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Triplet interactions in star polymer solutions
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Abstract. We analyze the effective triplet interactions between the centers of star polymers in a good
solvent. Using an analytical short-distance expansion inspired by scaling theory, we deduce that the triplet
part of the three-star force is attractive but only 11% of the pairwise part even for a close approach of
three star polymers. We have also performed extensive computer simulations for different arm numbers f
to extract the effective triplet force. The simulation data show good correspondence with the theoretical
predictions. Our results justify the effective pair potential picture even beyond the star polymer overlap
concentration.

PACS. 82.70.Dd Colloids – 64.60.Fr Equilibrium properties near critical points, critical exponents –
61.20.Ja Computer simulation of liquid structure

1 Introduction

Star polymers [1], i.e., structures of f linear polymer
chains that are chemically linked with one end to a com-
mon core, have found recent interest as very soft col-
loidal particles [2–6]. As the number f of chains increases,
they interpolate between linear polymers and polymeric
micelles [1,2,7]. For large f , the effective repulsion be-
tween the cores of different polymer stars becomes strong
enough to allow for crystalline ordering in a concentrated
star polymer solution. While such a behavior was already
predicted by early scaling arguments [8,9] only recently
corresponding experiments have become feasible with suf-
ficiently dense star solutions. The crystallization transi-
tion occurs roughly at the overlap concentration c∗ which
is the number density of stars where their coronae start
to touch experiencing the mutual repulsion. It is defined
as c∗ = 1/(2Rg)3, where Rg, the radius of gyration, is
the root mean square distance of the monomers from the
center of mass of a single star. In addition, theory and
computer simulation have refined the original estimate for
the number of chains f necessary for a freezing transition
from f ∼ 100 [8,9] to f ∼ 34 [5] and predicted a rich
phase diagram including stable anisotropic and diamond
solid structures at high densities and high arm numbers.
These results were derived using an effective pair potential
between stars with a logarithmic short-distance behavior
derived from scaling theory.

In general, while the pair interactions are the cen-
tral focus and the typical input of any many-body the-
ory, much less is known about triplet and higher-order
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many-body interactions. For rare gases, the Axilrod-Teller
triplet interaction [10] has been found to become rele-
vant in order to describe high-precision measurements of
the structure factor [11]. For charged colloids, the effec-
tive triplet forces are generated by nonlinear counterion
screening. This was investigated recently by theory and
simulations [12]. For star polymer solutions in a good sol-
vent such studies are missing. In all three cases, the ef-
fective triplet forces originate from formally integrating
out microscopic degrees of freedom. For rare gases, these
are the fluctuations of the outer-shell electrons while for
charged colloids the classical counterions play the role of
additional microscopic degrees of freedom. For star poly-
mers, on the other hand, one is interested in an effective
interaction between the star centers by integrating out the
monomer degrees of freedom [13]. Usually one starts from
an effective pair potential which is valid for large particle
separation. The range of this effective pair potential in-
volves a certain length scale � which is the decay length
of the van-der-Waals attraction, the Debye-Hückel screen-
ing length or the diameter of gyration 2Rg, for rare gases,
charged colloids, and star polymers, respectively. Triplet
forces, i.e. three-star forces, not forces between monomers,
become relevant with respect to the pairwise forces if the
typical separations between the particles are smaller than
this typical length scale �. This implies a triple overlap of
particle coronae drawn as spheres of diameter � around
the particle centers. The triple overlap volume is an es-
timate for the magnitude of the triplet forces. Hence a
three-particle configuration on an equilateral triangle is
the configuration where triplet effects should be most pro-
nounced.

