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Abstract. The phase behaviour of hard spherocylinders is calculated using the classical
density functional theory of freezing. In particular, we construct a modified weighted-density
approximation and calculate the bulk phase diagram. While the stability regime of the isotropic,
nematic and smectic-A phases is in reasonable agreement with computer simulation data, the theory
fails to describe the correct stability of the crystalline phases. Furthermore, we investigate the phase
behaviour in an external field coupling to the orientational degrees of freedom. As a result, bulk
phases which have the same translational symmetry but a different orientational symmetry can be
transformed continuously into each other above a critical strength of the external field.

1. Introduction

Colloidal suspensions of rod-like macromolecules are ideal model systems exhibiting liquid-
crystalline phase transformations. One prominent example is an aqueous solution of tobacco
mosaic viruses [2]. In a theoretical description one usually starts with the interactions between
the rods, and then predicts the phase behaviour as a function of the thermodynamic parameters.
Since this is a formidable task, in general, one typically tries to keep the model as simple as
possible in order to reduce the relevant parameters. One of the simplest non-trivial models
comprising an anisotropic interaction is that of hard spherocylinders (HSC) where solely
excluded-volume forces are considered. This immediately implies that the temperature is an
irrelevant variable. A spherocylinder consists of a cylinder of lengthL and diameterD capped
with two hemispheres of the same diameterD at the ends. The HSC model can be used to
describe lyotropic liquid crystals. It has the further advantage that its isotropic limitL → 0
leads to the well-known hard-sphere model.

The HSC system has attracted attention since the early calculations of Onsager [28], who
demonstrated the existence of a first-order isotropic–nematic phase transformation for large
aspect ratiosp = L/D. The full phase behaviour for arbitrary length-to-width ratios was
recently explored by computer simulations by Bolhuis and Frenkel [3]. The phase diagram
obtained was very rich including stable isotropic, nematic, smectic-A, plastic crystalline and
fully crystalline phases with both ABC and AAA stacking sequences. Subsequently we
proposed a simple theory [9,10] combining scaled-particle methods for the disordered phases
with a cell description for the solids. This cell theory was able to reproduce the overall phase
behaviour with two empirical fitting parameters. In this paper we shall use a density functional
approach to predict the phase diagram. The reason for doing this is twofold: first, a complete
‘ab initio’ description is wanted avoiding any heuristic ingredients; second, once a density
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functional is found describing the bulk phases, in principle it can be directly used to calculate
the influence of external fields on these phase transitions.

For hard spheres, different approximations for the density functionals are available which
give in general excellent results for the freezing transition; for a review see e.g. [8,22,29]. A
more complicated but less-studied system is that of strictly aligned non-spherical hard particles
avoiding the complexity arising from the statistical average of the orientational degrees of
freedom. For parallel hard spherocylinders, the smectic branch was determined by searching
for instabilities in the nematic phase [14, 26, 45]. Also the solid phase was included in such
models [57].

A full consideration of the additional orientational degrees of freedom complicates the
calculations enormously. Besides the Onsager approach for infinitely long rods only few
attempts have been made to compute the phase behaviour of finite-length particles using
scaled-particle [18] and density functional theory (DFT). As regards the latter, there is the
approximation of Parsons where the functional is appropriately scaled to map onto the excess
free energy of the spherical fluid phase [30]. This theory reproduces the isotropic–nematic
transition fairly well [20]. The approach has also been used to include the smectic phase via a
stability analysis of the nematic phase [6,7,46,47]. Furthermore, a weighted-density approach
was put forward by Poniewierski and Holyst [33,34].

The aim of our paper is twofold: first, we make an attempt to describe the full phase
diagram of HSC including all crystalline phases by density functional theory; second, we study
phase transformations in the presence of an external field. In the density functional approach,
we have used the weighted-density approximation [33, 34] together with a modification used
for hard spheres by Denton and Ashcroft [5]. As a result, however, this version of DFT is not
capable of reproducing the phase diagram completely. In particular, the smectic phase always
‘beats’ the fully crystalline phase even at high packing fractions, which is clearly an artifact
of the theory. On the other hand, the less-ordered phases are well described and all of their
phase coexistences are in good overall agreement with the computer simulation data.

Once a density functional description is established for the bulk phases, it can be used to
study phase transitions in an external field. In this paper we study an external field which
couples to the orientational degrees of freedom and investigate how the different liquid-
crystalline transitions are affected by the field. This question has been studied previously only
for the isotropic–nematic transition, both theoretically [13, 15, 17, 52, 56] and experimentally
[21,27,49]. In particular, it has been seen that the isotropic–nematic transition vanishes above a
critical field strength. In the present work we extend the analysis to other transitions, including
the smectic-A, the plastic and the fully crystalline phases. As theoretical tools, we use both
density functional theory and the cell model of references [9,10]. Our main result is that any
two phases which possess the same translational symmetry can be transformed continuously
into each other if a critical threshold of the field strength is reached.

