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Crystallization in Sedimentation Profiles of Hard Spheres.
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Abstract. - Equilibrium density profiles of a hard-sphere suspension in a gravitational field are
caleulated using Monte Carlo simulations. For increasing gravity there is a discontinuous
freezing transition induced by the container wall where few crystalline layers are spontaneously
formed at the bottom of the sample. This crystalline part then grows confinuously as the
gravitational field is further enhanced. The results are compared with density funetional theory
of freezing where a weighted density approximation is used. While good overall agreement of the
laterally averaged profile and the lateral crystallinity is achieved, density functional theory
vields a discontinuous crystal growth via layering transitions.

Equilibrium sedimentation profiles of colloidal suspensions in a gravitational field have
stimulated statistieal mechanics of inhomogeneous fluids since 1910 when Perrin estimated
Avogadro’s constant direetly from measurements of profiles of dilute suspensions. By now
the density profile of well-characterized charged or sterically stabilized suspensions can be
accurately measured using depolarized light scattering [1]. By inverting the density profile of
a weakly inhomogeneous fluid one can determine the isothermal osmotic equation of state
directly [2,3]. Also the sedimentation dynamies|4] can be resolved on an experimentaily ac-
cessible time seale [5] through visualization of the sedimentation and crystallization mechanism.

While most of the reeent calculations assume a weak modulation of the fluid phase by the
external field, we focus on microscopic (or better mesoscopic) aspects of the density profile
including erystallization effects. The motivation in doing so is threefold:

1) The influence of the bottom of the sample on the microscopic density field has not yet
been examined in detail. For increasing gravitational-field strength, the fluid system
undergoes a freezing transition forming crystalline layers at the bottom of the sample.
Details of this wall-induced erystallization transition, however, are not clear at the moment.
With few crystalline layers at the bottom the strongly inhomogeneous profile also eonsists of
a crystal-fluld interface and a low-density tail. If the strength of the gravitational field is
increased further while keeping the total particle density fixed, the erystalline portion will
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grow at the expense of the fluid part. The nature of erystal growth is @ priori noet clear. In
particular, erystal growth may be continuous or proceed via a series of first-order surface
phase transitions corresponding to layering. This can only be answered from a microscopic
calculation.

2) Taking the availability of simulation data for granted, a system with coexisting
erystal and fluid phases in a strong external field is an ideal test system for the validity of
density functional theory of freezing.

3} In experiments on colloidal suspensions, one can resolve the density field on the
length scale of a typical interparticle spacing [6] using real-space methods (e.g., direct image
processing or microscopy). The strength of the gravity can be controlled by adding a solvent
with a different density. Thus an ewperimental verification of theoretical predictions
concerning the crystallization mechanism in & strong external field is possible.

In this letter we study the hard-sphere system in a strong gravitational field which is
directed along the z-axis and ean be written as the external potential
mgz, ifzz0,
©, ifz<0,

Viz) = { (1)

where m is the buoyant mass of the colloidal particles and g the gravitational acceleration.
The strength of the interaction is conveniently measured by the dimensionless ratio « =
= mga/ky T, = denoting the hard-sphere diameter and T the temperature. The only additional
thermodynarmic parameter then is the mean area density p defined as the number of particles
per unit area of the bottom of the sample. The bulk hard-sphere system exhibits stable fluid
and dense-packed crystalline phases. For strong gravity, the crystalline phase appears at the
bottom of the sample.

Monte Carlo simulations are used to compute the cne-particle density field p(r) of the
spheres, Particular emphasis is placed on the laterally averaged density exhibiting sharp
peaks in the solid phase and on the lateral crystalline structure. Based on these two target
quantities, the following seenario of crystallization is obtained for increasing « and fixed z:
first there is a wall-induced discontinuous freezing transition where few erystalline layers are
spontaneously formed at the bottom, This erystalline portion then grows continucusly at the
expense of the fluid part of the profile. Similar simulations were recently done for zero
gravity (« = 0) resulting in precrystallization of the hard-sphere fluid near a hard wall [7].
However, the onset of erystallization and the subsequent growth for increasing bulk pressure
was not yet studied in detail.