The aim of the present paper is to quantify the influ-
ence of triplet interactions for star polymer solutions in a
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good solvent using both analytical theory and computer
simulation. In doing so, we consider a set-up of three-star
polymers whose centers are on an equilateral triangle. We
found that the triplet part is attractive but its relative
contribution is small (11%) with respect to the repulsive
pairwise part. This relative correction is universal, i.e.,
it is independent of the particle separation and of the
arm number. It even persists for a collinear configuration
of three-star polymers where the absolute correction is
smaller than in the triangular situation for the same star-
star distance. Consequently, the validity of the effective
pair potential model is justified even at densities above the
overlap concentration. In particular, our result gives evi-
dence that the anisotropic and diamond solids predicted
by the pair theory are indeed realizable in actual samples
of concentrated star polymer solutions.

Our paper is organized as follows: in Section 2 we apply
scaling theory to extract the triplet forces both for small
and for large arm numbers. In Section 3 we briefly de-
scribe our Molecular Dynamics (MD) simulation scheme
and present results in Section 4. Comparing these to the
theoretical predictions, we find good agreement. Section 5
is devoted to concluding remarks and to an outlook.

2 Scaling theory of triplet forces between star
polymers

2.1 Scaling of single stars

The scaling theory of polymers was significantly advanced
by de Gennes’ observation that the n-component spin
model of magnetic systems is applicable to polymers in
the formal n = 0 limit [14]. This opened the way to apply
renormalization group (RG) theory to explain the scaling
properties of polymer solutions that have been the sub-
ject of experimental and theoretical investigations since
the pioneering works in this field [15]. Many details of the
behavior of polymer solutions may be derived using the
RG analysis [16]. Here, we use only the more basic results
of power law scaling: the radius of gyration Rg(N) of a
polymer chain and the partition function Z(N) are found
to obey the power laws

Rg(N) ∼ Nν and Z(N) ∼ zNNγ−1. (1)

The fugacity z measures the mean number of possibili-
ties to add one monomer to the chain. It is microscopic
in nature and will depend on the details of the model or
experimental system. The two exponents ν and γ on the
contrary are the n = 0 limits of the correlation length ex-
ponent ν(n) and the susceptibility exponent γ(n) of the
n component model and are universal to all polymer sys-
tems in a good solvent, i.e., excluding high concentration
of polymers or systems in which the polymers are collapsed
or are near the collapse transition. For any such system the
exponents of any other power law for linear polymers may
be expressed by these two exponents in terms of scaling
relations.

It has been shown that the n component spin model
may be extended by insertions of so-called composite spin
operators that allow to describe polymer networks and in
particular star polymers in the n = 0 limit [17–19]. A
family of additional exponents γf governs the scaling of
the partition function Zf (N) of a polymer star of f chains
each with N monomers:

Zf (N) ∼ zNNγf−1. (2)

Again the exponents of any other power law for more gen-
eral polymer networks are given by scaling relations in
terms of γf and ν. Here, we substitute another family of
exponents ηf to replace γf − 1 = ν(ηf − fη2). The first
two members η1 = 0 and η2 = (1 − γ)/ν are defined by
the requirement that the f = 1 star and the f = 2 star
are just linear chains with scaling exponents γ1 = γ2 = γ.
The values of these exponents are known from renormal-
ization group analysis (RG) and Monte Carlo (MC) simu-
lations [20]. Several equivalent approaches have been elab-
orated to evaluate the renormalized perturbation theory.
Early first-order perturbative RG results were given in
reference [21]. Here, we explicitly present the result of an
expansion in the parameter ε = 4−d where d is the space
dimension. The ε-expansion for the ηf reads [19]

ηf =− ε

8
f(f − 1)

