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Abstract. A colloidal suspension of macroparticles in a sol- 
vent is considered near a solvent first-order phase transi- 
tion. The solvent phase transition is described by a Ginzburg- 
Landau model with a one-component order parameter which 
is coupled to the macroparticles coordinates. Wetting of the 
macroparticle surface by one of the two coexisting phases 
can induce phase separation of the colloidal particles. This 
phase separation is first explained by simple thermodynamic 
arguments and then confirmed by computer simulation of the 
Ginzburg-Landau model coupled to the macroparticles. Fur- 
thermore a topological diagnosis of the interface between the 
stable and metastable phase is given near phase separation and 
possible experimental consequences of the phase separation 
are discussed. 

PACS: 82.70.Dd 

1. Introduction 

One of the most important questions in preparing colloidal 
suspensions concerns their stability against flocculation or co- 
agulation due to the van-der-Waals attraction, for a review see 
Pusey [1]. There are two different mechanisms to stabilize a 
suspension: steric stabilization and charge stabilization. In the 
case of steric stabilization the colloidal particles are coated 
by blocked copolymer-brushes whose non-overlap condition 
guarantees repulsive forces between touching colloidal parti- 
cles which overcome the van-der-Waals attraction. In charged 
colloidal suspensions, on the other hand, the thermal diffusity 
of the counterion-layer around the charged colloidal surfaces 
leads to imperfect screening which also results in strong repul- 
sive interparticle forces of electrostatic origin [2]. Flocculation 
and coagulation can be viewed as a special case of phase sep- 
aration between the colloidal particles, one phase being the 
solvent alone and the other the cluster of sticking colloidal 
particles. 

Now, even for stable colloidal suspensions, there may be 
phase separation into two different phases of the colloidal par- 
ticles due to a different physical mechanism. The first possibil- 
ity of such a phase separation was pointed out fourty years ago 

by Asakura and Oosawa [3]. Due to a depletion zone of solvent 
molecules and added free polymer around the big colloidal 
particles there may be strong attractive forces for sterically- 
stabilized colloidal suspensions (see also Vrij [4]) which then 
may cause phase separation. Recent extensive computer sim- 
ulations on a mixture of colloidal particles and added poly- 
mer chains with steric interactions confirm these attractions 
and a possible phase separation (see Meijer and Frenkel [5, 
6]). Also the phase diagram of a colloid plus polymer system 
was experimentally completely investigated where a liquid- 
gas phase separation of the colloidal particles induced by the 
added polymer was found [7]. Another model to study effec- 
tive attractions induced by depletion forces is a binary mixture 
of strongly asymmetric hard spheres. By a detailed study of 
liquid integral equations, Biben and Hansen [8, 9] found that 
the osmotic pressure by the small spheres exerted onto the big 
spheres yields phase separation of the big spheres if the di- 
ameter ratio is small. This kind of phase separation was also 
detected experimentally in strongly asymmetric bimodal sus- 
pensions of sterically stabilized colloidal spheres [10]. 

Second the long-ranged tail of the van-der-Waals attrac- 
tion may cause a liquid-gas phase separation as theoretically 
discussed by Victor and Hansen [11, 12], for a survey see [1]. 
A third though still controversial mechanism for phase sepa- 
ration in charged suspensions are overscreening effects of the 
counterions due to strong counterion correlations see e. g. [ 13, 
14]. However, to see this in a real suspension, the counteri- 
ons have to be divalent and the bare charges of the colloidal 
particles have to be large. 

The aim of this paper is to present a fourth mechanism 
for phase separation in colloidal suspensions which occurs if 
the solvent undergoes a first-order phase transition [ 15]. In the 
normal situation the solvent is in its fluid phase far away from 
any possible freezing or other first-order phase transition. If 
e.g. the temperature is lowered one may think of reaching the 
phase coexistence line of the solvent where another solvent 
phase may become stable forming some "islands" of the new 
phase in the sea of the old phase. It depends sensitively on 
the wetting properties of the colloidal particles whether the 
new phase or the old one covers the colloidal surfaces. In the 
first case the colloidal particles drag a cloud of the new phase 
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with themselves, in the opposite case the new phase occurs 
preferentially in voids between the colloidal particles. In this 
paper it is shown that a solvent first-order phase transition may 
drive a phase separation of the colloidal particles. The surface 
tension between the two solvent phases may dictate separation 
into one region where the colloidal particles are surrounded by 
one big cloud of the phase they prefer to be covered with and 
a second region occupied by the other solvent phase. 

There are quite a number of possible realizations of the 
solvent phase transition. The first (and maybe the most nat- 
ural) example is the freezing transition of a molecular fluid 
solvent into a regular solid. In the most common case of an 
aqueous suspension the corresponding freezing temperature is 
easily accessible experimentally. Inversely by enhancing the 
temperature also a first-order liquid-gas transition may hap- 
pen. Another realization is a solvent mixture of two species A 
and B (e.g. water and alcohol) which can undergo a first order 
phase transition between an A-rich and a B-rich phase. If the 
solvent consists of a liquid crystal, a transition from the disor- 
dered to a nematic phase is conceivable and magnetic solvents 
may order from fluid-like into columnar phases. In the general 
theoretical framework all this different phase transitions can 
be described by an order parameter m distinguishing between 
the two phases. For the freezing, liquid-gas and the A-rich 
to B-rich transition, the order parameter m can be taken to be 
the relative density difference of the two coexisting phases. For 
a liquid-crystalline solvent it is the mean orientation and for 
magnetic solvents the mean magnetization of the two solvent 
phases. 

