An exactly soluble model for interfacial kinetics
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We study an exactly soluble model for planar interfacial kinetics for both locally conserved and
nonconserved order parameters, where the Landau-Ginzburg potential is approximated by
two parabolas. Long-range interactions with arbitrary interaction kernels are included. In
particular, the relaxation of the initial order parameter interfacial profile to its equilibrium
profile is considered. Furthermore, the steady-state solution of planar interfacial growth for a
nonconserved order parameter is determined. Here, the influence of a second nonconserved

order parameter is also discussed.

I. INTRODUCTION

In recent years there has been increasing interest in the
rates and mechanisms of interfacial kinetics for first-order
phase transitions. One of the primary areas of study has been
crystal growth of single-component systems from the melt."
Silicon has been studied experimentally by laser-induced
zone melting.>> Among the striking observations of those
studies are the fact that growth of the melt into a superheated
solid is much faster than growth of a crystal into an under-
cooled liquid* for the same temperature distance from the
equilibrium freezing transition. In addition, faceting has
been observed during growth, both in experiment and in
computer simulations of silicon.’ Rayleigh and Raman light
scattering have been used to study the width of the ice/water
interface during growth, and surprisingly broad interfaces
have been observed.® Finally, a detailed molecular dynamics
simulation of crystal growth in a Lennard-Jones system’
showed thermally activated behavior of the (111) interface
and nonactivated behavior for the (100) interface. This
study also gave information about the detailed mechanisms
for growth in the two cases.

The kinetics of growth in other first-order transitions
are of interest as well. Much attention has been payed to the
rapid solidification of metal alloys, and the effect of growth
kinetics on microstructure.® Other possible applications in-
clude the dynamics of the order/disorder interface in Cu;Au
or in the three-state Potts model whose equilibrium proper-
ties were studied in Refs. 9 and 10, respectively.

Exactly soluble models for interfacial kinetics are of
considerable interest, because they allow a systematic explo-
ration of the factors that affect growth, as well as modeling of
particular physical systems. The only exactly soluble model
for time-dependent interface profiles of which we are of
aware to date is the steady-state solution of a Landau-Ginz-
burg @ * potential'' which was extended and applied to crys-
tal growth kinetics by one of us.'? In this paper, we present a
new exactly soluble model for interfacial kinetics and ex-
plore its time-dependent as well as steady-state properties.

In this model, even long-range interactions of the order
parameters are included. To the best of our knowledge, this
paper represents the first rigorous solution of a model for an
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interface where arbitrary long-range interaction kernels can
be treated. This makes it superior to the Sullivan model™®
where a special (Yukawa-type) form of the interaction ker-
nel is required. Moreover, the Sullivan model has not yet
been applied to time-dependent processes. The equilibrium
version of our exactly soluble model was used to investigate
the influence of long-range forces on surface melting. '

The organization of the paper is as follows: After outlin-
ing the general theory in Sec. II, we discuss the relaxation of
a nonequilibrium interfacial profile to the equilibrium pro-
file within an exactly soluble model, both for a conserved and
anonconserved order parameter in Sec. IIL. Then, in Sec. IV
we study planar interfacial growth for a nonconserved order
parameter whose steady-state solution is found exactly with-
in our model. The influence of additional order parameters is
discussed.

ll. GENERAL THEORY

Consider a space- and time-dependent scalar order pa-
rameter b(z,¢) which may describe a planar interfacial pro-
file, z being the coordinate perpendicular to the surface
plane. We describe the time evolution of b(z,¢) within the
Landau-Ginzburg approach'>'® neglecting random forces
which serve only to initiate thermodynamic fluctuations:

B _r(:2) 2l
at dz §b

Here, F'is the free energy functional and I" > 0 is an Onsager
coefficient which sets the microscopic time scale. Further-

more,
ne [0 if b is locally nonconserved
2 if bis locally conserved
We assume the following form for F[b]:

o= e[ 1o (2]

—i—f dzf dz w(jz—Z2'|)

X [b(z,t) — b(Z',1) ]2

2.1

(2.2)

(2.3)
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Here, — V(b) is the free energy for a system with a spatially
uniform order parameter b. At two-phase coexistence, V(b)
exhibits two maxima of equal height (taken tobe zero) at the
bulk values of the order parameter (see Fig. 1). Moreover,
long-range interactions of the order parameter are taken into
account via w(z). This is important to describe a liquid-gas
interface, for instance, b being then the mean density and
w(z) the laterally integrated long-ranged interparticle po-
tential. In simple Landau—Ginzburg models, w(z) is set to
zero, because if w(z) has a short enough range, its contribu-
tion to the free energy has the same form as the square gradi-
ent term involving g. For general V(b), Eq. (2.1) is a nonlin-
ear partial integro-differential equation which is difficult to
solve. Our particular choice of ¥(b) is two intersecting pa-
rabolas which linearize Eq. (2.1) piecewise (Fig. 1). With-
out loss of generality, we assume that the order parameter is
zero in the first and b, in the second phase. We are looking
for solutions for the interfacial profile between the two
phases. Therefore, we have the boundary conditions

b(z— — o0,t) =0,

b(z— w0,t) =b,. (2.4)