×
{
1− ε

32
(8f − 25) +

ε2

64

[
(28f − 89)ζ(3) + 8f2

− 49f +
577
8

]}
+O(ε4) (3)

with the Riemann ζ-function. Note that this series is
asymptotic in nature and to evaluate it for ε = 1 it is
necessary to apply resummation. An alternative expan-
sion for the star exponents makes use of an RG approach
at fixed dimension d = 3 proposed by Parisi [22]. This
expansion has been worked out in references [23–25]. The
corresponding expressions are lengthy and not presented
here. In Table 1, in the first two lines we have calculated
the resummation for the series in equation (3) as well
as for the expansion at fixed dimension. The resumma-
tion procedure that we apply combines a Borel transform
with a conformal mapping using all information on the
asymptotic behavior of the perturbation expansion of the
corresponding spin model [26,27]. Results for f ≤ 9 have
been given before in references [19,23–25] whereas we have
added here the calculation of values for f = 10, 12, 15. The
deviation between the two approaches measures the error
of the method. For large f the leading coefficient of the
k-th order term εk in equation (3) is multiplied by fk+1.
This is due to combinatorial reasons and occurs also for
the alternative approach. It limits the use of the series to
low values of f .

Another possibility to estimate the values of the star
polymer scaling exponents γf is to consider the limiting
case of many arm star polymers. For large f each chain
of the star is restricted approximately to a cone of solid
angle Ωf = 4π/f . In this cone approximation one finds
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Table 1. Calculation of the exponents that govern the pair and triplet interactions. The labels a and b stand for the two
complementary renormalization group approaches (expansion in ε = 4 − d and massive renormalization at d = 3) used to
calculate the exponents ηf . The difference of the two results may be taken as an estimation of the error of the method. Label c
stands for the cone approximation result with matching to f = 1, 2 as explained in the text.

f 1 2 3 4 5 6 8 9 10 12 15

a ηf 0 −0.28 −0.75 −1.36 −2.07 −2.88 −4.71 −5.72 −6.80 −9.12 −12.98
b 0 −0.28 −0.76 −1.38 −2.14 −3.01 −5.06 −6.22 −7.48 −10.23 −14.93
a Θ

(2)
ff 0.28 0.80 1.38 1.99 2.66 3.36

b 0.28 0.82 1.49 2.30 3.20 4.21
c 0.28 0.79 1.44 2.22 3.11 4.08

a Θ
(3)
fff 0.75 2.04 3.47 5.04 6.77

b 0.76 2.17 3.94 6.09 8.51
c 0.74 2.08 3.83 5.89 10.82

a ∆F/F −0.11 −0.15 −0.16 −0.16 −0.15
b −0.09 −0.12 −0.12 −0.12 −0.11
c −0.11 −0.11 −0.11 −0.11 −0.11

for large f [28]

γf ∼ −f3/2. (4)

2.2 Two-star polymers

Let us now turn to the effective interaction between the
cores of two-star polymers at small distances r that are
small on the scale of the size Rg of the stars. Let us for
the moment consider a more general case of two-star poly-
mers with f1 and f2 arms, respectively. The cores of the
two stars are at a distance r from each other. We assume
all chains involved to be of the same length. The power law
for the partition sum Z(2)f1f2

(r) of two-star polymers may
then be derived from a short-distance expansion. This ex-
pansion is originally established in the field-theoretic for-
mulation of the n component spin model. While we do
not intend to give any details of these considerations here,
applications to polymer theory may be found in refer-
ences [29,30]. The relevant result on the other hand, is sim-
ple enough: the partition sum of the two stars Z(2)f1f2

(N, r)
at small distance r factorizes into a function Cf1f2(r) of
r alone and the partition function Zf1+f2(N) of the star
with f1 + f2 arms that is formed when the cores of the
two stars coincide,

Z(2)f1f2
(N, r) ∼ Cf1f2(r)Zf1+f2(N). (5)

For the function Cf1f2(r) one may show that power law
scaling for small r holds in the form

Cf1f2(r) ∼ r
Θ

(2)
f1f2 , (6)

with the contact exponent Θ
(2)
f1f2

. To find the scaling rela-
tion for this power law we change the length scale in (5) in
an invariant way by r → λr and N → λ1/νN . The scaling
of the partition function Z(2)f1f2

may be shown to factorize

into the contributions for the two stars. This transforms
(5) to

λ−1/ν(γf1−1)λ−1/ν(γf2−1)Z(2)f1f2

(
λ1/νN,λr

) ∼

λ−Θ
(2)
f1f2 Cf1f2(λr)λ−1/ν(γf1+f2−1)Zf1+f2

(
λ1/νN

)
. (7)