As a final remark we state that also a solvent near its critical 
point represent a challenging question for theoreticians since 
the critical fluctuations may also induce exotic effective forces 
between the colloidal particles. Theoretical work has mainly 
focused to the much simpler geometry of a solvent between 
two parallel plates where attractive Casimir forces have been 
investigated, for a recent review see Krech [ 16]. The role of this 
Casimir forces between two spheres or even in an ensemble 
of randomly distributed spheres as in a colloidal suspension 
however is still unclear. 

The paper is organized as follows: After an introduction 
and discussion of the Ginzburg-Landau model in chapter II, 
we describe analytical results for a situation far away from 
the phase transition by linearizing the equations in chapter IlL 
Then, in chapter IV, simple thermodynamic arguments are used 
to explain the physical origin of the phase separation and to get 
different scenarios for it. The Ginzburg-Landau model is then 
completedly solved by computer simulation. In chapter V we 
describe the numerical method and in chapter VI we present 
the results. We conclude with a comparison with experiments 
in chapter VII. 

2. The model 

We model the first-order phase transition of the solvent within 
the Ginzburg-Landau model [ 17] with a scalar order parameter 
field re(r), m is chosen to be dimensionless. As already dis- 
cussed before, m can have different meanings depending on 

which solvent phase transition is considered. Hence the model 
is quite general and a different number of actual realizations 
are possible. 

We are considering N colloidal particles in a given volume 
f~ with a particle number density p = N/f2, corresponding to 
a mean interparticle spacing of a = p-l~3 and a fixed given 
temperature T. One configuration is characterized by the posi- 
tions {Ri, i =  1, ..., N} andthe velocities {Ri, i = 1, ..., N} 
of the particles. Furthermore the particles interact via direct 
pairwise additive forces described by a direct interaction po- 
tential Vpp(r). This interaction is repulsive for stabilized col- 
loidal suspensions and may stem from pure excluded volume 
for sterically-stabilized suspensions or from incomplete coun- 
terion screening for charged colloidal suspensions. For the 
following we assume monodisperse particles and take a soft 
r -12 interaction for V p p ( r ) :  

Vpp(r) = kBTG(~) 12 (1) 

where G is a prefactor of order 1 and (7 a soft-sphere diameter. 
The total Lagrangian Sttot for the system consists of the 

macroparticle part and the free energy ~ ( [ m ( r ) ] ,  {Ri}) of 
the order parameter field in the presence of the colloidal par- 
ticles which depends parametrically on the macroparticle co- 
ordinates 

N M R  2 N 

i=1 i,j=l ;i < j 

- ~ ( [ m ( r ) ] ,  { R i } )  (2) 

where M is the macroparticle mass. This is a fictitious quan- 
tity since we are only interested in canonically averaged static 
quantities. 

All important information on the solvent phase transition 
is contained in the free energy ~ which is a functional of the 
order parameter field. Using the Ginzburg-Landau picture we 
model this functional as follows 

o~([m(r)], {nd) -  ~({Rd) 
= o~[m(r) ]  + O~o([m(r)], {Ri}) (3) 

Here ~ [ m ( r ) ]  is the free energy functional for the decoupled 
system for which the following form is taken 

J0 [m(r ) ]  = j ~  d3r[lfo~Z(Vm(r))2+ f(m(r))] 

+ 21.~ d3r ~ d 3 r  ' w(, r - r ' i )m(r)m(r')  (4) 

Let us discuss this functional in detail: 
i) For a spatially homogeneous order parameter field, re(r) =- 

too ==- con.st, we have . ~ [ m ( r ) ]  = f~(f(m0) + womb~2) 
where wo is the zeroth moment of w(r) 

w0 = [ d3r w(r) (5) 
Jf~ 

By a suitable subtraction in w(r) it can be achieved without 
loss of generality that w0 vanishes. Hence f (m) contains 
the information about the solvent phase transition. Near 



a solvent first-order phase transition, f(m) possesses two 
minima of equal depth at ml and m2, corresponding to the 
two bulk order parameters of the coexisting phases. We 
model f ( m )  by the usual m4-Ginzburg-Landau form 

f ( m ) =  ~ ( m  4 -  2 m 2 + 4 e m )  (6) 

where f0 > 0 is a bulk free energy density scale and e 
describes the mismatch with respect to coexistence. For e = 
O, f(m) exhibits two equal minima at m•  = • (without 
loss of generality m can be scaled to be • in the two 
coexisting phases). For positive e, the global minimum is 
at m_  = 2 c o s ( r  with r = arcos(-3-v/3e/6) 
while it is at m+ = 2 cos(r  for negative c. 

ii) The square-gradient term in (4) represents a free energy 
penalty for a inhomogeneous system and is practically 
nonzero only in the vicinity of an interface between the 
two coexisting phases. ~ a microscopic bulk correlation 
length governing the width of such an interface determin- 
ing the surface tension. 

