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The kinetics of the heat and mass transport involved in vapor bubble formation around a 
colloidal particle which has been heated rapidly to high temperatures are examined with a 
theoretical model. It is argued that the likely mechanism of bubble formation on the 
nanosecond time scale is a spinodal decomposition of the liquid at the particle surface to the 
low density (vapor) phase. This process is shown to give rise to extremely rapid 
changes in the density and pressure fields of the fluid. The existence of such rapid events has 
been invoked to explain experimental observations of acoustic shocks generated in laser- 
pulse-heated colloidal suspensions. 

I. INTRODUCTION 

Recent nonlinear optics experiments’ on dilute suspen- 
sions of colloidal particles which are capable of absorbing 
the laser radiation have provided evidence that, under ap- 
propriate conditions, the heated particles drive the pressure 
field of the suspending fluid on a very short time scale (i.e., 
“explosively”). The time scale of the impulse is consider- 
ably shorter than the laser pulse duration. The resulting 
change in the refractive index of the fluid provides an ef- 
ficient mechanism for phase conjugation. 

In this paper, we examine a novel mechanism for this 
phenomenon. We study the growth of vapor bubbles in the 
vicinity of the colloidal particles. Our attention is focused 
on the kinetics of this phenomenon and the kinetic equa- 
tions are derived by analogy with those which have re- 
cently been applied successfully to crystal growth.24 These 
equations contain a thermodynamically consistent descrip- 
tion of the equilibrium between fluid and vapor and of its 
coupling to the temperature field. With reasonable choices 
of material parameters, our theory predicts that, on the 
time scale of relevance to the experiments, bubbles can 
only nucleate when the fluid is heated well beyond coex- 
istence. The growth of the bubbles is extremely rapid and 
will lead to a disturbance of the pressure field of the fluid of 
the type observed experimentally. 

A. Experimental background 

The observations have been made in degenerate four- 
wave mixing experiments using laser pulses of -25 ns du- 
ration. Two strong laser pulses with slightly different prop- 
agation directions overlap in the sample. A time-dependent 
refractive index grating (whose period is determined by the 
angle between the beams) is induced in the sample via 
nonlinear effects. This is interrogated by a probe laser pulse 
which is diffracted by the grating. The time dependence of 
the diffracted beam intensity is recorded electronically and 
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this may be used to study the time-dependent processes 
which occur in the fluid following its disturbance by the 
pump beams. 

Experiments* have been carried out on aqueous sus- 
pensions of carbon (graphite) particles using Nd/YAG 
laser pulses at a wavelength of 1.06 pm and using gold 
particles of various sizes with a frequency doubled Nd/ 
YAG. Under these conditions, the particles may absorb 
the laser radiation and become very hot; various observa- 
tions suggest that temperatures of the order of 2000 K are 
reached. The particle sizes and concentration are such that 
there are many particles in a volume corresponding to the 
grating wavelength (cubed). In both cases, under appro- 
priate conditions, the intensity of the diffracted signal 
shows a very rapid increase and then oscillates with a pe- 
riod which is characteristic of the sound frequency of the 
fluid (i.e., it has the appropriate magnitude and scales lin- 
early with the grating period). This implies that the refrac- 
tive index change which is detected in the experiment is 
formed in the suspending fluid and is not due to a change 
in the intrinsic polarizability of the particles caused by the 
heating process.5 

Were this refractive index change to be brought about 
simply by heat transfer to the fluid surrounding the parti- 
cles and its subsequent expansion, it would be describeable 
as a simple thermaZ effect, well known in molecular absorb- 
ing fluids.6 The characteristic transients associated with 
this effect are known and can be modeled accurately.7 Un- 
der the experimental conditions, the heating process would 
occur over the laser pulse duration, i.e., over several acous- 
tic periods. Under the experimental conditions, the dif- 
fracted pulse would rise, following the pump pulse shape 
and relax slowly by thermal diffusion; no oscillatory fea- 
tures would be seen. 

