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Abstract. The long-time self-diffusion coefficient of a colloidal fluid interacting via a Yukawa
potential and obeying Brownian dynamics is calculated by computer simulations for different
parameters of the Yukawa potential over a broad range of densities. As two extreme cases,
the hard sphere and the unscreened Coulomb interaction are also included. The simulation
results are compared with different theorefical expressions. In general, it is found that a kinetic-
like theory that incorporates both the exact short-time behaviour of the friction kernel and the
two-particle dynamics describes the simulational data best. Also, simulations and theories for
the self-diffusion in two-dimensional Brownian Yukawa fluids are compated, where the same
qualitative behaviour is found.

1. Introduction

In a concentrated snspension of colloidal particles embedded in a solvent, the long-time
self-diffusion coefficient of the coiloidal particles, D, is significantly smaller than the short-
time diffusion constant Dy. Whereas the latter results from random kicks of the solvent
and is determined in terms of the solvent friction and the temperature, the long-time self-
diffusion is strongly affected by the repulsive interparticle interactions. Furthermore, both
quantities depend on hydrodynamic interactions mediated by the solvent. These complicated
interactions can be safely ignored if their range, characterized by a hydrodynamic radius, is
much smaller than the range of the interparticle interaction. This is the case, for example,
in highly charged colloidal suspensions which already show a well-pronounced structure
even for very small packing fractions. For suspensions whose interactions are dominated
by excluded volume effects only, however, hydrodynamic interactions are very important.

Different experimental techniques like dynamical light scattering [1], forced Rayleigh
scattering [2,3] and fluorescence recovery after photobleaching [4], have been used to
measure the long-time self-diffusion coefficient for both charge- and sterically-stabilized
colloidal suspensions. Recently it was found that the ratio of shont- and long-time self-
diffusion coefficients, D/Dy, has a universal value very close to 0.1 on the freezing line
of a colloidal fluid which constitutes a dynamical phenomenological freezing rule [5]. In
this paper, we shall focus on simulations and theories for the self-diffusion coefficient D,
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In particular, we study how D depends on the nature of the interparticle forces and on
the density of the colloidal particles. Henceforth, we shall not consider hydrodynamic
interactions explicitly. Then, the short-time diffusion coeificient is given by

Do = kgT/6nnR = kT /& (1

where » and &, are the solvent viscosity and friction, respectively, while 7' is the temperature
and R the radius of the colloidal particle. On a ‘short” timescale (which is still large
compared to that of momentum relaxation of the colloidal particles), the particle motion
is simple Brownian with the short-time diffusion constant D,. The particle interaction is
modelied by a pairwise Yukawa potential, being the electrostatic part of the familiar DLVO
potential [6,7]

V(r) = Upo expl—A(r —a)/o]/r (2

where Uy sets the energy and o the length scale. This potential is a good description
for the interaction of a dilute charge-stabilized colloidal suspensions whereas it breaks
down for a concentrated suspension where many-bedy interactions also become relevant
[8]. The steepness and range of the Yukawa potential depends sensitively on the screening
parameter A. For A = 0, the interaction is Coulombic, ie. the system described is a
classical one-component plasma (OCP) usually defined with 2 homogeneous neutralizing
background, whereas for A — oo the interaction becomes hard-sphere-like, Consequently,
the hard-sphere (HS) and OCP systems are included as special extreme cases, and the Yukawa
interaction can also be understood to interpolate smoothly between these two limiting cases
of hard and very soft cores.

A systematic study of the long-time diffusion coefficient has only been performed for
hard spheres. There have been both Brownian dynamics simulations for different densities
[9,10] as well as theoretical investigations [11-14]. In particular, it was shown [13] that
an Enskog-like theory describes the data well up to high hard-sphere densities. Although
the study of a Brownian hard-sphere system is useful and justified as a model system of
statistical mechanics, we emphasize that in a real sterically stabilized colloidal suspension
hydrodynamic interactions significantly alter the behaviour. This model therefore cannot
be compared directly with experimental data. This is different, however, for the Yukawa
potential since there hydrodynamic interaction can be ignored, at least in the weak-screening
regime. Qur studies of a Yukawa system are thus motivated by two different facts. First,
the model is more realistic as regards direct comparison with experiments. Second, more
fundamentally, it is interesting to study how the self-diffusion is influenced by the ‘softness’
of the interpariicle interaction. Our work is divided into two parts. First, we present
Brownian dynamics computer simulation data for the long-time self diffusion in 2 Yukawa
system. In particular, the dependence on the screening parameter A is studied. Second, we
test different theoretical expressions for the self-diffusion coefficient. To get explicit results
from such expressions, one usually needs static input data, such as the pair correlation
function g(r} or the structure factor S¢k). Here, all the static input data needed to compute
theoretical values are also taken from the simulations in order to get a clear-cut estimate
for the validity of a theory. '

