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Colloidal particles in emulsions

Francisco L. Roma´n,* Matthias Schmidt, and Hartmut Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstrasse 1, D-40225 Du¨sseldorf, Germany

~Received 2 December 1999!

We propose a statistical mechanical model for colloidal particles suspended in an emulsion of liquid drop-
lets. The particles are modeled as hard spheres. The interaction between droplets is also hard, but the particles
are able to penetrate the droplets. A swelling of droplets is taken into account to ensure material conservation
of the droplet liquid. Hence the presence of the colloids generates droplet polydispersity. Using computer
simulation and liquid state theory, we find that the relative polydispersity exhibits nonmonotonic behavior as
a function of the particle packing fraction and can be traced back to hard sphere bulk density fluctuations.

PACS number~s!: 82.70.Kj, 61.20.Gy, 05.20.Jj
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I. INTRODUCTION

Soft matter is divided into many subdisciplines deali
with membranes, polymers, colloidal suspensions, or em
sions. These systems have in common that they exhibit st
ture on a mesoscopic length scale and that they include m
degrees of freedom, so one is usually interested in the a
age, statistical behavior. Nevertheless, the physical phen
ena as well as the methods employed to understand t
may differ substantially from, say, polymers to colloidal su
pensions. Insight can be gained by investigating systems
bridge such areas. In the present work we investigate
interplay between colloidal suspensions and liquid em
sions.

Suspensions of colloidal particles are mixtures betwee
molecular solvent and mesoscopic solid particles@1#. The
latter are often loosely called ‘‘colloids.’’ Apart from effect
of gravity like sedimentation, the colloids float in their so
vent liquid and interact with each other in similar ways to t
interaction of atoms in ‘‘hard’’ condensed matter. The im
portant and interesting difference is the large variety of
teraction potentials present between colloidal partic
These interactions are effective in the sense that they a
from underlying microscopic mechanisms like van der Wa
forces, Coulomb forces, or the Born repulsion. One sim
theoretical model for the treatment of these systems is
hard sphere model, namely, a collection of spherical parti
that cannot interpenetrate each other. It is the generic m
to understand dense fluids and crystalline solids. Surp
ingly, it is realized in nature in suspensions of sterically s
bilized colloidal particles. By matching the refractive indic
of the solvent with the colloid material, it is possible to tu
down the van der Waals attraction. The particles are coa
with short polymer brushes needed to stabilize the susp
sion against coagulation of particles. As the polymer brus
are tiny compared to the particle diameter, which is of
order of microns, a repulsive potential emerges that is alm
hard-sphere-like. There is also considerable current acti
in the field of computer simulations of colloids@2#.

Hard spheres are also considered as a model for the
ond area we want to cover, namely, liquid emulsions. Th
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are mixtures of two~or more! liquid phases, one being th
continuous phase that contains droplets of the dispe
phase~s!. The droplets can be very well controlled to ha
unique sizes@3# so that even freezing occurs. Although bo
dispersed particles and dispersed droplets float in a surro
ing liquid, the important difference is that the dispersed o
jects in emulsions are in the fluid rather than in the so
state.

In the present work, we investigate a mixture of colloid
particles and emulsion droplets; see Fig. 1 for a schem
sketch of the physical situation. Therefore we propose
study a model system. This system is simplified in ma
respects, but it keeps the freedom for the particles to cho
between being dissolved in the continuous phase or with
dispersed droplet. In reality, the surface tensions between
colloid material and both solvents will determine whether t
colloids tend to aggregate within or become depleted fr
the droplets. There is, however, an even more fundame
mechanism based on material conservation that we aim
As we consider the emulsion on a small time scale, where
coalescence of droplets appears, we are faced with the
that the amount of the dispersed phase~oil! and that of the
continuous phase~water! are conserved quantities. Thes
constraints lead to a nontrivial behavior of the droplet siz
As particles penetrate inside an empty droplet, the dro
size ~diameter! has to grow, in order to keep the oil volum
constant. The present work aims at the study of the emerg
droplet size distribution, its polydispersity, and the structu
correlations present in the system.

There are important phenomena present in emulsions
are neglected within the current approach. Here, we d
only with perfect spherical droplets. Fluctuations of the dro

.