Ill. RELAXATION OF THE ORDER PARAMETER TO THE
EQUILIBRIUM PROFILE

In this section, we study the relaxation of an initial non-
equilibrium profile b,(z), given for ¢t = 0, to the equilibrium
profile. Note that we only consider deviations in the z direc-
tion, not in the direction parallel to the surface plane, such as
the relaxation of a locally curved interface to a planar one.

Let us first define the potential ¥(b) in the model intro-
duced in Sec. II; it is given by two parabolas (Fig. 1),

V(b) =max [ — Ub?, —A(b—b,)?]. 3.1

This then induces an external step-like force in the equations
of motion':

24 n n
jorp-1 b _ 3%t L 3%
ot az+n oz"

+9° a7 wilz— 2D [b(2) — b(2)]
dz
=5, 19" 01z— 28] (3.2)
"

wheren = 0,2 asin Eq. (2.2). Here z,(#) is a function that is
determined from
b,
b[zo(t):t] ="2— (33)
if b(z,t) is a solution of Eq. (3.2). This function z,(?) equals
z,, for t<0, with
b,
bo(zp) =—2—. (34)
We assume that Eq. (3.4) has only a single solution z; i.e.,
we do not consider overhanging interfacial profiles. Without
loss of generality z, can be chosen to be zero.

The strategy is to solve Eq. (3.2) for a general z,(¢) and
then to determine z,(¢) via Eq. (3.3). The general solution of

1
0 = -
f— ~N e
« N 7

\ /
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FIG. 1. Two-parabola structure of the potential V(b) (dash-dotted line) in
arbitrary units.

Eq. (3.2) can be obtained by Fourier transformation and is
given for £> 0 by

b(z,t) =b"%(z,t) + J- dz G, (z—2',1)

X [bo(Z') - b P(z"o) ]’
where b,(z) is the initial profile for = 0 and

(3.5)

G (Z,t) = —1 dke_"kze—lgk2+i+ W(k)1 k"t
n
27 J_

(3.6)

is the Green’s function of the generalized diffusion equation
(3.2). Furthermore, b ©(z,¢) is given by

A t z — Zy(t")
b¥(zt) = b,2 f dt'f dz'
7r — o0 —

o
XJ- dkk e—ikz'e—k"(t—r')l‘[gk3+,{+W(k)]
- 0

(3.7)
Finally, W(k) is
W(k) = 2w [w(k) — ©(0)], (3.8)

where ~ denotes the Fourier transform.

Because z,(¢) enters Eq. (3.7) nonlocally, Eq. (3.3)
which determines z,(¢) is a nonlinear integral equation. We
have thus reduced the nonlinear (piecewise linear) partial
integro-differential equation to an ordinary integral equa-
tion. In general, the Volterra-type equation (3.3) cannot be
solved analytically. However, there is an interesting simple
case where a trivial solution z,(?) of Eq. (3.3) can be found.
If the initial profile is an odd function about z =0, b = b,/2:

b, b,
bo(2) 5 bo( —2) + 5 (3.9
then by symmetry it will remain an odd function at all times.
We can then set z,(?) to zero, and Eq. (3.7) simplifies to the
static solution
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bP(zy=b"(2) = ib—’f dz'
2r J_ o
oo e~ ikz'
Xf— o a* gk>+ A+ Wk) '
(3.10)
For a step-function initial profile b,(z) = b,6(z) the relaxa-
tion of the interfacial profile to b °(z) is shown in Figs. 2 and
3 for both nonconserved (7 = 0) and conserved (n = 2) or-
der parameters. Remarkably, for a conserved order param-
eter a nonmonotonic profile 4(z) is generated during the
relaxation like a damped traveling shock wave.

Within the exact solution (3.5), Eq. (3.10) we can also
study the long-time behavior if the initial profile is odd about
z =0, see Eq. (3.9). Then, for large ¢, the interface profile
approaches b ©(z) as

[1—3/2+ﬁ(t—5/2)]e—4rr forn=20
7324 g(t7%?) forn=2 '

b(z,t) —b¥(2) ~[

(3.11)

So, as expected physically, the profile decays much faster
(exponentially) for a nonconserved order parameter than
for a conserved one. In the latter case the conservation re-
duces the decay behavior to a power law with universal expo-
nent — 3/2.