The paper is organized as follows. In section 2 we develop the modified weighted-density
functional theory for HSC and discuss the resulting phase behaviour. An external field acting
only on the orientational degrees of freedom is introduced in section 3. We finish with a
forward look in section 4.

2. Modified weighted-density functional theory for hard spherocylinders

2.1. The model and basics of density functional theory

We consider a system ofN hard spherocylinders in a volumeV with a finite number density
ρ = N/V . The cylindrical part of the rods has a lengthL and a widthD; hence the aspect
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ratio isp = L/D. It is convenient to scale densities in terms of the close-packed density

ρCP= 2

(
√

2 +
√

3p)D3
(1)

i.e. we use a reduced densityρ∗ = ρ/ρCP. The phase diagram is completely governed by these
two parameters,p andρ∗.

The key quantity of density functional theory is the one-particle densityρ(1)(Er, Eω)
depending both on the translational degree of freedom,Er, and the orientational degree of
freedom,Eω. Here,Er is an arbitrary three-dimensional vector whileEω is a three-dimensional
unit vector.

In the following we present the essential features of themodified weighted-density
approximation(MWDA). We start by writing the density functional of the Helmholtz free
energy as

F [ρ(1)] = F id[ρ(1)] + Fex[ρ(1)] (2)

where the ideal-gas part

F id[ρ(1)] = kBT

∫
dx ρ(1)(x)

[
ln(33ρ(1)(x))− 1

]
(3)

is known exactly.kBT is the thermal energy and3 the (spatial) thermal wavelength, and we
introduced the notationx = (Er, Eω) for the configuration variables. The obvious meaning of∫

dx · · · is ∫
V

d3Er ∫
S2

d2 Eω · · · where the integration runs over the unit sphere where∫
S2

d2 Eω =
∫ 2π

0
dφ
∫ π

0
sin(θ) dθ = 4π.

Different density functional theories approximate the excess part on different levels. Let
us first write

Fex[ρ(1)] =
∫

dx ρ(1)(x)9 inh([ρ(1)];x) (4)

where the excess free energy per particle of the inhomogeneous fluid at the configuration point
x is denoted by9 inh([ρ(1)];x).

In the weighted-density approximation [4, 50], the functional9 inh is replaced by the
corresponding expression of the uniform system, evaluated however at a reference densityρ̄:

9 inh([ρ(1)];x) ≡ 9[ρ̄(x)]. (5)

In this approximation some correlations are taken into account non-perturbatively.ρ̄ is a
weighted average of the actual density

ρ̄(x1) =
∫

dx2 w(x1,x2)ρ
(1)(x2) (6)

where the weight functionw(x1,x2) has to fulfil the normalization constraint
∫

dx w(x) = 1
and typically depends on the weighted densityρ̄ itself.

The modified weighted-density approximation [5] proceeds one step further by averaging
the weighted density with the actual density

ρ̂ = 1

N

∫
dx1 ρ

(1)(x1)ρ̄(x1). (7)

Consequently the excess free energy per particle becomes now a global quantity
Fex

N
= 9(ρ̂) (8)

independent of the configuration pointx, and the weight function turns out to be proportional
to the direct correlation function [5].
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2.2. The approximations of the MWDA

To apply the modified weighted-density approach one has to choose several ingredients: the
form of the bulk excess free energy for a uniform system, the weight function and the actual
parametrization of the density which we describe now in more detail.

2.2.1. Approximation of the excess free energy.For hard spheres, the excess free energy of
a homogeneous system can be obtained analytically within the Percus–Yevick approximation
or equivalently by using a scaled-particle theory. Higher virial coefficients are incorporated
heuristically by the Carnahan–Starling expression [12], where the reduced excess free energy
per particle reads

β9CS= η(4− 3η)/(1− η)2.
Hereη = ρv0 denotes the packing fraction,v0 is the volume of a single particle (sphere or
spherocylinder) andβ ≡ 1/kBT . Much less is known for hard spherocylinders. It is only the
second virial coefficientB2 = π(2D3/3 +LD2 + L2D/4) which is known analytically [28].
Still an approximative scaled-particle theory can be performed [1].

In this study, we choose a different approach following Holyst and co-workers [33, 34]:
the excess free energy9 is approximated by a virial expansion, where one takes the exactly
known second virial coefficientB2 for hard spherocylinders and approximates all higher virial
coefficients with the corresponding ones of hard spheres at the same packing fractionη, namely
by the Carnahan–Starling formula for9CS:

β9(η) = ρB2 + β9CS− 4η. (9)

The equation of state from this functional yields better agreement than the one from scaled-
particle theory [1] when compared to simulation data [3]. Also notable is that this formula
interpolates between the two limiting cases, hard spheres(p = 0) and infinitely long rods
(p→∞) at low densities.