iii) The nonlocal interaction between the order parameter with 
the kernel w(r) is a slight extension to the usual local 
Ginzburg-Landau model. It may be relevant to describe 
long-ranged interaction of the order parameter, see e.g. 
one example in the context of surface melting in [18]. 
The interaction between the order-parameter field and the 

colloidal particles is modelled by the following expression: 

N 

i=1 
(7) 

where Vpo(r) describes the interaction between the particles 
and the order parameter field. The action of Vpo(r) can be 
viewed to shift the coexistence parameter e locally. If Vpo(r) 
is negative it will favour formation of the phase corresponding 
to the positive order parameter m+ and vice versa. Normally 
Vpo(r) should contain a hard-core term due to the finite size 
of the particles. The occurence of Vpo(r) may induce wet- 
ting [19] of the particle surface by the phase that is favoured 
by the particles. Even if this phase is not globally stable a 
mesoscopic portion of this phase may be formed at the parti- 
cle surface. Since the particles are moving, the shape of this 
wetting layer changes in time and depends on the actual con- 
figuration {Ri} of the colloidal particles. Thus the problem is 
a wetting situation in a complicated geometry made up by the 
actual positions of the colloidal particles. It is the interaction 
of the wetting layer with the particles that may cause effective 
attractive interactions between the colloidal particles and may 
even drive a phase separation. This effective interaction is ex- 
pected to have a strong many-body character and thus cannot 
be described well by an effective pair potential since the spatial 
region occupied by the wetting phase has a complicated shape 
and can also have a complicated topological structure contain- 
ing holes, tubes etc. A typical situation is qualitatively shown 
in Fig. 1. The part of the wetting phase (grey zone) may be 
complicated and comprise one single, two or many particles 
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Fig. 1. Qualitative shape of the wetting phase (grey region) around the 
colloidal particles (black circles). This region can comprise several 
particles and can also have a complicated topology with holes etc 

depending on the particle density and on the actual particle 
positions (black circles). 

Mathematically the dynamic interface in the presence of 
the colloidal particles is obtained by solving Euler's equations 
of the Lagrangian fiSh-tot for the order parameter field 

&7(Ira(r ) ] ,  {R~}) = 0 (8) 
~m(r) 

This yields the minimizing density field m(~ {/://}) which 
depends parametrically on the particle coordinates. In per- 
forming the minimization there is a difference between a con- 
served or nonconserved order parameter. For a nonconserved 
order parameter the minimization is free, for a conserved one 
it is subjected to the constraint 

d3r re(r)  = ~ (9) 

where rh is the mean value of the order parameter which is an 
additional input variable. This constraint can be easily incor- 
porated into the Lagrangian ~ o t  by using a Langrange mul- 
tiplier. Finally Euler's equations for the particle coordinates 
read 

N 
= -vR  vpp(I n j  - I) + (10) 

j;jsJi 

In addition to the direct forces stemming from Vpp (r) there are 
effective pseudo-forces F~ on the macroparticles induced by 
the solvent order parameter field 

F~) = - / a  d3r m(~ {RJ})VR~ Vpo(l r - R i  I) (11) 

These pseudo-forces clearly exhibit a many-body characte~ It 
is only in the case of a quadratic functional that these forces 
become pairwise. This is discussed in detail in the next sec- 
tion. As a final remark we mention that Frink and van Swol 
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have recently also considered a similar approach to model the 
nature of the solvent [20]. Their calculation, however, does not 
include a first order phase transition of the solvent. 

3. Quadratic expansion of the functional 

Far away from coexistence the solvent practically is in one 
bulk phase described by a nearly constant order parameter 
field rn(r) = m0 where m0 is the minimum of the free energy 
density f (m).  If  only small deviations from m0 are considered, 
it is justified to expand the nonlinear free energy density f ( m )  
up to second order 

1 
f (m)  ~ f(mo) + -~f2(m - too) 2 (12) 

where f(mo) is an additive constant which can be set to zero 
without loss of generality and f2 = d2f(mo) /dm 2 > 0. If 
f (m)  is replaced by its quadratic expansion (12), the free en- 
ergy functional is completely quadratic and the minimization 
equation is linear in re(r). Consequently, the minimization of 
the functional with respect to the order parameter field can 
be done analytically by Fourier transformation. The resulting 
minimizing order parameter field rn(~ {/g~}) in the field 
of N macroparticles then is a linear superposition of orbitals 
r h ( r ) :  

N 

m(~ {Ri}) = mo + p +  Z ~ ( I  r - R i  I) (13) 
i=l 

The orbitals are explicitly given by 

rn(r) = - f d 3 k  

Vpo(k) (14) X e x p ( - - i k  �9 r) f2 + f0(~k) 2 + (27v)3~(k) 

where Vpo(k) is the Fourier transform of the particle-order- 
parameter interaction 

1/ 
Vpo(k) - (2rc)3 d3r exp(ik,  r)Vpo(r) (15) 

Likewise t~(k) is the Fourier transform of w(r). Furthermore, 
in (13 ), # is a Langrange multiplier which guarantees the given 
averaged value ~ of the order parameter field if it is conserved. 
For a non-conserved order parameter # is zero. 