The experimental observations have been shown’ to be 
consistent with the relaxation of the hydrodynamic fields 
of the fluid following a very sudden disturbance to the 
temperature and density fields of the fluid during the pump 
illumination. The time scale of this impulse must be short 
compared to the acoustic period’ which is typically 5 ns in 
the experiments, i.e., the disturbance must occur on a time 
scale roughly 20 times shorter than the pump pulse dura- 

8760 J. Chem. Phys. 97 (ll), 1 December 1992 0021-9606/92/238760-07$006.00 @ 1992 American Institute of Physics 

Downloaded 12 Feb 2009 to 134.99.64.131. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



tion. In further attempts to characterize the origin of this 
disturbance, evidence was presented to show that any bub- 
bles which form in the process are not caused by dissolved 
gas.’ The authors of Ref. 1 therefore postulated that the 
origin of the disturbance was the rapid growth of vapor 
bubbles around the hot particles. The degenerate four-wave 
mixing experiment picks up a coherent superposition of the 
pressure fields emanating from the heated particles. 

6. Time scale considerations 

In order to provide a justification for the theoretical 
description of the growth of the bubble which we introduce 
below, it is necessary to consider the relationships of the 
time scales of numerous physical processes which could 
influence this process under the conditions which pertain to 
the experiments described above. The experimentally con- 
trollable parameters which set the time scale are the pump 
illumination period (say 25 ns), the period of the acoustic 
oscillation (typically 5 ns), and the size of the particles 
(R,=O.l pm)-the latter determines the rate of certain 
relaxation processes. We envisage that, when the particle 
absorbs photons, this energy is degraded into heat on a 
subpicosecond time scale and that furthermore the distri- 
bution of temperature within the particle rapidly becomes 
uniform. Therefore, the particles behave as a heat source 
for the surrounding fluid and the temporal profile of the 
surface temperature follows the integrated form of the laser 
pulse, effectively instantaneously. That is, the surface tem- 
perature will rise to a maximum in about 25 ns (the time 
taken for the pulse to rise and decay), a time which we 
designate r,,; it will then relax relatively slowly as the heat 
is transferred to the fluid. The ultimate long time limit is 
set by the time it takes for the heat to diffuse away into the 
surrounding fluid, i.e., (D,/Ri) - ’ =: 50 ns (using the ther- 
mal diffusivity appropriate to water at 300 K). The time 
scale of the process which we hope to identify is shorter 
than these two limits ( z 1 ns), but considerably longer 
than the time it takes to convert photons to heat at the 
particle surface. We believe that it is set by the details of 
the energy transfer between the hot surface and the (ini- 
tially) cool fluid, i.e., by properties of the boundary layer 
and it is to this region that we now turn our attention. 

Initially, we are looking for the creation of an interface 
between the low density vapor and high density liquid 
phases. The subsequent propagation of the interface brings 
in other considerations which we will discuss below. The 
extent of the interface will be a microscopic correlation 
length c (the range of the direct correlation function in 
equilibrium theories of interfacial structure’) of the order 
of 0. l-l nm. The relevant microscopic time scales concern 
the rate of heat and mass diffusion across this interface. 
The rate of heat transport will be T~T;‘=D~/~.~ or roughly 
10 ps. If we take the relaxation time for mass transport r, 
to be the relaxation time of the dynamical structure factor 
of the liquid for wave vectors ,2?r/& we expect to find T, 
longer than rth by a factor of 2-10.8 rth is the lower time 
scale of our analysis; on longer times, the interface may 
develop and move. Note that r& is comfortably longer than 
the internal thermalization time of the particle and much 

shorter than rc. What the difference between the time 
scales of heat and mass diffusion implies is that the kinetics 
of the formation of the interface, which involves mass 
transport between two phases of different density, will be 
slower than the transport of heat. This means that it is 
likely that the creation of the interface will lag behind the 
creation of the appropriate thermodynamic conditions, i.e., 
there may be a substantial lag between the local tempera- 
ture of the liquid exceeding the “boiling point” and the 
appearance of the vapor bubble. The normal mechanism 
for bubble formation (in slowly heated liquids) is the spon- 
taneous appearance of a density fluctuation which then 
acts as a nucleation center. In the rapid heating conditions 
relevant to the experiments, one may expect that there is 
insufficient time for such a fluctuation to arise before the 
liquid is heated well beyond normal liquid/vapor coexist- 
ence conditions and is approaching the point at which it is 
unstable (the spinodal). When vaporization does begin to 
occur, the fluid will be cooled locally as heat will be ab- 
sorbed to overcome the latent heat of this process; the 
appearance of the interface involves a coupling of the den- 
sity and temperature fields. 