2.2.2. Approximation for the weight function.As noted above, the weight function of hard
spheres in the MWDA is proportional to the direct correlation function. As the direct correlation
function for hard spherocylinders is unknown, we take the low-density approximation, namely
the normalized Mayer functionf2:

w(Er2 − Er1, Eω1, Eω2) = −f2(Er2 − Er1, Eω1, Eω2)

2B2
. (10)

The weight function is thus a step function, measuring whether the particles sited at the space
pointsEr1 andEr2 and pointing in the directionsEω1 and Eω2 overlap or not:

w(Er2 − Er1, Eω1, Eω2) =
{

1/(2B2) for overlap

0 otherwise.
(11)

We remark that in one of the original versions of the weighted-density theory, Tarazona [50]
applied such a weight function successfully to the freezing transition of hard spheres.

2.2.3. Parametrization of the density.The density functional has to be minimized with
respect to the one-particle densityρ(1)(Er, Eω) at fixed temperature and fixed average density.
For ρ(1)(Er, Eω) we use a factorizationansatzassuming that the orientational and translational
degrees of freedom are decoupled:

ρ(1)(Er, Eω) = ρ(Er)g( Eω) (12)
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whereg( Eω) is the orientation distribution function andρ(Er) the angular averaged density.
Obviously, the functiong( Eω) can be obtained by integrating over the translational degrees
of freedom: g( Eω) = N−1

∫
d3Er ρ(1)(Er, Eω) and should satisfy the normalization condition∫

S2
d2 Eω g( Eω) = 1. Henceforth we use the explicit parametrization introduced by Onsager [28]:

g( Eω) = α

4π sinhα
cosh(α Eω · Eω0) (13)

whereα is the single variational parameter describing the width of the orientation distribution
around a given directorEω0. The solid structure contained inρ(Er) will be parametrized
differently in the various phases as described later.

2.3. Description of the different phases

2.3.1. The isotropic phase.The one-particle density in the isotropic phase is homogeneous:

ρ
(1)
iso(Er, Eω) = ρ/(4π) (14)

with the overall number densityρ. As the density functional theory starts from the uniform-
fluid phase, the modified weighted density (7) and the overall densityρ coincide:ρ̂ ≡ ρ̂iso = ρ.
The ideal-gas part (3) of the free energy per particle reads

βF id

N
= ln

(
33

4π
ρ

)
− 1. (15)

The excess free energy per particle is given by (4) and (9) as

βFex
iso

N
= 2/3 +p + p2/4

1/6 +p/4
η +

5η2 − 4η3

(1− η)2 . (16)

whereη = ρv0 is the packing fraction.

2.3.2. The nematic phase.In the nematic phase, the particles point along a preferred
direction described by the orientation distributiong( Eω) (13), while their centres of mass are
still homogeneously distributed. Therefore the density parametrization now reads

ρ(1)nem(Er, Eω) = ρg( Eω). (17)

The ideal-gas term (3) now contains besides the part describing the translational degrees of
freedom (15) another part corresponding to ideal rotators obeying the orientation distribution
g( Eω):

βF id,rot

N
=
∫

d2 Eω g( Eω) ln[4πg( Eω)]. (18)

According to the above prescription, the excess free energy has to be evaluated at the weighted
density (7):

ρ̂nem= 1

N

∫
d3Er1 d2 Eω1 ρ

(1)
nem(Er1, Eω1)

∫
d3Er2 d2 Eω2 w( Er2 − Er1, Eω1, Eω2)ρ

(1)
nem(Er2, Eω2) (19)

which can be calculated analytically [28]:

ρ̂nem(α) = ρ 2/3 +p + p2I2(2α)/(2 sinh2(α))

2/3 +p + (1/4)p2
≡ ρ 〈〈vexcl( Eω1, Eω2)〉g( Eω1)〉g( Eω2)

2B2
(20)

whereI2(x) is a spherical Bessel function of real argumentx. Note that due to our choice
of the weight function, the weighted density is proportional to the double angle-averaged
excluded volume〈〈vexcl( Eω1, Eω2)〉g( Eω1))〉g( Eω2) of two spherocylinders pointing in directionsEω1



1440 H Graf and H L̈owen

and Eω2. Here, the brackets〈· · ·〉g( Eω) denote the angular average with respect to the orientation
distributiong( Eω):

〈· · ·〉g( Eω) =
∫
S2

d2 Eω g( Eω) · · · . (21)

To summarize, the free energy in the nematic phase reads

Fnem= F id +F id,rot +N9(η̂nem(α)) (22)

with η̂nem = ρ̂nemv0. Finally, a minimization ofFnem has to be performed with respect toα
which is done numerically [36].

2.3.3. The smectic-A phase.In the smectic-A phase, the particles are arranged in layers
perpendicular to the director. We model this by a modulation of the density along the director,
i.e. parametrize the density as

ρ(1)sm(Er, Eω) = ρ4(kz)g( Eω) (23)

where the director points along thez-axis for convenience,Er = (x, y, z) andk = 2π/d is the
smectic wavelength related to the layer spacingd. As a trial function for the modulation of
the density we use

4(kz) = 1

N4
exp

[ 4∑
n=1

ξn cos(n · kz)
]

(24)

where we include up to four variational parametersξn,n = 1, 2, 3, 4. N4 is present to guarantee
the correct normalization,

∫ 2π
0 4(λ) dλ = 1.