The linear superposition of orbitals finally yields to an 
effective pairwise interaction between the macroparticles in- 
duced by the solvent order parameter. The effective interaction 
can be described by the spherical-symmetric pair-potential 

/ ,  

V~ff(r) = - (2re) 3 J d3k 

x e x p ( - i k  �9 r )  
f2  + f0 (~k )  2 + (271-)3tV(k) 

(16) 

Several remarks are in order: First, if the sign of V, po(r) is re- 
versed the effective interaction does not change. If w(r) = 0 
and V, po(r) has a fixed sign, Vpo(r) >_ 0 or Vpo(r) <_ O, one 

can easily show that Veer(r) _< 0. This implies that the ef- 
fective forces between the colloidal particles induced by the 
solvent order parameter are always attractive in this case. If 
this attraction is strong enough it may drive liquid-gas phase 
separation. Second, if the solvent is far away from any phase 
transition, V~o(r) is short-ranged and small [21], so this effec- 
tive attraction can completely be neglected. Third, the effective 
interaction does not depend on whether the order parameter is 
conserved or not. 

More explicit results for %(r) and V~ff(r) can be obtained 
if Vpo(r) and w(r) are explicitly specified. One simple example 
is a contact interaction 

Vpo(r) =Vo6(r) (17) 

which may be repulsive or attractive depending on the sign of 
V0 together with a vanishing non-local interaction, w(r) = O. 
In this case one obtains a Yukawa form for the order parameter 
orbital 

4rcf0~2r exp - r/~ (18) 

and an effective Yukawa attraction between the macroparticles 

Veft(r) - 47rfo~2r 

irrespective of the sign of t/0. These results for rh(r) and V~ff (r) 
are visualized in Figs. 2 and 3 where also two other cases for 
Vpo(r) are displayed (w(r) is always chosen to be zero): a 
square well potential 

Vpo(r) = VoO(R - r) (20) 

O(x) denoting the unit step function, and a potential with al- 
ternating sign consisting of two &peaks, an attractive one at 
the origin and a repulsive one at a certain distance R, i.e. 

Vpo(r) = V o ( 5 ( r )  - c a ( R  - r ) )  (21) 

with c > 0. While the square-well potential which is more 
realistic than the contact interaction qualitatively shows the 
same orbital and effective pair-potential as the exactly soluble 
contact interaction (17), an oscillating form of Vpo(r) may also 
induce oscillations in V~rf(r). 

It is easily shown that an effective pair-potential is equiv- 
alent to a quadratic free energy functional. Near a first or- 
der phase transition of the solvent, however, f (m)  is highly 
nonlinear with two minima representing the two coexisting 
phases. It is thus expected that there are massive corrections 
to the approximate pair-potential description given by (16). 
These corrections intrinsically contain many-body forces be- 
tween the particles induced by the particle-order-parameter 
interaction. Since one cannot solve the minimizing equation 
for the order-parameter profile analytically in this case, one is 
forced to perform a numerical simulation of the particle-order- 
parameter interaction. This is described in detail in Sect. 5. 
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Fig. 2. Order parameter orbitals rh(r) versus r in the quadratic ap- 
proximation for three different particle-order-parameter interactions 
Vpo(r). i) contact interaction (solid line): Vpo(r) = -VoS(r); ii) 
square well interaction (dot-dashed line): Vpo(r) = - VoO(a - r) /a3 ; 
iii) "oscillating interaction" (dotted line): Vpo(r) = -Vo(56(r) - 
1 ~228(r - a)) Here, Vo > 0 sets the energy and a the length scale 5 
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Fig. 3. Same as Fig. 2 but now for the effective interaction potential 
l/;fr(r) :~ U(r) between two macroparticles which is measured in 
units of V0 

4. Simplified picture of the phase separation 

In order to get a qualitative insight into the physical mechanism 
driving a colloid phase separation we first give a simplifiedpic- 
ture using simple thermodynamic arguments. In considering a 
situation with an order parameter field describing a situation 
near coexistence of  a phase A with a phase /3  we adopt the 
following approximations: 

i) The order parameter field is taken to be either mA = 1 or 
mB --= --1 with an infinitely sharp interface between the 
A and t3 region. This means that microscopic details of  
the order parameter field are neglected. 

ii) The complicated structure of  the A/3-interface as sketched 
in Fig. 1 is either completely neglected or approximated 
by nonoverlapping spheres around the colloidal particles. 
This is the strongest assumption we make. 
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iii) We neglect long-ranged order parameter interactions, i.e. 
w(r) -- O. This is not a severe approximation. 
Without loss of  generality we assume that A is the 

metastable phase and that A wets the colloidal spheres. Con- 
sider the thermodynamic stability of  two different situations 
a) and b). In the first case a) the colloidal spheres are in a 
fluid phase and covered by a mesoscopic spherical drop of the 
metastable solvent phase A belonging to an order parameter 
mA ~ 1 while the rest of space is covered by the stable phase 
B characterized by an order parameter m B =  - 1. In the sec- 
ond situation b) there are only two simple-connected regions 
of space for the A and B phase corresponding to a volume of  
f~A and f ib  such that the total volume f~ equals f~A + f~B. In 
both regions the colloidal particles are in a fluid phase. How- 
ever their density is different in both regions, in general: it is 
PA = NA/ f~A in the A-region and PB = NB/ f~B in the B-  
region such that p = N/f~ = (NA +NB) / (QA +~B).  There are 
two extreme cases of b) which we call c) and d): In situation c) 
there is no region with phase A (f~A = 0) while in d) phase/3 
is absent (~2B = 0). All situations a) - d) are sketched in Fig. 4. 