In this discussion of the interface creation, we have 
asserted that the relaxation of the density across the inter- 
face can be treated as diffusive. In the theory developed 
below, this assumption is manifest in the use of a “locally 
conserved” order parameter. If the distance scales were 
large (c), this simplification would be inappropriate and 
the mass transport would have an important contribution 
from sound waves, i.e., there would be an important cou- 
pling to the momentum field. However, the density relax- 
ation on very short distance scales in a liquid (as seen in 
the dynamical structure factor for large wave vector) is 
dominated by diffusive processes. Distinctive sound peaks 
appear in the dynamical structure factor for water only for 
wave vectors smaller than ~0.3 A-‘. In a more exact 
treatment, the acceleration of the liquid by the growing 
interface would be included at the price of considerably 
increased complexity (see also the discussion of Oxtoby 
and Harrowell’) . 

The paper is organized as follows: after having de- 
scribed a simple phase field model in Sec. II, we present 
analytical and numerical results of this model in Sec. III. 
The results support strongly the picture of a rapid vapor- 
bubble formation at temperatures close to the spinodal of 
the liquid at the surface of the colloidal particle. Finally, 
Sec. IV is devoted to a conclusion and discussion of this 
mechanism. 

II. THE MODEL 

As pointed out in the Introduction, the local temper- 
ature as well as the density (or more generally an order 
parameter) field are coupled and this coupling is crucial 
for the formation of a vapor bubble around a colloidal 
particle. So we require coupled equations describing the 
time development of these two quantities. These can be 
developed in analogy to a phase field model that was in- 
vented to describe crystal growth.2y3 
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Since the width of the gas layer around the particle is 
much smaller than the particle diameter R,, we can map 
the spherical spatial geometry onto a one-dimensional 
semiinfinite one characterized by a spatial variable z. This 
is true at least for the early stage of the bubble formation 
process. If we choose the particle surface to be located at 
z=O, we can also symmetrize the problem thus dealing 
only with profiles that are symmetric with respect to inver- 
sion in z. 

First, we introduce a dimensionless temperature field 

~(z,t) =; [ TW) - TOI, (2.1) 
1.5 - 

where To is the coexistence temperature between liquid 
and gas inside a bubble of radius Rp for normal condi- 
tions.” This is our thermodynamic reference state around 
which we expand all quantities. c is the molar heat capac- 
ity, crudely assumed to be equal in the liquid and gas, and 
L is the latent heat of vaporization per mole. Then the heat 
diffusion equation for u can be written as follows: 

a2U au 
DTa'Z-at -=-~--g(t)s(z). (2.2) 

Here, m is a dimensionless order parameter. For T= To, m 
equals 0 for the gas and 1 for the liquid phase, i.e., m= (p 
--&/(P~-&, where po and pL are the bulk gas/liquid 
densities at coexistence. The right-hand side of the heat 
diffusion equation (2.2) can be understood as a heat 
source. It consists of the external heat 4(f) )O flowing into 
the liquid from the particle surface and the heat sink am/ 
at < 0 which corresponds to the latent heat needed to va- 
porize the liquid. 4(t) is related to the laser pulse intensity; 
its time variation scale is the same as that of the laser pulse 
(cab). For our model, $(t> is a given input which will be 
specified later; we choose (p(t) such that 4 (t) = 0 for t < 0. 

The dynamics of passage between the two phases can 
be viewed as motion over a potential energy barrier. In 
general, motion of the system along this potential surface 
(i.e., the change in the density profile for a given temper- 
ature field) may be described by an equation of the Cahn- 
Hilliard form (see Ref. 11) 

am 
at=rA 

SF(m,u) kBT 
sm ++W), (2.3) 

where the first term represents the systematic motion due 
to the thermodynamic driving force and R(t) is a random 
term reflecting thermal fluctuations. l? is a transport coef- 
ficient which sets the microscopic time scale for the relax- 
ation of the density and A is the Laplacian. Under ther- 
modynamic conditions, where the vapor is more stable 
than the liquid, but for which a barrier exists between the 
liquid and vapor minima in the bulk free energy, passage 
over the barrier (nucleation) may be caused by the ran- 
dom thermal fluctuations. 

