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The phase behavior of a colloidal fluid near a solvent first-order phase transition is investigated.
Based on analysis and computer simulation of a Ginzburg-Landau model for the solvent coupled
to the colloidal coordinates, two scenarios of phase separation are predicted, induced by wetting of

the colloidal surfaces with one solvent phase.

Phase separation either starts spontaneously from a

homogeneous colloidal phase with a one-phase solvent or from nonpercolating clusters of the wetting
solvent phase which on average contain few colloidal particles.

PACS numbers: 82.70.Dd, 61.20.—p, 64.70.—p

Since the previous century [1,2] it is well known
that macromolecular particles in a two-phase medium
exhibit different concentrations in the two solvent phases.
This spontaneous partitioning is energetically driven by a
different macroparticle surface tension in the two solvent
phases. Many examples of such demixing phenomena
have been found during the past decades, for a review,
see Refs. [3]. Systematic experiments by Beysens and co-
workers [4] and by Gallagher and Maher [5] on colloidal
particles embedded in a near-critical solvent mixture
of 2,6-lutidine plus water have revealed that the phase
separation can be viewed as reversible flocculation and is
hence different from colloidal coagulation due to the van
der Waals attraction [6].

Theoretical work of colloidal partitioning or floccula-
tion in a two-phase solvent is still rather rudimentary; it
has either focused on a phenomenological thermodynamic
treatment [2] or on general arguments [7] known from
wetting or capillary condensation [8] in a simple fixed
geometry of two spheres. The essential point which is
neglected in any of these arguments, however, is that the
colloidal particles are interacting via their direct forces
and the indirect interaction mediated by the surface free
energy of the solvent phases. The latter interaction is
dictated by wetting properties in a complicated geometry
made up by an ensemble of spheres and therefore clearly
has a many-body character.

The aim of this Letter is to propose and discuss a gen-
eral model which includes this effect systematically and
contains parameters whose relation to microscopic quanti-
ties is known. Basically it consists of a Ginzburg-Landau
approach for the first-order solvent phase transition, cou-
pled to the colloidal coordinates and combined with the
direct forces between the colloidal particles. An analysis
of this model predicts a rich scenario of solvent-induced
colloidal phase separation: There are two different col-
loidal one-phase regions, both of them are fluidlike. The
first corresponds to the ordinary fluid phase in a one-phase
solvent while the second contains nonpercolating clusters
of the solvent phase preferred by the colloidal surface.
This second situation is stable when the clusters con-
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tain few colloidal particles on average. From both situ-
ations phase separation occurs in two homogeneous col-
loidal fluid phases with different particle densities both
of which involve a one-phase solvent. Similar solvent-
induced phase transitions have been suggested for poly-
mers in near-critical solvents, see, e.g., Ref. [9].

In the Ginzburg-Landau approach we are adopting, the
first-order phase transition of the solvent is modeled by a
dimensionless scalar order parameter field ¢ (r) [10]. The
order parameter ¢ stands for the relative density differ-
ence between the two coexisting phases if a liquid-gas,
freezing, or A-rich to B-rich solvent transition is consid-
ered. For a liquid-crystalline solvent near the isotropic-
nematic transition, ¢ is the mean-squared orientation, and
for magnetic solvents ¢ equals the mean-squared magne-
tization of the two solvent phases. Consequently, quite
a number of different physical situations can be captured
within the Ginzburg-Landau description. Without loss of
generality ¢ can be scaled to be 1 in the first and —1
in the other solvent phase. Then, in the absence of any
colloidal particles, the associated free energy Fy of the
solvent in a volume () is a functional of ¢ (r):

Folep(r)] = [Q &ris fo2 V@ + f(dE)}. (1)

Here, the square-gradient term describes a free energy
penalty of an inhomogeneous system, resulting in a
surface tension y > 0 between the two solvent phases.
Microscopically ¢ is the correlation length of order
parameter fluctuations and fy a free energy density scale.
For the local free energy density f(¢), the Ginzburg-
Landau form f(¢) = fo(¢p* — 2¢p? + 4e¢p) is taken. For
€ = 0, f(¢) has a double-well structure with minima at
¢ = =1, corresponding to two coexisting solvent phases
with a planar surface tension y = 4+/2 fy&/3. For e # 0,
an off-coexistence situation is described. The difference
in free energy density between the two phases is 8fe€,
hence e measures the distance from coexistence. The
free energy density f(¢) can be linked to microscopic
quantities using, e.g., density functional theory [10].
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In addition, we are considering N colloidal particles in
a volume () with a particle number density p = N/Q at
fixed given temperature 7. One configuration is charac-
terized by the positions {R;,i = 1,...,N}. The particles
interact via direct repulsive forces stemming from a pair-
wise potential Vp,(r), where r is the interparticle sepa-
ration. Depending on the kind of colloid, V,,(r) can be
a hard-sphere, soft-sphere, or screened Coulomb potential
[6]. Next, the free energy resulting from the coupling be-
tween ¢ (r) and the colloidal coordinates is modeled by

N
fMMMM&D=Ad%MnZ%m&vﬂL(D
i=1

where V), (r) contains microscopic information about the
wetting properties of the colloidal surface; for instance,
the phase belonging to negative ¢ is favored if V,, is
positive at the particle radius.