4.1. Conserved order parameter 

We first assume that the order parameter is conserved with 
a given mean value rh, - 1  -= m B <  ~a < mA = 1. This 
implies 

= m A ~ - + m B  1 - - - -  (22) 

Hence f~A is fixed by f~A = f~(rh + 1)/2. In situation a), the 
total free energy of  the non-phase-separated system is approx- 
imately given by 

F I ( ~ A )  = 8 fOe~A + f~ fp(p, T)  + N~47rRZ(f~A) 

+ Nf~(f~A) (23) 

Let us explain the different terms in detail: First 8f0ef~A is the 
free energy cost to create a volume f~A of phase A where 
e > 0 measures the distance to coexistence of A and B. 
Furthermore fp(p, T)  is the bulk free energy per unit volume 
of  a fluid interacting solely via the pair potential Vvp(r). For 
Vpp(r) = k B T G ( ~ / r )  12, all static quantities only depend on 
the so-called coupling parameter 

p = per 3(G/4)1/4 (24) 

Hansen [22] has given an empirical fit for fp(p, T)  based on 
Monte Carlo data (see also Pastore and Waisman [23]): 

fp(p, T ) / ( k B T p )  = ln(p~ 3) - 1 + 3.629F 

+ 3.632F 2 + 3.4975F 3 + 2.86475F 4 

+ 0.217619F I~ (25) 

which is valid for the whole fluid range up to freezing occurring 
at P = 0.814 [22]. Furthermore in Eq. (23), "7 is the surface 
tension of  the A B  interface which can be exactly calculated 
at coexistence (e = 0) for a planar AB-interface resulting in 

4 v/~f0~ (26) ~ / = ~  
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Fig. 4a-d. Sketch of the four situations considered in Sect. 4: a each colloidal sphere is surrounded by a spherical drop of the metastable phase 
A with radius/~; b one region of space with volume f2A is occupied by phase A and the colloidal particles having a density pA, the other part 
is occupied by phase/3 with a different colloid density PB; e all colloidal spheres are contained in one large region of the stable phase/3; d 
all colloidal spheres are contained in one large region of the metastable phase A. Situations e and d are two extreme limits of b 

Moreover/~ is the radius of the phase A droplets 

]~(f~a) = 4~p (27) 

Finally the energy gain in wetting the colloidal surfaces by 
phase A is accounted for by the term Nf~(f~A) where 

f~(f~A) = 47rmA .~n R(aA) dr~'2Vpo(r) 

/5 + 4~rraB drraVpo(r) (28) 
(t2A) 

Note that for our situation f~(t2A) is negative. We state two 
comments on the droplet situation a): First, it only makes sense 
for f~a/t2 < 7rv/2/6 = 0.74048 which is the volume fraction 
of  dense-packed spheres. Second, the total surface tension is 
overestimated since the spheres do not fuse which would result 
in a drastic reduction of  the free energy. 

In the second situation b) similar arguments lead directly 
to the following expression for the total free energy 

< )  Fa(t2A, NA) = 8f0et2A + f~Afp ~AA' T 

+ NAf~ -- (N - NA)f~ (29) 

with 

/5 f~ = 47r drr2Vpo(r) (30) 

since the colloidal particles are now completely surrounded 
by one big volume either of  phase A or B. The free energies 
belonging to the special cases c) resp. d) are easily obtained 
by setting f~a = 0 resp. f~A = f~ in (29). The physical realized 
value N ~  ) of NA corresponds to the minimum of F2(f~A, NA) 
with respect to NA within the bounds 0 _< NA <_ N.  Clearly 
this minimum is a function of t)A, i.e. N}~ ) = N}~)(t2A). 



Phase separation occurs if the free energy of situation b) 
is lower than that of situation a) 

F2(f~A, m(~ )) < FI(f~A) (31) 
F- 

and if the the partial densities differ PA = NA/f~A =/ -~: 
NB/f~B : pB. b 

4.2.Non-conserved order parameter 

For a non-conserved order parameter the expression for the 
free energies Fl(f~a) and F2(f~A, NA) are the same but f~A 
is not fixed but adapts itself such that it minimizes F1 (f~a) 
resp. F2(f~A, N}~)(f~a) for fixed given p and T. Let f~ )  

be the minimizing volume of FI(f~A) and f ~ )  be that of 
(0) s 5;~ (f~A). 

Now phase separation occurs if 

(32) 

and if the minimizing volume fl(~ ) is different from 0 and f2 

and if PA ~ PB. In general, f ~ )  ~Z f~ )  which implies that the 
condition (31) differs from (32). 

Using the condition (32), the region of phase separation 
was investigated for different surface tensions "7 and varying 
e. In an experiment, typically all material parameters are fixed 
and one basically varies the distance to coexistence e by chang- 
ing the temperature for instance. Therefore we have investi- 
gated the region of phase separation using the condition (32) 
for varying e including also different surface tensions 3'. One 
result is shown in Fig. 5. One sees that all four different situ- 
ations a) - d) do occur. Experimental paths are parallel to the 
e-axis. Obviously far away from coexistence (e --+ oc) situa- 
tion c) is stable while at coexistence (e = 0) all space is filled 
up with the formerly metastable phase A. In between there is 
a phase separation line and there are different scenarios which 
one may encounter experimentally. If one reduces e for low 3' 
there is first of all a transition from c) to a) where one observes 
droplets. Then phase separation occurs in crossing from a) to 
d). For large ~ the intermediate droplet situation a) is not re- 
alized. In between there is an interesting possibility for phase 
separation from c) to b) and then a re-transition into a one- 
phase region a) and again a phase separation towards b). Of 
course in situation b), PA > P and PB < p. 