In Eq. (2.3)) F is the grand canonical free energy func- 
tional per unit area 

0 ‘\ 

: 

-Igas liquid 
‘---A \ \ ‘. 

-1 
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FIG. 1. A sketch off(m,u) (in units of d) as a function of m  for different 
temperatures (6= 1): coexistence temperature T,, (solid line), liquid tem- 
perature T, corresponding to an initial situation (broken line); and spin- 
odal temperature (dotted line). We have chosen the m-independent ad- 
ditive function fO( u) to be fO( u) = -d( 1+3u)/2. 

F(m,u) = Jmw dz[kg2[ ~]I+f~m(z,i),u(Z.t)] 

+yw4 * I (2.4) 

The first term in the integrand is square gradient correction 
to the bulk free energy, ;1 being an energy density scale and 
c a bulk correlation length (AC is proportional to the 
liquid-vapor surface tension). y is the surface tension be- 
tween the colloidal particle and the fluid; we take y to be a 
constant. The local part f( m,u) is the grand canonical free 
energy density for a uniform fluid. This function may be 
viewed loosely as the potential along which the system 
must move in order to pass from the liquid to the vapor 
and is sketched in Fig. 1. The shape of the potential 
changes with temperature. At coexistence, f(m,O) has 
equal minima, which correspond to the liquid and vapor, 
separated by a barrier. As the temperature is raised, the 
vapor mmlmum becomes more stable than the liquid, but 
they are still separated by a barrier until, as indicated in the 
dashed curve in Fig. 1, the spinodal temperature is 
reached. We model f( m,u) as two intersecting parabolas12 
for II = 0 and do a linear expansion in u,~*~ 

f(m,u)=$Imax[m2(m-1)2]+$i.~mu+fo(u). 
(2Sa) 

The dimensionless coupling constant S turns out to be 

(2.5b) 

where Mw is the molecular weight and p. is the mass 
density of the liquid phase at coexistence. It is obvious 
from the Cahn-Hilliard equation (2.3) that the m- 
independent function f. ( u ) can be changed without affect- 
ing the dynamics. 

We remark that since we have chosen the grand ca- 
nonical ensemble, we consider a constant chemical poten- 
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tial p in the liquid and gas. Thus, f (m,u) equals -P, 
where P is the pressure. For equilibrium thermodynamics, 
only the global minimum of f( m,u) with respect to m has 
a physical meaning. However, we can define a nonequilib- 
rium pressure field by 

P(W) = -f[mWMz,t) I. (2.6) 

Let us now discuss the role of the fluctuations embod- 
ied in the Langevin forces R(t) in Eq. (2.3). These fluc- 
tuations cause spontaneous or homogeneous nucleation by 
allowing the system to jump over a finite free energy bar- 
rier. The time between the occurrence of fluctuations large 
enough to cross the barrier depends exponentially on the 
barrier height.4 For water at the boiling point, e.g., spon- 
taneous nucleation events occur on a time scale which is 
much longer than our experimental time scale. Being ran- 
dom events, the times at which nucleation occurs at differ- 
ent particles which have had the same heating history 
would be uncorrelated (whereas all would reach the spin- 
odal at the same time). However, as the fluid is heated 
close to the spinodal, the free energy barrier becomes very 
small and the occurrence of a suitable fluctuation becomes 
likely within the time resolution of the experiment (say, 
one quarter of an acoustic period, or 1 ns). Despite the fact 
that such events are, strictly speaking, spontaneous nucle- 
ation processes, we will refer to them as spinodal decom- 
positions since, within the limitations of our observation, 
their timing is set by the achievement of a thermodynamic 
condition, rather than by a random process. With the ran- 
dom forces present, the mathematical treatment of Eq. 
(2.3) is complex and henceforth we shall neglect them. 
The effect of the fluctuations, as perceived in our experi- 
ment can be incorporated into the equations if one views 
f( m,u) as a renormalized potential. Small barriers present 
in the bare function f(m,u) are smeared out in the renor- 
malized potential such that spinodal decomposition with 
the renormalized potential can correspond physically to 
nucleation slightly before the spinodal point is reached. 