Collecting powers of λ provides the scaling relation

νΘ
(2)
f1f2

= (γf1 − 1) + (γf2 − 1)− (γf1+f2 − 1),

Θ
(2)
f1f2

= ηf1 + ηf2 − ηf1+f2 . (8)

We now specialize our consideration to the interaction
between two stars of equal number of arms f1 = f2 = f .
The mean force F

(2)
ff (r) between the two-star polymers at

short distance r is then easily derived from the effective
potential V eff(r) = −kBT log[Z(2)ff (r)/(Zf )2] with kBT de-
noting the thermal energy. For the force this results in

1
kBT

F
(2)
ff (r) =

Θ
(2)
ff

r
. (9)

The cone approximation for the contact exponents [31]
Θ
(2)
ff may be matched to the known values for f = 1, 2 (see

Tab. 1), fixing the otherwise unknown prefactor. Assuming
that the behavior of the Θ

(2)
ff may be described by the cone

approximation for all f one finds

F
(2)
ff (r) ≈ 5

18
f3/2

r
. (10)

This matching in turn suggests an approximate value for
the ηf exponents,

ηf ≈ − 5
18

(
23/2 − 2

)−1
f3/2. (11)
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Fig. 1. Three-star polymers at mutual distance r. The cores
of the stars (with radius Rd) are located at the corners of an
equilateral triangle. The distance from the center is R. The
mean radius of gyration of a single star is Rg.

Note on the other hand that this approximation is incon-
sistent with the exact result η1 = 0. However, the approx-
imation works well for Θ

(2)
ff in the range f = 1, . . . , 6 were

we have calculated the corresponding values from the per-
turbation theory results as well as according to the cone
approximation. Our results, displayed in the second part
of Table 1, show good correspondence of the cone approx-
imation with the resummation values.

2.3 Three stars

We now use the idea of the short-distance expansion once
more to derive the triplet interaction of three-star poly-
mers at close distance. We consider a symmetric situation
in which the three cores of the polymer stars are located
on the corners of an equilateral triangle (see Fig. 1). The
distance between the cores is r while their distance to the
center of the triangle is R. We assume that the radius of
gyration Rg of the star polymers is much larger than their
mutual distance Rg 	 r.

To make the argument more transparent we first con-
sider the slightly more general case of three stars with f1,
f2 and f3 arms, respectively. Shrinking the outer radius R
of the triangle on which the cores are located, the parti-
tion function of this configuration of three stars will scale
with R according to

Zf1f2f3(R) ∼ RΘ
(3)
f1f2f3 , (12)

Θ
(3)
f1f2f3

= ηf1 + ηf2 + ηf3 − ηf1+f2+f3 . (13)

Now, the scaling exponent ηf1+f2+f3 of the star that re-
sults by collapsing the cores of the three stars at one point
has to be taken into account as follows from an argument
analogous to the above consideration for two stars.

Let us specify the result for the symmetric situation
of three equivalent stars f1 = f2 = f3 = f . Furthermore

we assume that the large f approximation (11) is valid for
the exponents ηf . Then the three-star contact exponent
may be written as

Θ
(3)
fff =

33/2 − 3
23/2 − 2

× 5
18

f3/2. (14)

An effective potential of the system of the three stars at
small distance R from the center may then be defined by

V
(3)eff
fff (R) = −kBTΘ

(3)
fff ln

(
R

Rg

)
. (15)

We now derive the corresponding three-body force under-
lying this effective potential. Note that the absolute value
of the force is the same for all three stars. The relation of
the potential to the force on the core of one star is then

V
(3)eff
fff (R + dR)− V

(3)eff
fff (R) =

3∑
i=1

Fi · dRi = 3F (3)fff (R)dR. (16)

The final result for the total force on each of the stars that
includes any three body forces is therefore