Recently, two-dimensional colloidal liquids were prepared by confining charged colloidal
particles between charged plates [15]. The Yukawa model (2) remains a simple, though
approximate, [16,17] description for the interaction of the two-dimensional interparticie
interaction. Whereas in a two-dimensional gtomic system, the diffusion coefficient is not
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well defined [18], it does exist for a two-dimensional Brownian system provided the solvent
friction & is finite. This is due to the fact that in a Brownian system the long-time tail of the
velocity autocorrelation function decays faster than for a corresponding atomic system [19}.
In this paper, we also compare simulational data and theories for the long-time self-diffusion
for the two-dimensional Yukawa ftuid.

The paper is organized as follows. First, we briefly describe the Brownian dynamics
simulation method in section 2. Then, we review existing theories in section 3. The
theoretical results for the long-time self-diffusion coefficient are compared with the
theoretical data in section 4. Finally, we conclude and give an outlook in section 3.

2, Brownian dynamics simulations

The Brownian dynamics (BD) simulations are based on a finite-difference integration of
the irreversible Langevin equations of motion [20, 21]. If hydrodynamic interactions are
neglected, the (three-dimensional) particle positions 7; at a time £ + At are gained from the
old positions at time ¢ as follows:

Pt + AD = 70 + E—tmm: + (Ar)r + O((ADY) 3

where /| = 1,..., N labels the N particles, & is the solvent friction and F; is the total
interparticle force on particle i derived from the Yukawa interaction (2). Furthermore,
(A7) is a random displacement due to solvent collisions, which is sampled from a Gaussian
distribution of zero mean and variance :

(Ar)E = 6DAL. 4)

This means that the motions of the particles for short times is diffusive, with the short-
time diffusion constant Dy related to the solvent friction via (1). The term Dy defines the
natural timescale tg = 6%/ D and also provides the natural unit to measure the long-time
self-diffusion coefficient D that is defined by

1
D = lim —W() . ®)

with W (¢} being the mean-square displacement of one selected particle, usually called a
tagged particle:

N
W) = {(r() = m(0)%) = ("{:}‘ Z("'i - ""i(o))z) (6)
i=l

where {...) is a canonical average. In the second equality in (6) we used the fact that in
an equilibrium suspension all particles are equivalent. Actuatly, it is the second expression
that is used in a simulation, as this gives much better statistics. Due to the interparticle
interaction, D is smaller than Dy, in general. Alternatively, one can define D by the
differential expression

. 1d :
D= fl-l*liloEa?W(f). : (7
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We use a periodically repeated cubic simulational box of volume V with N = 500 particles
and generate particle trajectories according to (3} with a sufficiently small timestep A¢. The
actual value of At depended on the softness of the potential; it was chosen between 0.00037g
(for » = 0) and 0.00001 =g (for A — o0). The starting positions were on an FCC lattice and
the system was first equilibrated at high temperature and then gently cooled. During the
simulation, the centre of mass of the system was fixed in order to avoid spurious drift of
the finite system. After a long equilibration period (of at least 31g) statistics were gathered
(during a period of = 10vg) and the time-dependent mean-square displacement W(r) was
calculated for a long time #, & 47g. Both expressions (5) and (7) were then used to get D,
where the long-time limit is replaced by the value of the mean-square displacement at large
finite time 4 . ¥t was found that 4 was long enough to be very close to the long-time limit
by checking that the two different expressions of the right-hand sides of (5) and (7) were
equal at time 4. Different runs were done for fixed temperature T and varying particle
density n = N/V.

For the one-component plasma with peutralizing homogeneous background (OCP), we
use an Ewald summation in order to take the interaction of all periodically repeated images
into account. For the hard-sphere case, the result depends very sensitively on the magnitude
of the time-step [10]. Therefore, the time-step has to be chosen to be much smaller for hard
repulsions than for softer interactions.