An additional contribution to the ideal-gas free energy arises from the confinement of the
particles in layers. The ideal free energy (3) thus reads

βF id
sm

N
= ln

(
33

4π
ρ

)
− 1 +

∫
S2

d2 Eω g( Eω) ln[4πg( Eω)] +
1

2π

∫ 2π

0
4(λ) ln[4(λ)] dλ. (25)

The main effort when making calculations for the smectic phase is in the evaluation of
the weighted density. To overcome the problem of calculating the high-dimensional integral
in equation (7), we make use of an expansion in spherical harmonics (see the appendix for
details). We expand the weight function as

w(Er12, Eω1, Eω2) =
∑
3

ŵ3(r12)83( Eω12, Eω1, Eω2) (26)

where83( Eω12, Eω1, Eω2) are the spherical invariants (A.1) and the summation runs over the
triple

3 = (l1, l2, l) ∈ N3
0. (27)

The expansion coefficients can be obtained from (A.4)

ŵ3(r12) =
√

4π

2l + 1

∫
d2 Eω1

∫
d2 Eω2 w(r12, Eω1, Eω2; Eω12 = êz)

×
m=min(l1,l2)∑
m=−min(l1,l2)

C(l1l2l, mm0)Yl1m( Eω1)Yl2m( Eω2). (28)

The spherical harmonics are denoted byYlm, andm = −m, as introduced in the appendix.
When now combining equations (7), (23) and (28) one can make extensive use of symmetry

properties of the spherical harmonics [11] and finally obtain

ρ̂sm= 1

N

∫
d3Er ρ(Er)ρ̄(Er) (29)
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with

ρ̄(Er) = ρ
∑
3

∫
d3Er12 ŵ3(r12)Yl0( Eω12)8(kz− kz12)

× C(l1l2l, 000)
∫
Yl10( Eω1)g( Eω1) d2 Eω1

∫
Yl20( Eω2)g( Eω2) d2 Eω2. (30)

The total free energy in the smectic phase

Fsm= F id
sm +N9(η̂sm) (31)

is finally numerically minimized with respect toα, the smectic order parameters{ξn} and the
layer spacingd.

2.3.4. Crystalline phases.We restrict our attention to two different crystalline structures,
namely the plastic solid and the ABC crystal, whereas other candidate structures such as
an AAA crystal as well as a bcc solid will be excluded from consideration here due to the
tremendous numerical effort that they would engender. We first introduce basic features and
afterwards specialize to the two different phases.

(α)General ingredients. A sufficient density parametrization for the hard-sphere crystal are
Gaussian peaks centred at the lattice positions. For HSC the widths of the Gaussians parallel
and perpendicular to the director might be different, but as a first approximation we choose an
isotropic peak. For further computational convenience we fix the ratio of distortion, i.e. the
ratio of the two different lattice constants.

The translational part of the density is expressed in terms of Fourier coefficientsρ EG

ρsol(Er) = ρ
(

1 +
∑
EG

′
ρ EGei EG·Er

)
(32)

where the summation runs over all non-zero reciprocal-lattice vectorsEG. The Fourier coef-
ficients readρ EG = exp[− EG2/4γ ], whereγ describes the width of the Gaussians in real space.
Inserting equation (32) into the expression for the weighted density (6) we get

ρ̄sol(Er) = ρ
〈〈
vexcl( Eω1, Eω2)

2B2

〉
g( Eω1)

〉
g( Eω2)

+ ρ
∑
EG

′
ρ EGei EG·Er

〈〈 ∫
d3 Er ′ w(Er ′, Eω1, Eω2)e

i EG· Er ′
〉
g( Eω1)

〉
g( Eω2)

(33)

and finally

ρ̂sol = ρ
〈〈
vexcl( Eω1, Eω2)

2B2

〉
g( Eω1)

〉
g( Eω2)

+ ρ
∑
EG

′
ρ2
EG〈〈w̃( EG, Eω1, Eω2)〉g( Eω1)〉g( Eω2). (34)

Here, the Fourier transform of the weight function with respect to the spatial coordinate is
denoted byw̃( EG, Eω1, Eω2).

For an evaluation of the modified weighted density one can make use of an expansion of
the weight function (26), rearranging some terms, as

w( Er12, Eω1, Eω2) ≡
∑
3,0

wI3,0(Er12)w
II
3,0( Eω1, Eω2). (35)

The summation runs now additionally over the triple

0 = (m1, m2, m).
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Plugging this into equation (34), the modified weighted densityρ̂ is most easily expressed in
terms of the Fourier-transformed coefficientsw̃I3,0 of the expansion of the weight function
(35):

ρ̂sol = ρ
〈〈
vexcl( Eω1, Eω2)

2B2

〉
g( Eω1)

〉
g( Eω2)

+ ρ
∑
EG

′
ρ2
EG
∑
3

w̃I3,0(
EG)〈〈wII3,0( Eω1, Eω2)〉g( Eω1)〉g( Eω2). (36)

This reduces the summation over0 to the contribution0 = (0, 0, 0). Evaluation of this final
expression for the modified weighted density is still tedious. As we perform the expansion of
the weight function around the isotropic state, the calculations require increasing effort for an
increasing length-to-width ratio of the particles. However, especially for the orientationally
isotropic case, this expression is advantageous.