F
(3)
fff (R) =

−kBTΘ
(3)
fff

(3R)
. (17)

If one starts instead from a sum of two-body forces, then
one star experiences the sum of the two forces calculated
for the star-star interaction. With the given geometry of
the equilateral triangle this is easily calculated to give

F
(2)
fff (R) =

∣∣∣∣∣
r̂12Θ

(2)
ff

r12
+

r̂13Θ
(2)
ff

r13

∣∣∣∣∣ =
−kBTΘ

(2)
ff

R
. (18)

Here, r = r12 = r13 = R
√
3 denote the distance between

two of the stars, while the r̂ij are the unit vectors along the
edges of the triangle (see Fig. 1). The relative deviation
from the pair potential picture is then given by

∆F

F
(2)
fff

=
F
(3)
fff (r)− F

(2)
fff (r)

F
(2)
fff (r)

=
Θ
(3)
fff − 3Θ(2)

ff

3Θ(2)
ff

. (19)

Using the cone approximation for the contact exponent we
finally obtain for the relative deviation caused by triplet
forces alone

∆F

F
(2)
fff

=
33/2 − 3
23/2 − 2

≈ −0.11. (20)

This result is independent of the number of arms and valid
in the full region that is described by the logarithmic po-
tential. In Table 1 we have calculated the exponents as
derived from the perturbation expansion of polymer field
theory [23–25] checking the relation equation (20). Tak-
ing into account the error that may be estimated from the
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difference of the results obtained by the two complemen-
tary approaches, the results are in good agreement with
the cone approximation even for low f values. The fair co-
incidence is rather surprising as additional numerical er-
rors might be introduced by the calculation of the contact
exponents from the original star exponents. It confirms
our estimate of the relative deviation caused by triplet
forces to be of the order of not more than 11% for all an-
alytic approaches we have followed here. Let us note that
the analogous calculation for a symmetric linear config-
uration of three stars yields the same relative deviation
equation (20). The absolute triplet forces for the linear
configuration are smaller by a factor

√
3/2 than for the

triangular configuration with the same star-star distance.

3 Computer simulation method

Molecular dynamics (MD) simulations were performed us-
ing exactly the model that three of the present authors de-
vised to test the effective pair potential [6] and had been
originally proposed to study single-star polymers [32,33].
In this model the configuration of star polymer i = 1, 2, 3
is given by the coordinates r(i,j)m of the N monomers
m = 1, . . . , N of the f chains j = 1, . . . , f and the position
of its core r

(i)
0 . The main features of this model are the

following: 1) A purely repulsive truncated Lennard-Jones–
like potential acts between all monomers m = 0, . . . , N on
all chains. 2) An attractive FENE-potential [32,33] that
preserves the chain connectivity and acts only between
consecutive monomers m,m+1 along each chain. 3) These
potentials have to be slightly modified for the interaction
between the first monomer m = 1 and the core m = 0
of the star to allow the core to have a radius Rd that is
sufficiently large to place f monomers in its vicinity.

The three cores of the stars were placed at the corners
of an equilateral triangle, see again Figure 1 where also
the core radius Rd is shown. A typical snapshot of the
three star simulation is displayed in Figure 2 for a func-
tionality of f = 5 and N = 100 monomers per chain. The
force on the star core was averaged during the MD simula-
tion for a number of edge lengths r of the triangle varying
in the range between the diameter of the two cores 2Rd
and the diameter of gyration 2Rg of a single-star poly-
mer. We have produced data for f = 3, 5, 10, 18, 30. For
the smaller functionalities (f = 3, 5, 10) the number of
monomers per chain was N = 100 while for f = 10, 18, 30
a number N = 50 was chosen. Note that the total sys-
tem comprises between 900 and 4500 mutually interacting
particles. As equilibration is slow and the statistical aver-
age converges slowly, the simulation becomes increasingly
time-consuming beyond such system sizes. As for reference
data, we have also produced data for a two stars situation
according to the calculations in reference [6].