IV. PLANAR INTERFACE GROWTH FOR A
NONCONSERVED ORDER PARAMETER

In this section, we consider a different situation where
one of the two phases is metastable. A planar interface which
separates these two phases will then move into the metasta-
ble phase; i.e., the stable phase will grow at the expense of the
metastable one. Such a situation can be investigated with a
potential ¥(b) that is sketched in Fig. 4. As in Sec. III, the

1.0 1

order parameter b
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|
[
o
-
N
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FIG. 2. Relaxation of a stepfunction initial (¢ = 0) profile (z) to its equi-
librium value (¢ = ) for a nonconserved order parameter. The units are
arbitrary; we chose w(z) =0and g =A =T = b, = 1. The profiles for five
different times are shown: ¢ = 0 (solid line, step function), ¢ == 0.05 (broken
line), t = 0.2 (dash~dotted line), ¢ = 0.75 (dotted line), and t = o (solid
line).
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general solution for the time development of an order pa-
rameter profile yields a Volterra-type integral equation for
z,(t), where z; is the position where b(z,t) lies on the inter-
section line of the parabolas of V(5). A rich variety of solu-
tions may occur both for conserved and nonconserved order
parameters. We restrict ourselves to steady-state solutions,
where the interface moves with a constant velocity v, but
does not change its shape. As is physically clear, such solu-
tions with a fixed interface shape are only expected for a
nonconserved order parameter. If the order parameter is
conserved, a moving interface cannot retain its shape.

Let us first consider a single nonconserved order param-
eter and discuss the properties of the steady-state solution
with the exactly soluble model. Then we also study the influ-
ence of a second nonconserved order parameter.

A. A single order parameter

Because the first phase is now metastable, we now
choose the potential ¥(d) to be a combination of two pa-
rabolas which differ by an amount € in their height. € is
proportional to the temperature difference from the coexis-
tence temperature of the two phases. That is (see Fig. 4),

V(b) = max|[ — 44b% — €, — JA(b — b,)?]. 4.1)
The intersection of the parabolas is at
b, €
b=—=——, 42
2 Ab, (42)

Because we are looking for a steady solution, we connect the
variables z and ¢ via a new variable x=z + vt, v being the
interface velocity. This reduces the partial integrodifferen-
tial equation of motion (2.1) to an ordinary one. Prescribing
that the interface position is at x = 0, the nonlinearity can be
transferred into a stepfunction external force. For given v,
we find a solution, and by inserting it into Eq. (4.2), we

[
o

o

order parameter b

FIG. 3. Same as Fig. 2 for a conserved order parameter. The parameters are
chosen as in Fig. 2. The different times are ¢t =0 (solid line), ¢ = 0.01
(broken line), ¢ = 0.2 (dash~dotted line), ¢ = 2 (dotted line), and ¢ = oo
(solid line).
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FIG. 4. Same as Fig. 1, now with one phase metastable. The distance from
coexistence is denoted by e.

obtain a relation v(¢€). Clearly, v(e—0) = 0. Furthermore
v(€) should be monotonic in ¢.
The explicit result for the steady-state solution is
X @ — ik,
E(x)='{b‘f dyf dk e
27 ) - w cw  GkZ—ikl ™'+ A+ W(k)

(4.3)

with W(k) from Eq. (3.8) and v(e) obtained by inserting

b(x = 0) into Eq. (4.2). This function is illustrated in Fig. 5.

For symmetry reasons, v(¢€) is an odd function. For small €

and v, we find the expansion

e=Av+Cr’ + (V") (4.4)
with
— AW, -
A=""22 CT=AL/(I?), (4.5)
27T
and

/
one order parameter
> / '
By 2 !
e !
.t /
8 / .
= / .-~ two order
> / .7
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/
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/ .
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£

FIG. 5. Interface velocity v as a function of € for both one and two noncon-
served order parameters in arbitrary units. We chose w(z) =0 and
A =gy =g = by, = y=TI"; = po = 1. u, = 2 for the two order parameter
case. For one order parameter the parameters are as in Fig. 2.

(4.6)

1,,,=r dk k™ :
R P I

B. Two order parameters

The models (2.1) and (2.3) can be extended in a
straightforward fashion to additional order parameters. Let
b = (by,b,) denote the two order parameters. Then, Eq.
(2.1) is generalized to

b

/RS L)
ot 5b;

In this section, we take F[b] to be

(" 1 [ dby(zt)
F[b]_f_mdz{zg"( 3z )

1 ab,(z,t))z ~ }
+2&(—3;— Vb(2)]

4.7)

_ir dsz 7 w(jz — 2N bo(2) — by 2.