Treating the solvent phase transition in mean-field fash-
ion, our model is finally defined by the total Lagrangian:

N M - N

L=3 SR = 3 VylR - R)) = Fil®r)]
i=1 ij=Lli<j
~ Tl (LR, 3)

where M is the macroparticle mass [11] and the dot means
a time derivative. By solving the Euler equations of mo-
tion corresponding to {R;} and ¢(r) for sufficiently long
times, one can, at least in principle, generate a large number
of typical configurations in order to perform static canoni-
cal averages and calculate the phase behavior. The dynam-
ics defined by the Lagrangian are not the real dynamics
of the system but rather serve to generate typical configu-
rations. The Euler equation for ¢(r) is a minimization
of the functional Fy, + F,, with respect to ¢ (r), resulting
in the equilibrium order parameter profile which depends
parametrically on the colloidal coordinates. The Euler
equations for {R,}, in turn, involve this equilibrium order
parameter profile implying that many-body forces govern
the equations of motion. One therefore has to resort to
further approximations keeping the analysis simple or to
a numerical treatment within a computer simulation. We
have followed both lines. Let us first invoke two additional
approximations: (i) We assume that the order parameter
field is either 1 or —1 with an infinitely thin (‘“sharp-kink™)
interface between the two solvent phases. (ii) The topol-
ogy of the region occupied by the wetting solvent phase is
simple. Then the phase behavior can be calculated analyti-
cally giving a general insight into the different scenarios of
possible phase separation.

Performing this approximative analysis the solvent
phase corresponding to a negative order parameter is
called A, the other one is B. Without loss of generality we
consider an off-coexistence situation with e = 0, where a
fraction 4/ of the total volume is occupied by phase A
wetting the colloidal surfaces. We distinguish between
two different situations: (a) The colloidal particles are
covered by nonoverlapping spherical drops of phase

A. (b) N4 colloidal particles are in a large region of phase
A and N — N, are in that of phase B. Of course, there
are two special one-phase cases of (b) where the whole
space is filled either by phase B (N4 = 0) or by phase A
(N4 = N), which we call (c) and (d). All situations (a)—
(d) are visualized in Fig. 1.

In situation (a), the free energy of the total system is

F@ =8feQy + Qf,(p,T) + Ny4mwR*> + Nf@. (4)

Here 8fp€()4 is the free energy cost to create a volume )4
of phase A, f,(p,T) is the bulk free energy density of a
fluid interacting via the pair potential V,,(r) known from
liquid state theory [12], and the third term describes the
total surface tension between the two solvent phases, R =
(3Q4/4mpQ)'/3, denoting the droplet radius. Finally the
energy gain by wetting is approximately contained in
the coupling term f9 = 47 [ dr r2[OR — r) — O(r —
R)]Vyo(r), where @(x) is the unit step function. In
situation (b), on the other hand, the total free energy is

F® = 8f,eQu + (LJ,,(%,T)
A

+(Q - QA)f,,<g:7§V£,T)

+(2N, — N) £, 5)

where now f®) = 4z [ dr r2V,,(r).

The physically realized situation is that with minimal
free energy. F(@ has to be minimized with respect to ),
(0= Q4 = Q) and F® with respect to Q4 and N, (0 =
Ns = N). The lowest value of F@ and F) corresponds
to the physically realized energy and hence the complete
phase behavior together with the corresponding partial
densities ps = Na/Q4 and pp = (N — N4)/(Q — Q,) is
directly obtained.
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FIG. 1. Region of stability of the situations (a)—(d) in

€y plane separated by the dashed lines as obtained within
the approximate analysis. The parameters are p = 0.3820 3,
G =10, fo = 2kgT /o3, E =30, and a = 11.1. The arrow
corresponds to the path shown in Fig. 3. The colloid positions
(black circles) and the grey region of phase A are schematically
given in each situation.
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We have also performed extensive molecular dynamics
simulations solving the Euler equations of the Lagrangian
L by using a classical version of the Car-Parrinello
ab initio method [13] similar to the work in Ref. [14].
N = 108 colloidal particles were taken in a cubic box with
periodic boundary conditions. The order parameter field
was resolved in real space on a 643 cubic grid. After a
long equilibration from a randomly chosen initial configu-
ration for the colloidal particles, a typical configuration
was gathered to take canonical averages. A phase sepa-
ration was detected by monitoring the positions of the col-
loidal particles and the interface between the two solvent
phases. Target quantities were the partial densities p4 and
pr and topological properties of the interface between the
two solvent phases defined via ¢(r) = 0. A convenient
topological quantity is the averaged number of colloidal
particles per cluster of phase A, or its inverse n., the av-
eraged number of clusters per particle. If n. vanishes, the
region covered by phase A is percolating.