4 Results

Results of the computer simulation are compared to the
theory in Figures 3a and 3b. The reduced averaged force

Fig. 2. Snapshot of the simulation of three stars with f = 5
arms each with N = 100 monomers. The cores are located
at the corners of the equilateral triangle that is depicted in
the center. The monomers that belong to the same star are
represented by balls of the same color: either black, dark gray,
or light gray.

on a single star is shown versus the reduced triangle
length for different arm numbers. As a reference case, also
the corresponding results in a pair potential picture are
shown, both within theory and simulation. For technical
reasons we kept a small core radius Rd in the simulation,
which is roughly 10% of the radius of gyration of the whole
star. In the theory, on the other hand, the core size was
zero. Hence, to compare properly [6], a shift r − 2Rd has
to be performed.

As expected, in both theory and simulation, the triplet
forces become relevant only within the coronae. A com-
parison with pure pairwise forces leads to the first im-
portant observation that the triplet force is smaller, i.e.
the pure triplet contribution is attractive. (Note that one
has to multiply the pure two-star force by a factor of

√
3

for simple geometrical reasons.) The relative magnitude
of the triplet term, however, is small. A quantitative com-
parison with theory and simulation leads to good overall
agreement. The triplet contribution itself, however, is sub-
jected to larger statistical errors of the simulation. Hence
we resorted to a different strategy to check the theory by
plotting the inverse force versus distance. If the theory
is correct the simulation data should fall on a straight
line both for the pure pairwise and the full triplet case.
The slope should then give the theoretical prefactor of
the logarithmic potential. The advantage of this consid-
eration is that the slope bears a smaller statistical error
as more data points are included. Such a comparison is
shown in Figure 4 for f = 10. The first consequence is that
the simulation data indeed fall on a straight line confirm-
ing the theory. In fact this is true for all other parameter
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Fig. 3. a) Comparison of the force F measured in the three-
star MD with that calculated from a corresponding two-star
MD simulation for f = 3 and f = 10 with N = 100. Also the
results predicted by the theory are plotted as a continuous line
(only pair forces) and a broken line (including triplet forces).
b) Same as a) but for f = 18 and f = 30 with N = 50.

combinations considered in the simulations. The slope is
higher for the triplet and lower for the pair case, both in
theory and simulation. The actual values in Figure 4 are
in the same order of magnitude but a bit different.

In order to check this in more detail, we have extracted
the slope for all simulation data. The result is summarized
in Figure 5 where the relative differences of the slopes be-
tween the pair and triplet cases are plotted versus the arm
number f . The theory predicts a constant value of 0.11,
see equation (20). The simulation data scatter a lot in
the range between 0.05 and 0.15 due to the large statisti-
cal error but the theoretical value falls reasonably within
the data. Consequently, the triplet contributions are found
to be attractive and small even for nearly touching cores
where the triplet overlap of the coronae is substantial.
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r/ 2R g
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k B
T
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R

g
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3 stars: fit

f=10, N=50

Fig. 4. Comparison of the inverse force 1/F measured in the
three-star MD with that calculated from a corresponding two-
star MD simulation for f = 10 with N = 50. The linear fits
for the pair forces (short-dashed line) and the full three body
force (dash-dotted line) are shown together with the respective
results predicted by the theory which are depicted by a contin-
uous line (only pair forces) and a broken line (including triplet
forces).

0 10 20 30
f

0

0.05

0.1

0.15

0.2

∆
F

/F
ff

f(2
)

N=50
N=100

Fig. 5. The slopes of the linear fits to the data as shown
in Figure 4 were extracted from the simulation data for f =
3, 5, 10, 18, 30 and N = 50, 100 to calculate the relative devia-

tion ∆F/F
(2)
fff induced by the triplet forces. The line at 0.11

corresponds to the analytic result.