For a conserved order parameter the situation is of course 
more difficult since also Ca has to be prescribed. 

In the following we shall abandon these simple consider- 
ations but solve the full Ginzburg-Landau model by computer 
simulation. We shall see that the phase separation found there 
is consistent with the phenomenological arguments of this sec- 
tion. This strongly supports the view that the full solution does 
not destroy qualitative aspects of the phase separation line but 
may give rise to a significant shift of the phase separation line 
with respect to the simplified results of this section. It is also 
expected that a non-vanishing kernel w(r) only shifts the phase 
separation line but does not change the scenario qualitatively. 
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Fig. 5. Stability of the four different situations a-d in the u,/-plane 
as predicted by the simple considerations of Sect. 4. 7 is given in 
units of kBT/o- 2. The dashed lines separate the different situations 
a-d. An experimental path (7 = const) is also shown by the arrow. 
We have taken a non-conserved order parameter with an interaction 
Vpo ( r )  : - 30]r To--3 exp(-- 11.1 (r/o-) 2) The remaining parameters 
are G = 10, fo = 21~BT/o- 3, p = 0.382o- .3 

5. Computer simulation of the phase separation 

A full computer simulation of the Ginzburg-Landau model can 
be achieved by using a classical version of the Car-Parrinello 
algorithm [24] which was already applied to charged colloidal 
suspensions [25, 26] where the counterionic density field was 
explicitly taken into account, for another application see [27]. 
Here we proceed in a similar fashion. We take N= 108 colloidal 
particles in a cubic box with periodic boundary conditions and 
parametrize the order parameter field by its Fourier expansion 

m(r)  = Z m a  exp(iG �9 r)  (33) 
G 

where the sum is over all reciprocal lattice vectors G of the 
cubic box. In practice this sum has to be cut off; we include of 
about 262000 different reciprocal lattice vectors correspond- 
ing to an order parameter field in real space on a 643 cubic 
grid. Following Car and Parrinello, we add a fake kinetic en- 
ergy term 

KI = ~ Z g G  ~ -  (34) 
G 

to the total Lagrangian ~ o t ,  see Eq. (2). From a precondition- 
ing method proposed in [27], we examine the exactly soluble 
case where f ( m )  is a parabola and determine the fake mass 
to be 9c  = 90(1 + (~G)2/4) where 90 is chosen sufficiently 
small such that the fake kinetic energy K f  remains small dur- 
ing the simulation. The starting configuration of the colloidal 
particles was gained from an ordinary Molecular Dynamics 
simulation for a system with Vpp(r) as the only interaction. 
The minimum of the order parameter field was obtained by 
a simulated annealing method [26]. The Euler equations of 
motion were solved for the colloid positions (see (gradient)) 
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and for the fictitious coordinates { m a  } using a finite t ime step 
method. After a long equilibration period statistics were gath- 
ered for the colloid+order-parameter-field system. One time 
step consumed of  about 0.5 seconds on a Cray YMR One run 
took of  about 10000-20000 time steps. By watching the po- 
sitions of  the colloids one can check whether they are in a 
phase-separated state or in one single fluid phase. 

We have used the following form for Vpo (r) in our calculations: 

Vpo(r) = EkBT~7 -3 e x p ( - ( r / A )  2) 

with a dimensionless amplitude E usually taken to be negative 
and a range I .  In order to keep the model simple, we further- 
more assume a vanishing long-ranged order parameter inter- 
action although its incorporation would be straightforward in 
the Car-Parrinello method. We have performed four runs A, 
B, C and D the parameters of which are summarized in Table 
1. The order parameter was always taken to be conserved. A 
non-conserved order parameter field can be treated in the same 
fashion. 

Table 1. Parameters of the four different runs A, B, C and D. Given 
are the soft-sphere interaction amplitude G, the order parameter cor- 
relation length (, the free energy density scale f0, the distance e from 
coexistence, the mean order parameter ~ .  The coupling potential 
Vpo(r) is taken to be Vpo(~) = EkBT0- 3 exp(- ( r /A)  2) where the 
amplitude E the the range A are also given. The density of the col- 
loidal particles is fixed to be p = 0.3820 "-3. The order parameter is 
assumed to be conserved 

run G ~/~ ~ 3 / k B Z 6  m E ~/~ 
A 4 0.224 0.4 0 0 -0 .050.5  
B 0.1 0.2 2.5 0.10 - 1  0.6 
C 0.1 0.245 5. 0.10 - 2  0.75 
D 4 0.05 2 0 . 1 - 0 . 5 - 2  0.5 

6. Resu l t s  

6.1. Pair correlation function 

One of the key quantities characterizing static correlations in 
the fluid state is the pair correlation function 9(r) which is 
defined as 