The Monte Carlo simulations are performed in a similar way as in ref. [31. N =500
particles are confined to a slab which is infinite in the z-direction and rectangular in the z and
y directions. Periodic boundary conditions are used in the  and y directions. The starting
configuration consists of two crystalline layers at the bottom and a disordered part for higher
2. About 10° Monte Carlo moves per particle have been used to equilibrate the system and
again 2-10° moves to gather statistics for the density field. The centre-of-mass motion in the
« and ¥ directions was fixed in order to avoid a spurious diffusion of the whole finite-sized
lattice.

The laterally integrated density profile is defined as

i
ot = o jdmjdyp(m, _— 2)
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where A is the area of the bottom. Monte Carlo results for ¢ (z) are shown in fig. 1 for
different values of « ranging from 2.0 to 4.5 and fixed go” = 5.43. For « < 2.5, the interstitial
density is high indicating that the system is a strongly perturbed liquid. For « = 2.75 this
density drops discontinuously to very small values in the first two layers, indicating that the
first two layers are crystalline. Also the peak position of the third and fourth layer changes
practically in a discontinuous manner between a = 2.5 and « = 2.75 although these peaks
remain fluid-like. As « is enhanced further (x> 2.75) these peaks become gradually
crystal-like, but the crystal growth is continuous as a function of «.

The same scenario can be seen in the lateral crystalline order which is measured by
introducing the order parameter

Jdmfdy G (x, yelz, ¥, 2)

e(z) = , (3)
fd:v f dy olz, ¥, 2)
where the kernel &¢(z, %) probes any triangular order in the layer
4 27’5’ T 7 1
G, y) = —ces(wﬁ“) cos(z(m + \@y)) cos(i(m - \/§y)) - (4)
3 a a ") 3

Here a is the nearest-neighbour distance of the triangular lattice and the lattice is oriented
such that one lattice vector is in the z-direction. In the definition of ¢(z), only second- and
higher-order stars of the reciprocal triangular lattice are involved. Consequently only
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Fig. 1. Fig. 2.

Fig. 1. — Nine laterally integrated density profiles ¢* (2)c® obtained from computer simulation for
a =20, 2.5, 275, 3.0, .25, 3.5, 8.75, 4.0, 4.5 and fixed average density ¢ = 5.43.

Fig. 2. - Maximum of the erystallinity c(z) in the first four layers as a function of « (o = 5.48) as obtained
from computer simulation: first layer (crosses), second layer (squares), third layer (stars), fourth layer
{circles).
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density variations which have a joint spatial variation in both triangular directions are
probed by ¢fz). For a laterally homogeneous density and for simple Plane waves, c(z)
vanishes. Monte Carlo results for ¢(z) are displayed in fig. 2 as a function of x, where z is
taken to correspond to the peak position of the first four layers. Again one sees the
diseontinuous behaviour in ¢ at » = ¢ == 2.6 for the first three layers, implying spontaneous
formation of two-dimensional long-range crystalline order. For higher « there is a smooth
variation of ¢ in «. This indicates that once the wall freezing has set in, there are no further
first-order surface phase transitions nor discontinuous layering transitions, The question of
layering was also discussed in the context of surface melting [8] of, e.g., Lennard-Jones
systems [9, 18] where it was tentatively found to oceur. This is, however, a different situation
gince there are two interfaces (solid-quasi-liquid and quasi-liquid-gas) whose interaction may
cause layering. In our case there is only the fixed bottom wall and the crystal-liquid interface
which continuously moves ag « is enhanced.

We also present density funetional calculations of the hard-sphere sedimentation profiles.
In particular we adopt the weighted-density approximation (WDA) introduced by Curtin and
Asheroft some years ago [11], which leads to one of the best freezing theories to date. The
minimization of the WDA funetional was performed practically freely on a fine equidistant
grid with 4" = 10% grid points in a slab compatible with lateral periodicity of a {111) direction
of an f.c.e. erystal (for details see ref, [10]). In the z-direction the total system size was 18¢
with periodic boundary conditions, which is large enough to prevent spurious interaction of
the periodically repeated bottom with the solid-fluid interface. The minimization was
performed—under the constraint of fixed averaged area density 7—also with respect to the
size of the slab. The high number of grid points is sufficient to resolve the rapid spatial
density variations in the solid phase.