5 Conclusions

In conclusion, we have calculated, by theory and computer
simulations, the triplet interaction between star polymer
centers in a good solvent positioned on the corners of an
equilateral triangle. The triplet part was found to be at-
tractive but only about 11% of the pairwise repulsion. Our
calculations justify earlier investigations [5] where the pair
potential framework was used even slightly above the star
overlap concentration.
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We finish with a couple of remarks: First, the scal-
ing theory can also be performed for any triplet config-
urations beyond the equilateral triangle studied in this
paper. Second, arbitrary higher-order many-body forces
can be investigated assuming a cluster of M stars. Such
a calculation is given in Appendix A. As a result, the de-
viations from the pair potential picture increase with the
number M and even diverge for M → ∞. This implies
that the pair potential picture breaks down for very high
concentrations. This is expected as for high concentration
a star polymer solution is mainly a semi-dilute solution
of linear chains where it is irrelevant at which center they
are attached to [8]. As far as further simulational work
is concerned, there are many open problems left. Apart
from the investigation for arbitrary triplet configurations
and their extensions to an arbitrary number of stars, the
most challenging problem is a full ab initio simulation of
many stars including many-body forces from the very be-
ginning. This is in analogy to Car-Parrinello simulations
[34] which were also applied to colloidal suspensions [35].
A first attempt has been done [36], but certainly more
work is needed here. Another (a bit less demanding) task
is to study stars on a periodic solid lattice with periodic
boundary conditions and extract the many-body interac-
tions from there.

It would be interesting to study the relevance of triplet
forces for star polymers in a poor solvent near the Θ-point
[37]. It can, however, be expected that the triplet forces
here are even less important than for a good solvent as
the effective interaction becomes stiffer in a poor solvent.
Furthermore, the effect of polydispersity in the arm num-
ber which has been briefly touched in our scaling theory
treatment should be extended since this is important to
describe real experimental samples.

We are grateful to the DFG for financial support within the
SFB 237.

Appendix A. Higher-order forces between
star polymers

Here, we derive for the general case of M simultaneously
interacting star polymers with f arms the effective M -th
order force. Generalizing the equilateral triangle geometry,
we study the situation where the M cores of the stars are
evenly distributed on a sphere with radius R. In particu-
lar, the cores of the stars may be located at the corners of
a regular polyhedron. Then the non-radial forces on each
star polymer cancel. The latter condition may be fulfilled
approximately also for large numbers M for which a reg-
ular polyhedron does not exist.

We first calculate the force on one star by the sum of
M − 1 pairwise forces effected by the other stars. For the
pairwise force (9) that acts according to a 1/r-law it is easy
to verify that the radial component of the force between
any two points on the sphere is Θ

(2)
ff /(2R) independent of

their relative position. With this simplification the total

(radial) force on one star is

1
kBT

F
(2)
M,f =

M − 1
2

Θ
(2)
ff

R
. (A.1)

Here, F
(2)
M,f denotes the sum of pairwise forces on one of

the M stars each with f arms. In the case M = 3 this is
the result of equation (18).

The total M -th order force F
(M)
M,f between M star poly-

mers with f arms brought close together may again be
derived from a short-distance expansion resulting in the
scaling relation

Θ
(M)
M,f = M · ηf − ηM ·f . (A.2)

The force on one star is then found in the same way as for
three stars as

1
kBT

F
(M)
M,f =

Θ
(M)
M,f

M · R. (A.3)

The leading contributions for large numbers of stars M in
the two cases differ even in the power of M . While the first
is linear in M the latter grows only with the square root of
M . In the large-f and large-M approximations this reads

1
kBT

F
(2)
M,f ≈ 5

18
f3/2

2R
M, (A.4)

1
kBT

F
(M)
M,f ≈ 5

18
(23/2 − 2)

f3/2

R
M1/2. (A.5)

Note that for large M the factors M and M1/2 in these
two approaches are not a result of the large f approxima-
tion but are of combinatorial and geometrical origin. This
shows that for large M the sum of pairwise forces largely
overestimates the force on one star.
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