In two spatial dimensions all the equations are unchanged excepf that there are now
two-dimensional position vectors r;(¢}, and six in the right-hand sides of (4), (5), (7) has
to be replaced by four. The simulations in two dimensions are quite similar. We now use
a periodically square box with N = 529 particles and start from a simple square attice.
Again, the long-time diffusion coefficient is calculated using both expressions (3) and (7),
and for long times agreement is found. For Brownian hard discs, similar simulation studies
have recently been performed by Schértl and Sillescu [22].

3. Theoaries

Recently a new formalism for the calculation of the self-diffusion coefficient has been
derived [13]. It is based on ideas used earlier in Kinetic theories of dense fluids [23].
These ideas were applied to analyze the many-body Smoluchowski equation describing the
Brownian dynamics of a colloidal suspension. Here we first review the main points of the
new approach and state its resuits. Then we move on to review briefly some oider theories
for the self-diffusion coefficient.

The main idea of [13] is to express the self-diffusion coefficient D in terms of the
friction coefficient &

kgT
D=3 @
L
The friction coefficient is the long-wavelength long-time limit of the friction kernel £(r; ¢):
o0
k. = lim lim f dt f dpe=#+iETE(p: 1) ()]
z—0 k—0 0

which is defined through the constitutive relation between the current of the tagged particle
and the tagged-particle density gradient:

f = ar f dr's(r — it =i 1) = —kBTin,(r; 0. (10)
0 ar
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Here n; is the tagged-particle density and j is the current of the tagged particle. The current
is defined through the continuity equation

] 3
— - Tt — 1 - . 1 1
2T ) = i ) (1)
Note that the right-hand side of (10) is the osmotic (or entropic) force.

Finally, to calculate the friction kernel one uses the following expression for the current,
which can be derived from the first equation of the BBGKY-like hierarchy for the many-
particle Smoluchowski equation [13, 24):

Jrit)=—Dy 5,
Here F); is the force on the particle at r; exerted by the particle at r,, and ér; is the
difference between the non-equilibrium pair distribution function and the local equilibriim
pair distribution function (see [13] for details). The time evolution of dn; is described by
the following evolution equation, which can be derived from the second equation of the
BBGKY-like hierarchy:

] 1
FemED + f dryFonyry, 7 0). (12)

3 smarra e ) = —n(iggq(m))jm; 0

8t ar
a2 ¥ 1( 38 8
Doy 4+ — 8 Pt
-+ [Doa ?+ 081'% + 5 (Brl py )Fiz] na(r, ra t)

g
+ E_-a—- (g;q(rlz) f drs3Fiaéna(ry, r3; I))

- Z Py fdfsﬂsans(f'l, r2, 755 0). (13)

i=l

Here g3" is the equilibrium two-particle correlation function and 8n; describes the dynamical
three-particle correlations.

To calcuiate the friction kernel, one now has to solve equation (13) with respect to the
non-equilibrium distribution 8n;, substitute the result into (12), rearrange terms containing
the current, and compare with the definition of the friction kemel (9). Note that up to this
point no approximations have been made. However, (13) is not closed, as it contains the
three-particle cormrelations.

The approach adopted in [13] was first, to keep only the two-particle dynamics, and
second, to take into account the enhanced probability of binary encounters. With this aim
in view, the three-particle dynamical correlations dn; were neglected completely, the third
term at the right-hand side was omitted, and the potential of the effective mean force
Ve®(r3) = —ksT log g5(r12) in the source term in (13) was replaced by its low-density
limit. The friction coefficient obtained in this way was essentially the solvent friction plus
the low-density correction renormalized by the pair correlation fonction:

n |
==y [an [ an - Fog-Ge- Fagfen) (14
where k is an arbitrary unit vector and £, denotes the two-particle Smoluchowski operator:
3? ? 1(d a
Q=Dy— + Dy + —t — — — | Fi». 15
2 031‘% + 081‘% + B (81-1 Brg) 12 (15)
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The approximations that lead to (14) are essentially the same as those underlying the
Enskog kinetic theory of a hard-sphere fluid [23] and its generalizations to continuous
potentials [25]. Therefore the theory of [13] is referred to as the Enskog theory for the
self-diffusion coefficient of colloidal suspensions.