In our calculations, the interparticle potential was
Vop(r) = GkgT (o /r)'?, where G is a dimensionless am-
plitude and the soft-sphere diameter o sets the length
scale. In this case, explicit expressions for f,(p,T) were
given by Hansen [15]. Furthermore, we take Vp,(r) =
—EkpT o3 exp[—a(r/o)?] with two dimensionless pa-
rameters E > 0 and «. The stability of the four situations
(a)—(d), as obtained within the approximate analysis, is
shown in Fig. 1 as a function of € and y. Any situation
can be stable; the transition between different situations
is first order as indicated by the dashed lines in Fig. 1.
Phase separation [situation (b)] can be started from all
one-phase situations. In an experiment, one typically
varies € by changing the solvent while y and all other pa-
rameters are slowly varying. Along such an experimental
path (y = 0.7) with decreasing e, there is phase separation
from (c) to (b), then the clustered situation (a) is stable
and finally phase separation is reentering. Typical con-
figurations of the colloidal positions and the solvent AB
interface as obtained from the computer simulations are
shown in Fig. 2, both for a clustered situation [Fig. 2(a)]
and complete partitioning [Fig. 2(b)]. One clearly sees
that the topology of the clusters is much more complicated
than assumed in the approximative analysis since clusters
can fuse to contain more than one colloidal particle. In
Fig. 3, for fixed y and varying e, computer simulation re-
sults from eight different runs are shown near the (a) to
(b) and (b) to (d) transitions corresponding to the arrow
in Fig. 1. In the clustered situation, n. is significantly
smaller than 1 and discontinuously jumps from a finite
value to zero as e is decreased. This shows that phase
separation is directly connected to a first-order percola-
tion transition of the wetting phase. The approximative
analysis only gives a crude picture of the (a) to (b) tran-
sition, since n, jumps from 1 to 0. As visible in Fig. 3,
the e location of this transition is shifted by roughly 20%,
since the surface tension of the AB interface is overesti-
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FIG. 2. Colloid positions (black circles) projected from a slab
to the xy plane of the simulation box. The height of the slab in
z direction is one-third of the total box height. The dark pixels
whose resolution corresponds to the finite grid in the xy plane
indicate that the z average of ¢(r) is positive (region of phase
A). The parameters are p = 0.382073, @ = 4, and € = 0.1.
Clustered situation (a) (G = 4, ¢ = 0.050, fo = 2kgT /o3, and
E = 2). Phase-separated situation (b) (G = 0.1, ¢ = 0.20,
fo = 2.5kpT /0>, and E = 1).

mated. The (b) to (d) transition, on the other hand, is
well described by the analysis and the partial densities are
in good quantitative agreement with the simulation data.
Thus the approximative analysis gives a qualitatively cor-
rect picture of the phase separation scenario and even pre-
dicts the (b) to (d) phase separation line quantitatively.

In conclusion, depending on the microscopic parame-
ters, phase separation can either spontaneously occur from
a situation where only one solvent phase is involved or
from clusters of the wetting phase A around the colloidal
particles. A topological diagnosis of this phase reveals
that the phase-A clusters are nonpercolating, containing
few colloidal particles near phase separation. Phase sepa-
ration in the colloidal fluid is thus directly connected to a
percolation transition of the wetting solvent phase.

We finish with four remarks: First, the solvent-induced
phase separation is driven energetically. It thus differs
from the demixing transition due to a depletion zone of
added polymer [16] or solvent [17] around the colloidal
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FIG. 3. Computer simulation results for the averaged num-

ber of phase-A clusters per particle, n. (circles) and the par-
tial densities pa/p (triangles) and pp/p (crosses) versus e.
The parameters are as in Fig. 1 with y = 0.5k3T/0o?. The
dashed lines are the corresponding results of the approximative
analysis.

particles which is purely driven by entropy. Second,
our theory does not apply close to a solvent critical
point, since critical fluctuations which may give rise to
attractive Casimir forces between the particles [18] are
neglected in our mean-field model. Third, the Ginzburg-
Landau approach can be extended to long-ranged order-
parameter interactions as well as to a situation where
the flocculated colloidal phase A is crystalline. Results
along these lines will be published elsewhere [19]. Last, a
rapidly increasing number of experimental investigations
on colloidal suspensions have been performed using real-
space methods. The advantage compared to static light
scattering used in previous experiments [4] is that the
topological properties of the clustered fluid phase are
accessible by resolving the spatial regions of the different
solvent phases. It would be interesting to verify the
predicted percolation character of the (a) to (b) transition
directly in real space.
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FIG. I. Region of stability of the situations (a)—(d) in
€y plane separated by the dashed lines as obtained within
the approximate analysis. The parameters are p = 0.3820 %,
G =10, fo =2kgT/o?, E =30, and « = 11.1. The arrow
corresponds to the path shown in Fig. 3. The colloid positions
(black circles) and the grey region of phase A are schematically
given in each situation.