(β) Plastic crystal. In a plastic crystal the particles are located on fcc-lattice positions and
pointing in arbitrary directions. The lattice constant is thus fixed by the density. In this phase,
symmetry properties of the spherical harmonics reduce the summation in the weighted density
(36) to just the contribution3 = (0, 0, 0). The minimization is finally performed only with
respect to the widthγ of the density distribution.

(γ ) ABC crystal. In the orientational ordered solid the slowly converging expansion of the
weight function forces us to approximate the density further: we treat only the zeroth density
mode with the full orientational dependence and approximate all higher density modes by the
corresponding ones for strictly aligned particles, i.e.

ρsol(Er, Eω) = ρg( Eω) + ρ
∑
EG

′
ρ EGei EG·Er δ( Eω). (37)

On this assumption, the double angular average for the non-zero density modes in the
modified weighted density (34) has only to be evaluated for strictly aligned particles. Thus,
the modified weighted density finally reads

ρ̂sol = ρ
〈〈
vexcl( Eω1, Eω2)

2B2

〉
g( Eω1)

〉
g( Eω2)

+ ρ
∑
EG

′
ρ2
EGw̃‖(
EG) (38)

with w̃‖( EG) being the Fourier transform of the weight function for strictly aligned particles.
The lattice of the ABC crystal is stretched in the direction of the director by a factorp + 1,

as inspired by the close-packed configuration. The final minimization has to be performed
with respect to the orientational as well as the translational order.

2.4. Results for the phase diagram and discussion

Density functional results for the phase diagram as a function ofp and the reduced densityρ∗

are given in figure 1. The vertical grey bar separates two distinct regions. First, forp < 3,
the isotropic fluid (I) freezes into a crystalline structure, either a plastic crystal (P) or an
ABC-stacked solid. The agreement with the computer simulation data [3] shown as dots in
figure 1 is reasonable. However, the result is spoiled by the fact that the smectic free energy
is always lower than the free energy of the orientational ordered crystal. Consequently we
have disregarded the smectic phase in this part of the phase diagram. Forp > 3, on the other
hand, the full cascade of liquid-crystalline phases is obtained, namely the fluid, nematic (N)
and smectic-A (SmA) phases. Again, the agreement with the computer simulation data is fair,
but, within our description, the solid phase is only metastable.
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Figure 1. The phase diagram of hard spherocylinders obtained by density functional theory in the
ρ∗–p plane: the coexistence regions are shown as shaded areas and we include simulational [3]
results as dots. There is an aligned ABC solid, a plastic crystal (P) and an isotropic fluid (I) in
the left-hand part of the diagram, where the smectic phase has to be neglected. To the right from
the vertical grey bar we observe besides the fluid a nematic (N) and a smectic-A (SmA) phase.
The meanings of the symbols for the simulational data are: +: I–ABC transition;♦: I–P transition;
� : I–SmA transition;�: I–N transition;×: N–SmA transition;∗: SmA–ABC transition;4: P–ABC
transition.

We remark that recent numerical studies examined the isotropicfluid–plastic-crystal
transition for hard spherocylinders [53], and also for other hard convex bodies expected to
behave similarly to short HSC, such as hard dumb-bells [41, 54]. Within density functional
calculations, coexistence densities have been calculated for hard ellipsoids [23, 43] and hard
dumb-bells [25,42,44]. Our approach here has an accuracy comparable to that of the original
approach of Tarazona [50] for the freezing of hard spheres and thus underestimates the transition
densities. This behaviour is continued for non-zero length-to-width ratios and we therefore
underestimate the coexistence densities of the fluid–plastic transition.

In computer simulations theisotropic–nematictransition appears to be first order; however,
it shows no measurable density jump. All different DFT including our MWDA [20, 33, 34]
describe the transition region fairly well, but overestimate the density jump. Note that, by
construction, the Onsager limit is included exactly in our description.

The slope of thenematic–smectictransition had been under discussion until it was
determined by the computer simulations of Bolhuis and Frenkel [3], who demonstrated that it
is negative. Poniewierski and co-workers found [33–35] an increase of the transition densities
as the length of the rods increases. On the other hand, Somoza and Tarazona [47] find the
opposite behaviour. As we follow the description of Poniewierski, we find the wrong increasing
behaviour as well, however, with a small slope. The debate about the nature of the nematic–
smectic transition is another point: for parallel hard spherocylinders it was claimed that the N–
SmA transition shows a Kosterlitz–Thouless-like, continuous behaviour. All different density
functional theories predicted a tricritical point for rods with an orientational degree of freedom.
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Poniewierski [32] has shown that the transition is continuous in the Onsager limit if the Onsager
approach (including only the second virial coefficient) is used, but is first order if the third virial
coefficient is taken into account. Recent computer simulations by Polson and Frenkel [31]
have clarified the situation: even in the Onsager limit the nematic–smectic transition remains
first order.