It was shown in [13] that for a hard-sphere suspension the Enskog theory includes in an
exact way short-time contributions to the friction kernel. For a general continuous potential
this is no longer true. For soft potentials the Enskog theory preatly overestimates short-
time contributions. Therefore we propose a minimal modification of the Enskog theory that
includes the exact short-time behaviour of the friction kemnel for continuous potentials. To
this end, we again keep the two-particle dynamics (we neglect the three-particle term of
(13) and omit the third term in the right-hand side), but we also keep the full potential of
the effective mean force in the source term in (13). In this way, we obtain the following
expression for the friction coefficient:

1
f=to-7 f dry f dra k+ Fu) (k : a-%g;“(m)). (16)

The modification of the Enskog theory seems to be inconsistent, since we effectively include
some three-particle processes. However, we found no other way to include the proper short-
time behaviour of the friction kernel and to keep the two-particle Smoluchowski dynamics
2. Moreover, it will be shown in section 4 that results cbtained from (16) are in excellent
agreement with the simulation results for soft potentials, Note that the modified Enskog
expression (16) was also proposed in [24].

There are two other theories available for the calculation of the self-diffusion coefficient.
Historically the first one was the mode-coupling theory, which was developed by Mori and
Zwanzig [26] and applied to colloids by Hess and Klein [19]. Its starting point is the exact
expression for the tagged-particle intermediate scaitering function. This expression is then
analyzed and approximated using the ideas borrowed from the mode-coupling theories of
simple liquids. The final result is a non-linear self-consistent equation for the scattering
function. This equation alsc involves the so-called coilective scattering function, for which
another self-consistent equation is written down. Since non-linear self-consistent equations
are difficult to solve one usually approximates them further, introducing short-time limits
of the scattering functions into friction kernels (for details see [19] and references cited
therein). In this way one obtains the following expression for the friction coefficient:

_ 2l1S®) - 112)
;-'L—sa(1+ fdk o an

Here S(k) is the static structure factor
SkY=1+n j dre”#®7(g2(r) — 1).

Another theory has been proposed by Medina-Noyola [27]. It is based on an analysis
of the generalized Langevin equation describing the coupled motion of the tagged particle
and the surrounding colloidal suspension. The final result for the friction coefficient is

b= $o(1 + %/df‘[g;q(r) - 1]2)- (18)
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It turns out that numerically the expressions (17) and (18) are very close (see, for
example, [14] figure 1). Therefore, in the next section, we compare the Brownian dynamics
simulation results with the theoretical predictions based on (14), (16) and (18). With the
same basic ideas, all theories can also be constructed in two spatial dimensions, where the
resulting expressions are quite similar.

An intriguing question concerns an analogy between the dynamics of colloidal and
atomic fluids. Recently, de Schepper and co-workers [28] proposed such a mapping between
these two different kinds of dynamics by which they got a simple and reasonably accurate
expression for D. There are, however, both similarities and differences in the long-time
correlation for Newtonian and Brownian dynamics [5,21]. Therefore, in this paper, we
prefer to start directly from Smoluchowski rather than from Liocuville dynamics.

Table 1. Simulation data for the ratio D/ Dy for d-dimensional Yukawa systems characterized
by a screening parameter A, temperature kpT/Up and number density no?. The oce (A = 0)
is characterized by the plasma coupling parameter I; A = oo for hard discs. The pumber in
brackets gives the error in D/ Dy of the last digit. For comparison, the amplitude g of the first
maximum of the equilibrium pair correlation function ggq is also shown.

ksT/Uy  no® gm D{Dy

1 0.2 113 - 0.88(4)
1 0.3 1.21 0.77(2)
1 0.4 1.31 0.68(2)

1 0.6 1.53 0.55(1)

1 0.3 1.76 0.41(1)
1 1.0 2.00 0.332(9)
1 1.2 2.23 0.223(8)
1 1.4 2.46 0.145(8)
0.8 0.2 1.05 0.81(2)
0.8 0.6 1.20 0.63%1)
0.8 1.0 1.29 0.56(1)
0.8 1.6 1.39 0.49(1)
0.8 30 1.51 0.3%(1)
0.3 9.0 1.69 0.301(8)
— r=1 1.00 0.92(2)

r=190 1,14 0.64(2)
— r=290 131 0.53(1)
— F=60 .74 0.32(1)
—— r=120 217 0.177(8)

e 0.255 1.35 0.67(3)
— 0.462 2.06 0.47(3)
— 0.694 3.65 0.27(2)
1 0.2 1.14 0.774
1 0.4 1.36 0.56(2)
1 0.6 170 0.400(9)
1 1 2.70 0.165(9)
0.8 0.1 1.01 0.83(3)
0.8 0.2 . LO5 0.72(3}
0.8 0.5 1.26 0.52(1}
0.8 1.0 156  0.370(8)