We start from a spatial constant liquid profile at t=O, 

u(z,t=O) =; ( TL-- To) =uo<O, (2.7a) 

m(z,t=O) = 1 -Sud2=mo, (2.7b) 

T, being the liquid temperature before laser heating and 
m, is such that it corresponds to a stable state, i.e., f( m,u) 
has its global minimum at m = m. (see Fig. 1) . Introduc- 
ing normalized profiles z?(z,t) = u (z,t) -u. and 6i (z,t) 
= m (z,t) - mo, and adopting natural order parameter 
length and time scales Z, =fipz5 and r,= l,,JI’d, we can 
rewrite Eqs. (2.2) and (2.3) as 

(2) Our model also neglects the effect of polydispersity 
in the sizes of the colloidal particles, which is certainly 
present in the experimental systems. The properties of par- 
ticles of different size may differ with regard to the nature 
of the heating transient and to the propagation of the den- 
sity and temperature fields at surfaces of differing curva- 
ture. This will lead to a distribution in the times at which 
particles reach the spinodal under the same laser fluence. 
We have already noted that the experimental observation 
has a lower limiting time scale of the order of 1 ns, so that 
events occurring within this window are perceived as si- 
multaneous. Furthermore, we note that the volume in 
which the grating is formed in the experiments is large 
enough to contain a very large number of particles of the 
same radius. 

aii am i a227 - 
,-~=Z;;-g+mxz), 

afi a2 -=- 
at -Q -m+~~-~+e(t-to)Ce[z-zo(t)] 

( 

(3) Finally, another important approximation was to 
neglect the coupling between the density and momentum 
fields of the fluid. When the bubble is formed, large density 

(2.8a) nonuniformities are created; in our description, these non- 
uniformities must then relax by diffusion. In reality, the 
density nonuniformities will generate a nonuniform pres- 
sure field which will accelerate the fluid, i.e., there will be 
an important relaxation channel through the sound mode. 
Because we neglect this coupling, our description of the 

(2.8b) propagation of the interface, after its initial formation, is 
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Here, only two dimensionless paramzters enter, namely, 
the coupling 6 and 2p = rti,/~,,, and I#J (t/r,,,) = r,+( t)/l,. 
These equations are solved in Sec. III. The problem is that 
the liquid-vapor interface position zo(t) is an unknown 
function and has to be determined self-consistently12 from 

m [zo( t),t] =$ (2.9) 

In addition, zo( t) =0 for t < to and to is obtained from 

m(O,to) =f. (2.10) 

From Fig. 1, it is clear that to corresponds to the time 
where the spinodal point of the liquid is reached at the 
particle surface. The liquid then becomes unstable for t = to 
at z=O and spinodal decomposition takes place. 

We finish this section with some general remarks on 
the simplifications in our phase field model and their effect 
on detailed comparisons with experiment: 

( 1) Equations (2.8) contain drastic simplifications. In 
particular, c, L, D, p, I, 6, and y are all taken to be 
constant, i.e., independent of m and U. In reality, this is not 
fulfilled. Nevertheless, we believe that our model captures 
the essential physics, i.e., a competition between heat trans- 
fer and mass transport. At least the qualitative behavior 
should not depend drastically on such details. However, 
for a quantitative study, the abovementioned parameters as 
well as f(m,u) have to be chosen more realistically. In 
particular, one can use liquid state or density functional 
theory to get an explicit form for f( m,u) starting from the 
microscopic interaction potential. In our modeling of 
f(m,u), one major defect is that the bulk liquid density 
decreases rapidly as the temperature increases; see the po- 
sition of the liquid minimum in Fig. 1 as a function of 
temperature. This will have some consequences for the in- 
terpretation of the data in the next section. 
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not realistic (and we have not pursued it). To obtain a 
more realistic model with which to study the growth of the 
bubble, we should couple the order parameter and temper- 
ature equations (2.2) and (2.3) to the Navier-Stokes 
equation of the fluid, i.e., we should fuse our model with 
that studied by Prosperettii3 (in which the kinetics of in- 
terface formation was neglected). A recent successful 
study for the isothermal case (neglecting the temperature 
variations) was done in the context of crystal growth by 
Harrowell and Oxtoby.g 

III. RESULTS 

Equations (2.8) are linear for t < to, so the profiles can 
be found exactly by Fourier transformation 

[!$+; s,’ &I,” dKcos(Kz)exp[CK(t-t’)] 

with the 2x2 matrix C,, 

, (3.2) 

to can be determined by solving Eq. (2.10) with the ex- 
pression for m  = fi + m. given in Eq. (3.1). Once to has 
been obtained, the corresponding profiles zi(z,to) and 
%  (z,to) are given directly by the analytic expression (3.1). 