(4.8)
Note that only b, is coupled via w(z). As a physical example
for Eq. (4.8), we mention applications to the liquid—solid
interface.'*!> The boundary conditions are now

b(z—» — o,t) =0, b(z— + ,t) =h,. (4.9)

The function ¥(b) again is approximated by two parabo-
loids:

A
V(b)=max[—7b§ —%b% — ¢

—% (bo — by, )? —% (b, — b,,)z]. (4.10)

Note that the curvatures u,, 4, in the b, direction are not
equal in the two phases. However, because b, is not coupled
by w(z), Egs. (4.7) are piecewise linear differential equa-
tions. Transforming to x=z + vt, by(x) is given by Eq.
(4.3), and furthermore

bie**/(1+w\/w;) forx<0
bilx) = {bu [1-we (0, +@,)] forx>0
(4.11)
with
;= — (— l)ju/(2glrl)
+T0/ Qe TOT + 1,781, j=12 (412

Inserting b(x = 0) into the intersection line of the para-
boloids,

24bobo = AbG, + p1(by — by,)? — o] — 26 (4.13)

yields the function v(€). Now, because u,#u,, v{€) is no
longer an odd function. This is also shown in Fig. 5. With

s;=+/p; and r = /g, the expansion

€=Av + B* + G + O(v%) 4.14)
now has the coefficients
A=A23I/(21To) + b3 ses,/[2rT (5o + 51) ],
B=1b3%(s;—5)/[4rT3 (s, +50)], (4.15)
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C =A2b3 L,/ (20T3) — b3, (2pes; + 21,8 — 55 — 51)/

[ 16T 565, (5o + 5,)%].

I, isgiven by Eq. (4.6) ifg=g,. Asisseenfrom Eq. (4.15) or
from Fig. 5, the existence of a second order parameter re-
duces the velocity for a given e.

V. CONCLUSIONS

We have discussed interfacial kinetics within an exactly
soluble model. The relaxation of a nonequilibrium interfa-
cial profile to the equilibrium profile was studied both for a
nonconserved and a conserved order parameter. It turned
out that a nonconserved OP profile decays much faster in
time (namely exponentially) than a conserved OP profile
which decays as ¢ ~3/2 for long times. In the latter case,
damped oscillations in the profile may eccur. Furthermore,
we gave the steady-state solution for planar interfacial
growth of a nonconserved order parameter if one phase is
metastable. The existence of further order parameters re-
duces the velocity of the steady-state solution. Because the
analysis of our exactly soluble model is rather general, a
great number of related questions can now be addressed
within this model. ‘

As a first application, we mention that a slightly more
general equation of motion for a locally conserved order pa-
rameter is"’

b 12 32\ 6F[b]
9 _ _rl1- o )jerlel .
[ ex"( 2 822)] 5b G-

! being a “diffusion length.” This is to be contrasted with
Eq. (2.1) which follows from Eq. (5.1) if the exponential is
expanded to first order. The same analysis as in Sec. III is
possible and Egs. (3.5)-(3.7) remain valid if one makes the
following replacement:

2
Fk"EI‘kz—)I‘[l—exp(—%kz)]. (5.2)

In some first-order phase transitions, both conserved
and nonconserved order parameters play a role. An example
is the crystallization of a liquid, where the (nonconserved)
crystalline structure and (conserved) average density are
coupled variables. The role of the density change on freezing
was ignored in Ref. 12, on the grounds that its magnitude is
small so it should have little effect on dynamics. On the other
hand, Richards'® has argued that the density change may
play a crucial role, especially in accounting for the asymme-
try in the temperature dependence of the melting and freez-
ing rates of silicon described in Ref. 4. It will be of interest to
extend the approach in this paper by coupling a primary
nonconserved variable to a conserved variable to study the
effect of average density, and to investigate the asymmetry in
freezing and melting from a theoretical point of view.

The theory outlined in this paper assumed that the inter-
facial dynamics is governed entirely by the time evolution of
the order parameter, and that the temperature can be consid-
ered to be a constant. In other words, the heat is assumed to
be removed rapidly enough that no temperature change oc-
curs as the latent heat of the phase transition appears at the
interface. A possible extension would be to couple the order
parameter dynamics to an additional equation for the local

temperature, one that includes the release of latent heat and
its diffusion. Such coupled equations have been studied in
Refs. 19 and 20, and can show quite different velocity selec-
tion from the simpler equations that ignore temperature
variation through the system.
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