The striking fact of our MWDA theory is that the free energy of the smectic phase is
lower than that of the ABC crystal. This might be due to the restricted density parametrization
in the ABC crystalline phases. It is more probable, however, that it is an artifact due to
the fact that the smectic structure in our description does not satisfy the close-packed limit
within layers. In order to remedy this deficiency one should start with different functionals
which possess the correct limit of close packing. The geometrical-measure-based functional
of Rosenfeld [38–40] which is in principle applicable to orientable convex bodies fulfils this
requirement.

3. Orientation-dependent external fields

3.1. The model

Anisotropic particles can be oriented by an external electric or magnetic field. For instance,
the tobacco mosaic virus has a positive anisotropy of the diamagnetic susceptibility and is thus
aligned along an external magnetic field. We model an external aligning field by the external
potential

Uext( Eω) = −U0 cos2( Eω · Eω0) (39)

acting on each rod whereEω0 is a unit vector in the direction of the external field andU0 is
the strength of the external interaction. The angle betweenEω and Eω0 is denoted byθ in the
following. This type of interaction which is certainly the dominating term in any orientational
coupling has been considered previously to model rod-like polyelectrolytes in an external
electric field [24]. We remark that the limitU0 → ∞ reduces the model to that of strictly
aligned rods. Hence the orientational degrees of freedom can be continuously frozen in as the
field is increasing.

The basic question is that of how the external field shifts and influences the phase
boundaries of the bulk phase diagram. Theoretical calculations were first done by Khoklov
and Semenov [17]: within the Onsager theory (i.e. assuming the particles to be infinitely long
and using the Onsager trial function (13)), but also for semi-flexible particles, they estimated
the influence of various types of external field including the case of the field proportional
to cos2(θ) as in equation (39). Moreover, the Onsager theory was resolved by Lee [19] to
determine the orientation distribution for the case of elongational flow, a potential with the
same symmetry as the potential above. In the following we restrict our considerations again
to hard spherocylinders, whose bulk phase diagram was studied in the previous section.

3.2. Theoretical description

First of all, density functional theory provides a natural framework for including external
fields. If a reasonable approximation for the functional of the excess free energy is known, the
contribution due to an external field is obtained by adding the term

Fext[ρ] =
∫

dx ρ(1)(x)Uext(x) (40)
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to the bulk functional. For an Onsager orientation distribution function (13), the contribution
to the free energy from the external potential reads

Fext(α) = −NU0

(
1 +

2

α2
− 2coth(α)

α

)
. (41)

In this section we shall also make use of the Gaussian parametrization

g( Eω) = N−1 exp[αP2( Eω · Eω0)] (42)

whereP2(x) = (3x2 − 1)/2 is the second Legendre polynomial,N is present to guarantee
correct normalization andα is the single variational parameter. While there is no big difference
when comparing these two parametrizations in the Onsager limit of the bulk [16,55], this could
be changed when including an external field. We will therefore check the stability of our results
with respect to these two parametrizations ofg( Eω).

The practical problem, however, is that there is no approximation available which
reproduces all the phases correctly. Our MWDA, for example, failed to get a correct stability
of the solid phases. Therefore we shall use the MWDA only for the isotropic, nematic and
smectic-A phases. For the crystalline phases, on the other hand, we use the more empirical
cell theory [9,10] which also works variationally: the excess free energy is a functional of the
effective sizeR̄, which is itself a functional of the orientation distributiong( Eω), i.e.

Fexc([R̄[g]]) = Fexc([g( Eω)]) = Fexc(α). (43)

We add the external coupling to the total free energies obtained in references [9,10] and thus
get a simple description for the solid phases in the presence of an external field. With this
‘mixed’ approach we get a reasonable description for any possible phases.
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Figure 2. Hard spherocylinders with a length-to-width ratio ofp = 0.3 in an external field:
the transition densitiesρ∗ are plotted versus the strength of the external fieldU0/kBT . Besides
the nematic–crystal transition (light-shaded area) the critical behaviour of the plastic–ABC-solid
transition is shown (dark-shaded area for an Onsager orientation distribution and broken curve for
a Gaussian orientation distribution). The critical points are located at the top of the coexistence
regions. The nematic–solid transition of strictly aligned HSCU0 → ∞ is indicated by the two
arrows on the upper axis.