In fig. 3a) computer simulation data (solid line) and density functional datsa (dashed line)
for ¢ * () are compared, where the barameters are « = § and % = 5.43. Both profiles show
sharp peaks at the bottom corresponding to 2-3 crystalline layers, a crystal-fluid interface
and a dilute tail for z — . The contact value of ¢+ (2) at the bottom (z = 5/2) is fixed by the
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Fig. 3. - a) Laterally integrated density profile ; * (2) o3 vs. /= for hard spheres in a gravitational field
{x = 3, 5 = 5.43): Monte Carlo results {(broken line) and density functional theory (solid line}. The inget
shows the z-independent value of ¢ for a set of normalized Gaussian peaks = expfl — x2r?] on an fee.
lattice us. xa. b) Lateral crystallinity ¢(z) vs. z/m density functional theory (solid line) and simulation
results (broken line).
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wall theorem ¢* (2 = o/2) = P/kp T, where P is the pressure at the bottom. The WDA
satisfies this relation. Therefore the two profiles exactly coincide at z = =/2. Also the results
for the dilute tail nearly coincide. In the intermediate range the height of the peaks is higher
in density functional theory than in the simulation. This can be simply attributed to the fact
that the WIDIA[11,10] underestimates the solid coexisting density and overestimates the
sharpness of the solid peaks [12]. The overall agreement of the sedimentation profiles is still
quite satisfactory. Also the results for the nearest-neighbour distance a of the triangular
lateral lattice are very close: in density funetional theory a was determined by free
minimization to be 1.153¢, whereas the simulation result is @ = 1.088s. In the simulation
different runs with different lateral box sizes were performed and the correct o was obtained
by requiring consistency of the bottom pressure P = mgs with the wall theorem P =
=kp Tt (a/2).

Full z-dependent lateral crystallinities as defined by (3) are compared in fig. 36). If o)
consigted of a superposition of strongly peaked Gaussians, ¢{z) would be independent of z. In
the inset of fig, 3, we have shown how ¢ depends then on the sharpness of the Gaussian
peaks. For infinitely sharp &-peaks ¢ is normalized to be 1. The Monte Carlo data for c(z)
agree fairly well with the WDA results near the peak maxima. Also the strong peak
asymmetry (i.e. the shift of the position of the maximum towards smaller z-values with
respect to its layer average} is qualitatively similar in density functional theory and
simulation. Furthermore density functional theory yields an oscillatory behaviour which is
even negative in the interstitial region. Whether this is a real feature or an artifact of the
density functional theory due to the wrong anisotropy of the density in the solid phase [12]
remains somewhat unclear at the moment. The Monte Carlo data are also inconclusive in the
interstitial region, since it is a very rare event that a particle position falls between two
crystalline layers, which causes a large statistical error. The value of ¢ = 0.8 corresponds
roughly to a localization length of 1/x = 0.1¢ of the Gaussian peaks = exp[— x?»Z?]. While
the WDA is capable of describing such strongly inhomogeneous sedimentation profiles
qualitatively and quantitatively correctly, details of the crystal growth are not reproduced
exactly. Free minimization of the WDA funetional yields a diseontinuous erystal growth via a
series of layering transitions as « is enhanced [13]. This failure can be understood simply by
the fact that density functional theory is a mean-fleld theory neglecting any capillary-
wave-like fluctuations of the crystal-fluid interface which smear out a discontinuity [8].

To summarize, we have presented evidence that erystallization of hard spheres in a strong
gravitational field starts discontinuously and proceeds continuously and net by layering
transitions. This should at least in principle be detectable experimentally in real
sedimentation profiles of sterically stabilized index-matched collioidal suspensions. Moreover,
a comparison of the WDA density functional theory and Monte Carlo results for the density
distribution of the strongly inhomogeneous hard-sphere system in a gravitational field was
performed. The overall agreement was satisfactory, indicating that the WDA is capable of
describing inhomogeneous crystal-fluid interfaces well within the limitations of a slightly
shifted bulk phase diagram. However, density functional theory fails in describing a
continuous crystal growth,

We conclude with two final remarks: first, we note that the density functional approach of
freezing can also be transferred to binary hard-sphere mixtures [14]. In this case already the
limit of weak fluid density variations exhibits an interesting non-monotonic density field for
the two kinds of spheres [15]. Including also erystalline phases, this behaviour might be
expected to be even richer and more complex. Secondly, there is no computer simlation for
the surface tension of a free crystal-fluid interface. Such a simulation is highly desirable in
order to check the density functional predictions for the hard-sphere surface tensions[10].
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