N 
1 ~ < 6 ( ~ - ( ~ - R j ) ) >  (35) 

g(r) p N  i,j=l;i4J 

where < ... > denotes a canonical average. Results for 9(r) for 
the four different runs A-D are shown in Figs. 6 and 7. Here 
also the results for a pure soft sphere system (Vpo(r) -- O) 
are shown. In a non-phase-separated situation, the height of 
the first maximum in 9(r) is a measure for the strength of  the 
interparticle interaction provided the particle density p and the 

t .5  

t .0  

.5 

0.0  

Fig. 6. Pair correlation function 9(r) versus r/o- for run A (solid line) 
and run D (dashed line). For comparison also the result for the pure 
soft-sphere interaction is also given (dot-dashed line). The dashed 
curve has a large statistical error. The three curves practically coincide 

i 

1 2 

r / O "  

Fig. 7. Pair correlation function g(r) versus r/o- for run B (solid 
line) and run C (dashed line). For comparison also the result for 
the pure soft-sphere interaction is also given (dot-dashed line). The 
results indicate a region with a higher density indicating colloid phase 
separation 

temperature T are fixed. On the other hand, the position of the 
first maximum is a measure for the mean interparticle distance. 

For run A (Fig. 6), Vpo(r) is small and hence 9(r) prac- 
tically coincides with that of  the pure soft sphere case. This 
implies that the pseudo-forces are negligibly small compared 
to the direct forces stemming from the soft-sphere interaction. 
In run B (Fig. 7), the positions of the first maximum shifts a bit 
to a smaller values as compared to the soft-sphere reference 
case. This indicates that in a certain region of  space there is 
a particle density that is higher than p. Correspondingly the 
height has increased also pointing out that in the denser space 
the correlations are stronger. This trend is much more pro- 
nounced in run C (Fig. 7) where there is a significant shift in 
the position to smaller values and also a height that is much 
larger than in the soft-sphere case. We thus may tentatively 
classify runs B and C as being phase-separated. Finally the 
9(r) in run D (Fig. 6) is within the large statistical error also 
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identical to the soft-sphere result indicating that the situation 
is not phase-separated. 

6.2. Typical configurations 

Whether there is phase separation or not is more directly seen 
if one considers configurations of  the colloidal particles and 
the interface between the metastable phase A and the stable 
phase B. In Fig. 8, a slab with size L • L x L/3 is considered 
comprising the xy plane of the cubic simulational box and a 
third of  the length in z-direction. Here L is the box length. The 
projection of the colloid positions onto the xy-plane is denoted 
by circles. To visualize the location of the interface we have 
averaged the order parameter field along the z direction for 
each real space grid point of  the xy-plane. If  it is negative 
belonging to the region of phase A, it is denoted by a black 
point. In the opposite case, it is not marked. Hence the white 
region corresponds to phase /3 and dotted region to phase 
A. For runs A and B (Figs. 8a, b) there is only one single- 
connected region of phase A. The density PA in this region 
is discussed in 6.4. In run C, all particles are surrounded by 
one big region of phase A while in run D (Fig. 8d) the AB 
interface has a complicated structure and depends heavily on 
the configuration of the colloidal particles. Hence, it it clear 
that run C is in a phase-separated situation and D is not phase 
separated. 

6.3. Fit of the effective many-body forces by an optimal 
pair-potential 

During the simulation we stored the effective pseudo-forces 
{F~} and the corresponding positions {R~} of the colloidal 
particles. These effective forces exhibit a many-body charac- 
ter. It is interesting to check whether they can be fitted by an 
effective pair-potential V(r) by minimizing the expression 

N N 2 

~ I " ~ P + Z (  OV(r)?~]r=(Ri-Rk))Or r (36) 
i=1 k= l ;ksti 

In the context of charged colloidal suspensions such an opti- 
mal effective pair-potential can be found which then represents 
a simple but reasonable approximation for the total effective 
interparticle forces [28]. In our case the pseudo-forces could 
not be well fitted by a pair-potential. On the level of  the force 
the deviations were always of the order of 30% ! This indicates 
that the interaction has an important non-trivial many-body 
character where the whole cluster with many colloidal parti- 
cles surrounded by the metastable phase A contributes to the 
pseudo forces. 

6.4. Partial densities: comparison with the simplified 
picture 

For runs A, B and C simulation results for the partial densities 
PA and PB of the colloidal particles in the A resp. B region 
are summarized in Table 2. Run A corresponds to situation b) 
with PA = PB = P. Hence, in accordance with our previous 

findings, there is no phase separation for run A. In run B, 
however, PA differs from PB. Consequently, this is a phase- 
separated situation b). In run C, one extreme limit of situation 
b), namely the special case pB = 0 is realized, we can speak 
of complete phase separation. Finally for run D, the partial 
densities are not well-defined. 

The simplified picture of Sect. 4 predicts the stability of  
situation b) against situation a) for the parameter combina- 
tions of all four runs A-D. Consequently, the situation of run 
D which is a) rather than b) is not well-described. This is of  
course due to the approximation of nonoverlapping spheres: 
the surface tension is strongly overestimated since the nonover- 
lapping spheres have a large surface that is drastically reduced 
in reality, see again Fig. 8d. For runs A, B and C the results 
of  the simplified picture are very satisfactory. It reproduces 
the homogeneous situation of run A and the complete phase 
separation of run C. In run B the non-trivial partial densities 
are reproduced with an accuracy of less than 5%. Hence the 
simple picture is capable to predict phase separation lines in 
situation which do not involve situation a). 