1446 H Graf and H L̈owen

3.3. Results for selected aspect ratios

Results are obtained for three different aspect ratiosp = 0.3, 2, 4 for arbitrary densities and
arbitrary field strengths. First we consider short rods (p = 0.3) with a plastic–fcc-solid
transition. Then intermediate rods withp = 2 are studied, showing no nematic phase in the
absence of the external field. Finally forp = 4 we consider the stability of all of the usual
liquid-crystal phases except the crystal. We shall also discuss the phase behaviour versus the
orientational order parameterS = 〈P2(cosθ)〉g( Eω), which is easily evaluated in the case of the
Onsager distribution function,S = 1 + 3/α2 − 3 coth(α)/α.

3.3.1. Short rods:p = 0.3. For short rods, the resulting phase behaviour versus reduced
density and field strength is shown in figure 2. In the presence of external fields, an isotropic
fluid no longer exists, as the ordering effects turn the fluid into a nematic-like pre-ordered fluid.
We use the term ‘fluid’ in the sense of this pre-ordered isotropic phase. The light-shaded area in
figure 2 corresponds to the fluid/nematic–solid transition. The coexisting solid phase is a plastic
crystal with an anisotropic orientational distribution induced by the field. The dark-shaded area
corresponds to the plastic–ABC-solid coexistence regions: above a critical field strength of
U0 = 2.16kBT the plastic–ABC-crystal transition vanishes. As expected, the critical behaviour
is mean-field-like, i.e. on approaching the critical point atρ∗c , the coexistence densities behave
as|ρ∗ − ρ∗c |1/2. Similarly one obtains for the orientational order parameter|S − Sc|1/2, where
Sc is the critical nematic order parameter. On the other hand, the fluid/nematic–solid transition
remains first order. The limiting case of parallel hard spherocylinders [48], marked by the two
arrows on the upper axis, is reached very slowly asU0→∞.
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Figure 3. As figure 2, but now the strength of the external fieldU0 is plotted versus the order
parameterS at the transition.

The transitions are also shown as a function of the orientational order parameter in figure 3.
The same topology of the phase diagram is observed.

Two other features are worth mentioning.

(a) First, the details of the transition in the absence of the field do not depend crucially on
the chosen orientation distribution. This, however, is not true for the location of the
critical point: replacing the orientation distribution of the Onsager type with a Gaussian
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orientation distribution (42) yields a critical point atU0 = 1.65kBT . The corresponding
plastic–ABC-crystal transition is indicated as broken curves in figures 2 and 3.

(b) Second, by calculating the compressibilityκ = −(1/V )(∂V/∂P) (whereP is the press-
ure) the pre-ordered fluid/nematic phase has been checked for mechanical stability. As a
result there was no transition from the pre-ordered isotropic phase into another nematic
phase.

3.3.2. Medium rods:p = 2. Contrary to the phase behaviour of short and long rods, the
phase behaviour for medium rods is different for orientable particles and strictly aligned hard
spherocylinders: whereas the former show for an aspect ratio ofp = 2 only an isotropic
fluid and an ABC-stacked solid (see figure 1), the latter exhibit besides the nematic phase a
smectic-A and a solid ABC structure [48].

0.30 0.40 0.50 0.60
0.1
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ρ∗

N ABC
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 U  /0 k TB

Figure 4. As figure 2, but now for spherocylinders with a length-to-width ratio ofp = 2. For small
external fields, the HSC exhibit the typical phase behaviour of orientable rods, i.e. only an isotropic
and a solid phase occur. For external fields larger thanU0 = 0.83kBT , a smectic-A phase becomes
stable. The nematic–smectic as well as the smectic–ABC transition in the limiting case of parallel
hard spherocylinders are indicated by the black arrows (simulational results of reference [48]) and
by the grey arrows (the approximative cell model). Note the logarithmic scale for the field strength.

The external field (39) continuously switches between these two limiting cases (see
figure 4). Starting from an already orientationally ordered isotropic phase for a small non-
vanishing external field, we first observe a nematic–ABC-solid transition. Beyond an external
field ofU0 = 0.83kBT a smectic phase becomes stable. The cell theory free energy contains
the case of strictly aligned hard spherocylinders. This limit is reached, however, only for very
high field strengths. The coexisting densities are considerably smaller for finite field strengths
than that for the strictly aligned case. This is also indicated in figure 4, where the continuous
nematic–smectic transition is shown by a black arrow and the results of the cell theory by the
grey arrows on the upper axis. Additionally we compare the first-order smectic–solid transition
which occurs at higher densities. Again the black arrow indicates the exact result while the
cell theory predictions are shown by the grey arrow. The Onsager parametrization was used
throughout our calculations in this case.

3.3.3. Long rods:p = 4. In the absence of an external field, the isotropic–nematic transition
is the first to occur upon increasing the density. On switching on the external field (39), this
transition (the dark-shaded area in figure 5) shows a critical point atU0 = 0.055kBT . The
behaviour is similar to that in the Onsager theory [17].
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Figure 5. As figure 2, but now for spherocylinders with a length-to-width ratio ofp = 4. The
isotropic–nematic transition (dark-shaded area) terminates in a critical point, whereas the nematic–
smectic transition remains first order (light-shaded area). Again we include the results for the
Gaussian orientation distribution as broken curves. The continuous transition from the nematic to
the smectic phase in the case of parallel hard spherocylinders is indicated by the arrow on the upper
axis.