BRI MR R RN R R BN DD B W W W W W WL LW W W W W WL W W R
mmmmmmo&mmg88ocooouwuuuuwwmwmmmm E

0.8 20 1.96  0.264(6)
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4. Results

Results of the BD simulations and the different theoretical expressions for the long-time
self-diffusion coefficient D are summarized in table 1 and are also graphically displayed
in figures 1-7. We fixed the potential parameters and the temperature, and varied the
particle number density, which is conveniently measured in units of o3, o being the
length scale of the Yukawa potential (2). The temperature, on the other hand, is measured
by the dimensionless number ksT /Uy where Up is the energy scale in (2). To calculate
explicitly the theoretical expressions, we used the pair distribution function obtained from
the simulation. In this way we do not introduce additional approximations, thus only testing
the dynamical theory.
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Figure 1. Self-diffusion coefficient divided by its low-
density limit D /Dy as a function of the reduced density
ne? for a three-dimensional hard-sphere suspension, o
denoting the hard-sphere diameter. Circles: Brownian
dynamics data of [10]; full curve: Enskog theory (14);
broken curve: modified Enskog theory (16); chain
curve; theory of Medina-Noyola (18).

ne

Figure 2, Self-diffusion coefficient divided by its low-
density limit D/ Dy as a function of the reduced density
ne? for & three-dimensional Yukawa suspension. Pa-
rameters of the Yukawa potential: 2. = 8, kgT/Up = 1.
Circles: Brownian dynamics results; crosses: Enskog
theory (14); squares: modified Enskog theory (16); tri-
angles: theory of Medina-Noyola (18). Curves serve

only as guides to the eyes, the actual calculations were
performed at the data points.

First, in figure 1, we recapitulate well known results for hard spheres. The predictions
of the Enskog theory seem to describe the simulation results best. Note that the theory due
to Medina-Noyola, which is also quite reasonable, has a wrong low-density behaviour. The
modified Enskog theory gives for the hard-sphere potential a trivial low-density expression
for the friction coefficient, & = &(1+xna>/3) and, correspondingly, the results for the self-
diffusion are also not accurate. As a comment we remark that, for hard-sphere suspensions,
the corrections to the Enskog theory have been calculated [14], which significantly improve
agreement with the simulation for the densities up to no® = 0.8.

In figure 2, we compare the simulations and the theoretical predictions for a continuous
but quite steep potential, A = 8, kgT/Up = 1. Here none of the theories seems to describe
the simulation results correctly. Note that for not too high densities the modified Enskog
theory is quite close to the simulation data.

Figure 3 contains the simulation data and theoretical predictions for a rather soft
potential, A =3, kgT/Up = 0.8. Here it is found that the modified Enskog theory agrees



Figure 3. Same as figure 2; but now for a softer
Yukawa potential with parameters A = 3, kgT/Up =

0.8,

/D

Figure 5. Same as figure 1, but now for Brownian hard
discs, o denoting the hard-disc diameter.
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Figure 4. Seif-diffusion coefficient divided by its
low-density limit D/Dy as a function of the plasma
parameter T for a three-dimensional Brownian one-
component-plasma. Circles: Brownian dynamics re-
sults; squares: modified Enskog theory (16); triangles:
theory of Medina-Noyola (18); crosses: modified En-
skog theory with a screening length equal to the ionic-

sphere radius.
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Figure 6, Same as figure 2, but now for a two-
dimensional Yukawa suspension with parameters A = 8,

kgT/Up=1.

surprisingly well with the simulation results. The Enskog theory greatly underestimates the
diffusion coefficient whereas the theory of Medina-Noyola give resulis 50-100% too high.
The failure of the Enskog theory might have been expected. It does not incorporate the
correct short-time behaviour of the friction kernel. Actually for this very soft potential it
greatly overestimates the short-time contributions to the friction coefficient. This will be
even more visible for the 0CP, where the friction coefficient predicted by the Enskog theory
diverges. '