6.5. Topological diagnosis of the interface at phase 
separation 

One natural topological quantity is the number of  clusters per 
particle nc = <  Arc > /N  of the metastable phase A where 
< Nc > is the canonical average of the number of connected 
A-clusters. (An A-cluster is a single-connected region of space 
containing a negative order parameter field.) In situations b), 
c), d) of  the simplified picture,n~ vanishes since there is only 
one big cluster of  phase A. In situation a), on the other hand, 
we get nc = 1. This, however, is an upper bound since in an re- 
alistic situation the spheres are overlapping and form common 
clusters such that n~ < 1 on average. 

We have calculated nc from our simulational data using 
the Hoshen-Kopelman algorithm [29]. The results for n~ in 
the different runs A-D are summarized in Table 2. In run D, 
we have n~ = 0.40 while in all other runs nc vanishes. One may 
expect that the route towards phase separation from a situation 
a) occurs in such a way that nc decreases continuously and then 
jumps discontinuously from a critical value n(~ ~) > 0 to zero. 
The finite value of n~  ) corresponds to a percolation threshold, 
see [30]. 

Table 2. Partial densities pA and PB resulting from the computer 
simulation for runs A, B, C and D. For comparison also the results 
for the partial densities from the simplified picture of Sect. 4 are given 
(p~) resp. p~)). For run D, PA and pB are not defined. However, the 
simplified picture yields the stability of situation b) rather than the 
correct situation a). Also given is the averaged number nc of order 
parameter clusters per particle 

(s) run ~ / p  pB/p pA /p p~)/p~o 
A 1.00 1.00 1.00 1.00 0 
B 1.39 0.61 1.42 0.58 0 
C 2.00 0.00 2.00 0.00 0 
D - 1.19 0.94 0.40 
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Fig. 8a-d. Typical configurations of the colloidal particles and the AB interface. The spheres denote the positions of the colloidal particles 
projected to the xy-plane of the cubic simulational box having a length L. Only a slab is considered, i.e. only positions with a z-component 
between 0 and L/3 are shown. The resolution of the dark pixels exactly corresponds to the finite real-space grid in the xy-plane used in the 
simulations. There is a dark pixel if the z-average of the order parameter field over the slab is positive which means that there is more of the 
metastable phase A. A white region indicates the opposite, namely that the z-average of the order parameter field is negative, a For run A. b 
For run B. c For run C. d For run D 

One may further speculate that the Euler characteristic of 
the AB-interface may reveal further interesting diagnosis of  
the phase separation. The relation of the Euler characteristic 
to percolation problems has been clarified by Mecke and Wag- 
ner [31]. It has also recently been applied to characterize the 
structure of  membranes and microemulsions [32]. 

7. Conclusions 

In conclusion, we have discussed a colloid phase separation 
driven by a first-order phase transition of the solvent. The 
metastable phase wets the colloidal surfaces forming clusters 
of  this solvent phase around the colloidal particles. The sys- 
tem can reduce its free energy by separating into two differ- 
ent regions: one is filled with the metastable phase and con- 
tains colloidal particles with a higher number density than the 

global average, the other region with the stable solvent phase 
contains only few colloidal particles. With a simple thermo- 
dynamic model, qualitative diagrams with different routes to- 
wards phase separation have been been discussed. Based on 
a Ginzburg-Landau model, computer simulations have also 
been performed resulting e.g. in a topological diagnosis of the 
interface between the two solvent phases. 

One challenging problem is to calculate a complete phase 
separation diagram with computer simulation and use realistic 
material parameters to describe an experiment. Since this re- 
quires a multitude of  different runs, it is a difficult task. More 
modestly, one can look whether there are experiments which 
exhibit at least qualitatively the scenario of phase separation 
proposed in this paper. A series of interesting experiments have 
been performed by Beysens and coworkers on colloidal silica 
spheres with a solvent mixture consisting of  water and luti- 
dine [33, 34]. In the vicinity of  the lower consolute point of  
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the solvent mixture the colloidal spheres aggregate since they 
cover themselves with a lutidine-rich layer. Hence it appears 
that this aggregation is exactly the phase separation discussed 
in our paper. Also the effect of  added salt was studied and 
it was found that the flocculation disappeared when salt was 
added [35]. Within our theoretical approach this can be un- 
derstood qualitatively as a change in the interaction between 
the colloidal particles and the order parameter field due to 
the presence of salt at the colloidal surfaces. More recently 
experiments on silica colloids in reentrant liquid mixtures of  
3-methylpyridine plus water plus heavy water exhibit a similar 
flocculation near the solvent phase transition [36]. 

Recently Palberg [37] reported another interesting phase 
separation in highly salted aqueous colloidal suspensions near 
the ice freezing point. He observed that there are mesoscopic 
regions of ice containing no colloidal spheres. So fluid water 
wets the colloidal surfaces rather than ice. The phase sepa- 
ration mechanism can thus effectively be exploited to con- 
centrate suspensions by cooling them down and removing the 
mesoscopic icy parts. 

I thank Herbert Wagner, Gerhard Gompper, Thomas Palberg and 
Jean-Louis Barrat for helpful discussions. This paper is dedicated 
to Herbert Wagner on the occasion of his 60 'h birthday. 
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