Again it is worth mentioning that the details crucially depend on the chosen orientation
distribution. For short HSC, the coexistence densities of the fluid/nematic–solid transition
depend only slightly on the chosen orientation distribution. This is not the case for the isotropic–
nematic transition: the results for a Gaussian orientation distribution are included in figure 5
as broken lines. They result in a considerably higher critical field ofU0 = 0.118kBT .

The transition from the nematic phase to the smectic phase is only slightly affected by
the external field. The limiting case of parallel hard spherocylinders shows no measurable
density jump at the nematic–smectic transition in simulations [48]. This limit, as indicated
by the arrow on the upper axis in figure 5, is approached very slowly. Again the result is
sensitive to the choice of the parametrization of the orientational distribution function. Finally,
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Figure 6. As figure 3, but now for hard spherocylinders with a length-to-width ratio ofp = 4.
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for comparison, the phase behaviour is shown as a function of the external field and the order
parameterS in figure 6.

4. Conclusions

To summarize: first, we have made an attempt to describe the full phase diagram of hard
spherocylinders using the unifying framework of density functional theory—within our
MWDA treatment, however, the crystalline phases were unstable with respect to the smectic
phase; second, we have studied the influence of an external field coupling to the orientational
degrees of freedom. The external field can both destroy and generate phase transitions. Phases
which possess the same symmetry as far as the translational degrees of freedom are concerned,
merge continuously into each other above a critical field strength. In particular, this was
demonstrated for the isotropic–nematic and for the plastic–ABC-crystal transition. On the
other hand, the field can stabilize phases which are unstable in the field-free case. This was
demonstrated for the smectic phase. We have also shown that huge field strengths are required
to achieve the asymptotic fully aligned limit. All of these theoretical predictions can in principle
be verified by computer simulation or by experiments.

We finish with two remarks.
First, we comment on the factorizationansatzthat we used in separating the orientational

and translational degrees of freedom in the density parametrization. As is known from
computer simulations, the factorizationansatzis well justified, in general. In only a small
region of the smectic phase, a transverse interlayer order affecting up to one per cent of the
particles is found in computer simulations [37,51], a small effect in a small range of the phase
diagram, which we missed in ouransatz.

Second, more fundamentally, there is a real need to develop and apply density functional
approximations which incorporate the correct packing constraints for hard bodies, such as the
Rosenfeld fundamental measure functional [38–40]. The external field can be used formally
to cross over from the orientable case to the fully aligned case and to achieve self-consistency;
this is similar to the dimensional crossover discussed recently for hard spheres [40]. This
problem is a great challenge for future studies.
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Appendix. Expansion in spherical invariants

For the expansion of the weight function in spherical harmonics we anticipate the conventions
of Gray and Gubbins [11]. The weight functionw(Er12, Eω1, Eω2) depends on the orientations
of the two particles described by unit vectorsEω1 and Eω2 pointing along their axes and on
the distance vector between the centres of massEr12 with the corresponding unit vectorEω12:
Er12 = r12Eω12.

The quantity

83( Eω12, Eω1, Eω2) =
l1∑

m1=−l1

l2∑
m2=−l2

l∑
m=−l

C(l1l2l, m1m2m)Yl1m1( Eω1)Yl2m2( Eω2)Y∗lm( Eω12) (A.1)

where theYlm are spherical harmonics and theC(l1l2l, m1m2m) are the Clebsch–Gordan
coefficients is invariant under simultaneous rotations ofEω1, Eω2 and Eω12.
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Thus the weight function will be expanded as

w(Er12, Eω1, Eω2) =
∑
3

ŵ3(r12)83( Eω12, Eω1, Eω2) (A.2)

where the summation is running over the triple3 = (l1, l2, l) ∈ N3
0.

The expansion coefficients read

ŵ3(r12) = 4π

2l + 1

∫
S2

d2 Eω1

∫
S2

d2 Eω2 w(r12; Eω1, Eω2, Eω12)8
∗
3( Eω12, Eω1, Eω2). (A.3)

As they are rotationally invariant, we fixEω12 pointing along thez-axis, Eω12 = êz, to calculate
them. The expansion coefficients thus reads withm = −m

ŵ3(r12) =
√

4π

2l + 1

∫
d2 Eω1

∫
d2 Eω2

min(l1,l2)∑
m=−min(l1,l2)

C(l1l2l;mm, 0).

× Y∗l1m( Eω1)Y∗l2m( Eω2)w(r12, Eω1, Eω2; Eω12 = êz). (A.4)

Using the invariance ofw(Er12, Eω1, Eω2) if one of the vectorsEω changes sign, only those expansion
coefficients with evenl1, l2, l are non-zero.
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