On the other hand, for t > to, Eqs. (2.8) become non- 
linear and an analytical expression for the profiles cannot 
be found. As pointed out in Ref. 14, one can map Eqs. 
(2.8) onto an explicit expression which involves the un- 
known function zo( t) , [ jjt,y)] =& Jrm  dK emifi( &df-*d [ z$] 

&‘eC,y(*-f’) &fj/2+gK(f) 
&k(f) 

II 

with 
(3.3) 

[ :$))I =& J:, dz eXZ[ ::,:;I (3.4) 

and 

gK(t)=-Ksin[Kz,(t)]. (3.5) 

Using Eq. (3.3), we can iterate the self-consistency condi- 
tion (2.9) to get zo( t) and inserting this into Eq. (3.3)) we 
obtain the profiles. With the numerical iteration procedure 
described in Ref. 14, we can solve for the time development 
of E and fi. 

To be concrete, we have chosen an exponential form 
for the external heat source for t > 0, 

JY(t)=A(t/T,)exp( -t/To> .. (3.6) 

with ro=50 in units of 7, (consistent with the time scales 
discussed in the Introduction) and A=0.03. Thus the ex- 
ternal heat source has a maximum at t=rO= 507,. Fur- 
thermore, the coupling S can be expressed via the liquid- 
gas surface tension (T (Ref. 14) as [cf. Eq. (2.5b)] 6 
-gL2pd30M$T,. For water at 100 “C!, we get a large 
coupling 6~ 1.5 due to the large latent heat. Estimates for 
the ratio of the kinetic coefficients are harder to make. We 
have chosen 2~=7~~/7,=0.44, so that thermal relaxation 
is about twice as fast as order parameter relaxation. In 
dense liquids at long wavelengths, thermal diffusion is 
much faster than density relaxation, but as kinetic theories 
have shown,i5 the effective modes associated with heat and 
density become very similar at wavelengths comparable to 
the inverse of the correlation length, so that we expect our 
choice for p to be reasonably representative. 

The result for the order parameter and temperature 
profiles are shown in Figs. 2 (a) and 2 (b) . First of all, the 
spinodal point is reached at the colloidal surface at a time 
to which is 0.757, after the maximum of the external heat 
source at t=T0=50T,. For tzrO, the heat transfer from 
the colloidal particle to the liquid via its interface is very 
rapid, so that much of the heat cannot be transported away 
by thermal diffusion and the spinodal point is reached at 
t= t,,. The order parameter and temperature profiles for 
t= to, as given by the analytical expressions (3-l), are 
shown on a large scale for the spatial coordinate z in Figs. 
2(a) and 2(b). At t= to, the spinodal decomposition has 
not yet begun, but the order parameter still varies consid- 
erably, reflecting the normal thermal expansion of the liq- 
uid. This effect is overemphasized in our calculations due 
to our choice off (m,u), where the equilibrium liquid den- 
sity varies .drastically with temperature. This variation 
should be less pronounced in a more realistic model for 
f( m,u). One also sees that m  is conserved since the density 
that is missing at z=O has diffused away and results in a 
nonmonotonic profile with a maximum at ~~101,. The 
temperature profile u(z,to) is simply monotonically de- 
creasing in z due to the diffusion of the heat coming from 
the external source. For t < to, nothing happens but a con- 
tinuous heating of the surrounding liquid. For comparison 
in the inset, the corresponding profiles are also shown for a 
time t = to - 7, (dashed curve). After the spinodal point is 
reached, however, things change dramatically. On a very 
short time scale of about 0. lr,, the liquid starts to vaporize 
at the surface of the colloidal particle and a low-density 
“bubble” forms. The excess density diffuses away and 
builds up a barrier which hinders a continuation of the 
vapor-bubble growth [see the inset of Fig. 2(a).] At the 
same time, latent heat is needed where a vapor-liquid in- 
terface was created and the system cools down locally, 
although there is still further external heating [see the inset 
of Fig. 2(b) .] This also leads to a slowing down of the 
growth process. 