In figure 4, we compare the simulations and the theoretical predictions for the

ocp. Here,

instead of the density, we use the dimensionless plasma coupling constant ' = Uyo/akgT,
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Figure 7. Same as figure 3, but now for a two-dimensional Yukawa suspension with parameters
A=3,kaT{Us =038

where a denotes the ion-sphere radius @ = (47/3n)'/ [29]. The long-range character of the
Coulomb potential causes some additional problems. The Enskog expression for the friction
coefficient is divergent due to the slow decay of the potential, whereas the expression of
the modified theory is finite, However, it overestimates the friction and correspondingly
underestirnates the self-diffusion coefficient. The theory of Medina-Noyola, on the other
hand, overestimates the self-diffusion coefficient, Note that the Coulomb potential in
the two-particle Smoluchowski operator is not screened, whereas one expects that some
screening should take place in a plasma. If we introduce somewhat arbitrarily a screening
length equal to the ionic-sphere radius into the modified Enskog expression, the results
agree quite well with the simulation data. This is shown in figure 4.

Finally, in figures 57, we compare the simulations and the theoretical predictions for
the two-dimensional suspensions. In particular, we choose a hard disc, a steep and a soft
Yukawa potential. We basically find the same scenario as in the three-dimensional case.
For hard discs (figure 5), the Enskog theory is now clearly superior to Medina-Noyola’s
expression (compared to the case of hard spheres). Again, for the soft Yukawa potential,
the modified Enskog theory describes the simulation data reasonably well.

5. Conclusions

We have presented simulation data for the long-time self-diffusion coefficient of a Brownian
Yukawa system in three and two dimensions. It was found that the self-diffusion coefficient
changes much less with increasing density for softer interactions. However it scales roughly
with the first maximum g of the pair distribution g57 which is also displayed in table 1.
The simulation data have been compared with different theories that need static data as
an input. In general, dynamical quantities depend much more sensitively on the nature of
the interparticle forces than the structural properties. Thus it is generally more difficult to
predict the self-diffusion coefficient accurately by a theory that is based on a static input. It
was found that for a hard-sphere interaction the Enskog theory is the most accurate. For a
strongly screened Coulomb potential essentially no theory describes the simulation data. The
modified Enskog theory works very well for moderately screened Coulomb potentials. In
conclusion, we think that the important requirement for the dynamical theory is to describe
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the short-time behaviour of the friction kernel correctly. The actual time evolution of the
kemel can be approximated by that given by the two-particle dynamics. An important
exception seems to be the Brownian OCP where one has to introduce a screening of the bare
Coulomb interaction. The qualitative features of the different theories do not change in the
case of two spatial dimensions.

It would be instructive to compare these results with recent measurements on well
characterized dilute charged suspensions [3]. For the experimental system, hydrodynamic
interactions can be safely ignored, and the interaction may be modelled by a Yukawa
potential according to the BLVO or Poisson—Boltzmann cell model [7]. The thermodynamic
parameters and the parameters characterizing the Yukawa potential that are accessible in
the experiment of [3] are in the region of relatively weak screening where the modified
Enskog theory works well. A systematic comparison of the experimental data with theory
and simulation is in progress [30]. For quantitative comparison, effects of polydispersity in
the effective charge [31] may also become relevant and should be discussed, too. We further
remark that the case of a (quasi)-two-dimensional Brownian liquid, confined between paraliel
plates, is particularly interesting since real space image methods can be used to probe directly
the diffusive dynamics of the colloidal particles [22]. We believe that a careful comparison
between experiments and simulations for long-time self-diffusion may lead to definitive
information on the interparticle forces determining, for instance, the effective charge used
in the Yukawa model. ,

Another remark concerns the role of hydrodynamic interactions. Although a complete
theoretical treatment for self-diffusion is still missing, one may simply map the full dynamics
of the system onto that of a reference system without hydrodynamic interactions by using
a scaling of the diffusion coefficient proposed by Medina-Noyola [27]. In this sense, all
our results should also have relevance in the high screening region, where hydrodynamic
interactions become important for concentrated suspensions.

As a final interesting question we note that one may try to establish a connection
between the static Hansen—Verlet freezing rule [32] and the dynamical freezing criterion
(D/ Dy = 0.1) which was put forward in [5). A possible theoretical connection could be
based on the dynamical theories we discussed here, which relate D/ Dy to the pair structure,
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