one needs to ensure that the
next time-interval a different path will be followed.

In the case that Brownian dynamics is used, this is
probabilities are used achieved in a natgral manner by the random forcgs
: acting on the particles. For molecular dynamics this

In thedcotnvent]orr]]tal Illjmbrella ssmpllngt.techr?;ﬂuti, would not work, because there is no such random
one needs 1o weight all measured quantiies wi € process available. A possible solution here would be

instantaneous Boltzmann factor due to the bias that is the usage of different velocities. The usage of this

applied. Also in the present case we need to evaluate jo1hqq aiso depends critically on the assumption of
weighted averages. This is, however, not the instan- yho rocess to be Markovian, i.e. the clusters should

taneous biasing probability, but the one at the begin hange sufficiently in order to sample an representa-
of the time-interval, because within a time-interval the 0 part of the phase space.

biasing function is not being used and therefore the  p¢ way we use the biasing function, is a simple

weight should not be modified. trick to generate many appropriate initial configura-
Fig. 1shows a schematic representation of the gen- tjons, without the necessity to generate full trajectories
eral idea, which shows the size of the nucleus as func- fyom the liquid state. The only problem that now re-
tion of time. The curves show dynamical paths that are majns, is to create a number of starting configurations
generated without a bias. The bias is applied on regular with suitably sized nuclei. Also here we can directly
time-intervals denoted by the points. The filled points make use of the same technique, because starting from
represent accepted configurations and are connectedhe liquid we apply the biasing function with a small
by the solid curve, which forms a long-time path. The preferred sizeig. By slowly increasing its value, the
dotted curves represent short-time paths of which the nucleus will be forced to grow in a controlled way to
final configuration (open points) are rejected by the any size we like to have.
bias, where after the most recent accepted configura-  For a given simulation, we keep the biasing func-
tion is restored. The shape of the bias ensures that thetion fixed. Therefore any quantity we measure is only
size of the nucleus is restricted, represented by the hor-obtained in a relative small range of nucleus sizes.
izontal dashed lines, although excursions beyond them For a measurement of the dimension of the nucleus
are allowed. this is not a problem, but for the determination of
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Fig. 2. The relative probability? (r) of a cluster of sizex with re-
spect to the preferred cluster sizg stemming from the biasing
function used by the umbrella sampling technique.
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Fig. 3. Negative logarithm of the probability(n) of finding a clus-
ter of n solid-like particles normalized by (1) for fixed dimension
less pressurﬁp/x3 =0.24 (8 =1/kgT is the inverse temperature)
and different applied dimensionless shear ra’zt;észD. The insets

show typical snapshots of critical nuclei for the largest shear rate

and the zero shear case. (Taken from [R&f)

the function P(n) it is. The reason is simply that

biasing function is chosen such that there is some over-
lap of successive patches. Since the overlapping parts
of the patches should be identical, one is able to match
all patches together with a simple fitting procedure.
The result of that is shown iRig. 3, where the negative
logarithm of the functionP (n) is shown for different
shear rates. From this figure one can understand that
small shear rates lead to an increase in the critical nu-
cleus size and a lower relative probability, hence an
increase in the nucleation barrié:6].

3. Other applications

The method explained here can also be applied to
other problems or systems. One obvious generaliza-
tion is the inclusion of solvent-mediated hydrody-
namic interactions in the colloidal dynamics. Another
possible application is that of the problem of hetero-
geneous nucleation, e.g., in a sheared system confined
between two plates or near a single w@)]. In fact
as far as the umbrella part is concerned, no modifica-
tions are required, and the method as outlined above
can directly be used.

Let us here describe an application, which would
require some modifications. Suppose one would like
to investigate the process of nucleationostillatory
shear[9], where the shear depends via a frequency
 on the time, i.ey = ypsin(wt). Here, one would
expect that, given a sufficient time, the system is char-
acterized by the pressurg, the temperaturd’, the
amplitude yp, and its frequencyw. The probability
function P (n) of observing a nucleus of sizeis also
here properly defined. Itis, however, important to real-
ize that this function is a time average of the periodic,
time-dependent functio® (n, t), caused by the fact
that we do not have a time-independent steady state.
In principle, the functionP(n,t) can be obtained in

from a single simulation we only obtain a small part the same manner as in the case of a homogeneous
of the function. The probability measured before the shear field. The main difference is simply that we mea-
acceptance criterion of the bias is applied, therefore sure a two-parameter function, so if we restore an old
does not have the appropriate normalization, but does configuration we also need to reset time and shear in

give the correct relative probabilitie® (n)/ P (no).

By performing several simulations for different pre-

ferred cluster-sizessg, we obtain different overlapping
patches of? (n). An example of that is shown fg. 2,

the proper manner. Whether one would need to adjust
the biasing function or not will depend on the chosen
parameters for the oscillatory shear. For small sheatr,
the functionP (n, t) will probably not depend strongly

where we have plotted the negative logarithm of the on time and a time-independent bias can still be used.

function P(n). The values ofig have been chosen to

be multiples of 10 particles, and the strengtin the

In other cases it might be useful to introduce a time-
dependent biasing function.



68 R. Blaak, H. Léwen / Computer Physics Communications 169 (2005) 6468

A further improvement on the simulation scheme
can be obtained by using the so-called parallel tem-
pering techniquglO0]. In this scheme several systems

at different biasing parameters are simulated in paral-

lel. In addition to the simulations as described before,
one also allows for configurations from different bias-

ing parameters to be swapped. The result is that nuclei

that by some fluctuation grow big, will be continued
with a higher biasing parameter, while nuclei that have
shrunken will continue at lower preferred cluster sizes.
The result is an even larger variation in configuration
space, leading to better statistics.
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