The general scenario which emerges is a rapid growing 
of a quasigas bubble induced by spinodal decomposition 
which occurs on a very short time scale compared with the 
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Our choice of f (m,u) has the great advantage that an 

6 
+! 

% 
0.5 

i 

analytical solution exists for O<t<&. So one can start with 
the exact solution at t=to and integrate the equation only 
for relatively small times t > fe. 

IV. SUMMARY AND CONCLUSIONS 

We have examined a model for vapor-bubble forma- 
tion around a colloidal particle which has been heated rap- 
idly ( ~25 ns) well above the boiling point of the sur- 

0 0 1 2 3 
rounding fluid. We have shown that the bubble formation 
leads to large disturbances in the density and pressure 

z 1 fields around the particle of the type which has been in- 
ferred from nonlinear optics experiments.’ It has proven 
difficult to find alternative explanations for these tran- 
sients. 
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FIG. 2. Profiles of (a) the order parameter m(z,?c) and (b) the reduced 
temperature u(z,f,) when the spinodal point at the colloidal surface (z 
=O) is reached. The insets of (a) and (b) show the order parameter 
m(z,t) and the reduced temperature u(z,t) in the neighborhood of the 
colloidal surface (z=O) for four different times t=te-1 (long-dashed 
line), re (solid line), &,+0.15 (dotted line), and tc+O.25 (short-dashed 
line). The parameters are A= 1.5, p=O.22, and uc= -0.02. For the ex- 
ternal heat source, we take 4(t) =O.O3t exp( -t/r,) and re=50. All times 
and lengths are in “order parameter” units of r,,, and I,,,. 

time scale re of the external laser pulse. This growth pro- 
cess which is very fast initially is then hindered since mass 
transport is relatively slow and the temperature decreases 
locally. This is illustrated clearly by the two profiles at 
t=te+O.l5r,,, and t=fc+0.257, in the insets of Figs. 2(a) 
and 2(b). Our model only applies to relatively small times 
r-t,; for longer times, other processes, e.g., a coupling to 
the liquid momentum field become more and more rele- 
vant. 

In principle, one could have used a more general form 
for f(m,u) than Eq. (2.5) and solve the corresponding 
system of partial differential equations (2.2) and (2.3) di- 
rectly. However, here one has to handle with fourth-order 
derivatives with respect to z and to integrate the equations 
starting from r=O. So the location of the spinodal point (at 
a time fo) and the processes that occur on a very short time 
scale (for t > ro) are necessarily subject to numerical errors. 
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A crucial aspect of our model is the idea that because 
of the rate at which the fluid is heated, normal fluctuation 
driven bubble nucleation events do not have time to occur 
and the bubble forms by spinodal decomposition. This 
leads directly to several consequences which seem to con- 
cur with what is observed: 

( 1) There is an energy threshold for the process which 
depends on the laser pulse length and particle size since to 
reach the spinodal, enough heat must be supplied to heat 
the fluid to the spinodal in a sufficiently short time to over- 
come the thermal diffusion. 

(2) The onset of the rapid density change is delayed 
until well into the pulse since it takes some time to heat the 
fluid. 

(3) The very rapid time scale on which the bubble 
forms is due to the high degree of local superheating which 
has occurred before; most of the superheated region is then 
able to vaporize very rapidly. 

(4) The idea that the event is not triggered by a ran- 
dom nucleation event has a further consequence. Recall 
that the observation (degenerate four-wave mixing) picks 
up a coherent superposition of the pressure fields emanat- 
ing from the heated particles. If these pressure pulses are 
triggered randomly, it is difficult to see how they could add 
up coherently. On the other hand, with the spinodal mech- 
anism, all particles which have the same heating history 
nucleate bubbles at the same time. 

The model includes, in a thermodynamically consis- 
tent way, the coupling between the temperature and den- 
sity fields. A number of simplifying assumptions were 
made to simplify the solution of the kinetic equations, such 
as using the same transport coefficients for liquid and va- 
por and neglecting the temperature dependence of the la- 
tent heat. We do not expect simplifications of this type to 
have a major influence on the results since the phenomena 
exhibited by the equations are stable to wide parameter 
variations. 
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