FIG. 1. Physical system of colloidal particles suspended in
emulsion. The different components are colloids~small spheres!,
emulsion droplets~big spheres!, and solvent~wiggles!. Particles can
penetrate inside droplets.
5445 ©2000 The American Physical Society



let
tio
re

o
io

h
a

en

is
; s
re
li
th

tio

te
w
r

e

-
re
th

a
in
II
th
e

po
ol

n-

en

ir-

en

l

of
t
an
let.
that
d
tial

ern
ets

ore
s-
e-

ng

5446 PRE 61ROMÁN, SCHMIDT, AND LÖWEN
let shape@4,5# are ignored. Denkovet al. @6# have considered
colloidal particles pinned at the surface of emulsion drop
and have proposed that this coating may lead to stabiliza
of the emulsion against coalescence. Similar to our cur
study is the theoretical work on colloids suspended in a tw
phase solvent@7,8# and measurements of the phase behav
of colloids in binary liquid mixtures@9#. In our system, how-
ever, both liquids are in a metastable emulsion state. T
enables the preparation of spherical droplets of one ph
within the other, which is not the case in the above m
tioned bulk systems.

The study of polydisperse systems, especially polyd
perse hard spheres, has attracted a lot of recent interest
e.g., @10–13#. In these studies, the distribution of sphe
sizes is an input quantity, and the impacts on phenomena
freezing are investigated. In the present work, however,
polydispersity is generated through material conserva
and hence is an output quantity.

Our system has two components with hard sphere in
actions among like species. However, as our results
show, it is quite dissimilar from a binary additive hard sphe
mixture, which has also attracted a lot of recent interest~see,
e.g., @14#!. We note that this system has been prepared
perimentally using either colloids~see, e.g.,@15#! or binary
emulsions~see, e.g.,@16#!. Hence, it is conceivable that ex
perimentalists will be able to prepare well-defined mixtu
of droplets and colloids, which are the issue of interest of
present work.

In Sec. II the model for colloidal particles suspended in
emulsion is proposed. Then a theoretical approach link
density fluctuations to polydispersity is presented in Sec.
Various limiting cases are discussed. Section IV explains
Monte Carlo simulation method, and results are given in S
V. We finish with concluding remarks in Sec. VI.

II. THE MODEL

We consider a mixture of two components. One com
nent is made ofNC monodisperse hard spheres, called c
loids, with diameterssC and position vectorsrC,i , wherei
51, . . . ,NC . They interact with a pairwise hard core pote
tial

fCC~r C,i j !5H ` if r C,i j ,sC

0 otherwise,
~1!

where r C,i j 5urC,i2rC, j u is the separation distance betwe
colloids i and j.

The second component is constituted ofND droplets with
polydisperse diameterssD,k , k51, . . . ,ND , and position
vectorsrD,k . Again, the interaction between droplets is pa
wise hard core,

fDD~r D,kl!5H ` if r D,kl,
1

2
~sD,k1sD,l !

0 otherwise,

~2!

wherer D,kl5urD,k2rD,l u is the separation distance betwe
dropletsk and l. The total system volume isV0 .
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For each set of particle positions$rC,i%, the droplet radius
of the kth droplet at positionrD,k is determined by materia
conservation, expressed as

p

6
sD,k

3 5
p

6
sD

3 1E d3xQS sD,k

2
2ux2rD,ku D

3(
i 51

ND

QS sC

2
2ux2rC,i u D , ~3!

whereQ(x) is the Heaviside step function. The diameter
an empty droplet issD . Equation~3! expresses the fact tha
the volume of a swollen droplet equals the volume of
empty droplet plus the volume of particles inside the drop
The latter is expressed as an integration over a function
is unity for space pointsx that are both inside a particle an
inside a droplet, and vanishes otherwise. The total poten
energy is

f total5 (
i , j 51

NC

fCC~r C,i j !1 (
k, l 51

ND

fDD~r D,kl!. ~4!

In Fig. 2 the model is sketched.
Next we introduce dimensionless quantities that gov

the system. The packing fractions of colloids and of dropl
are defined as

hC5
NCp

6V0
sC

3 , ~5!

hD5
NDp

6V0
sD

3 . ~6!

The third reduced parameter is the size ratiosD /sC of the
diameter of colloids and empty droplets.

III. THEORY

As the droplet size distribution is not prescribeda priori
in our model, we have to find means to analyze it. Theref
we will develop a theory for the calculation of the polydi
persity of the emulsion. The droplet size distribution is d
fined by

FIG. 2. Theoretical model of colloids in emulsions containi
colloids ~small circles! with positionsrC,i and diameterssC , and
droplets ~large circles! with positions rD,k . The diameter of an
empty droplet issD ; the actual diameter of thekth droplet is de-
noted bysD,k .
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PRE 61 5447COLLOIDAL PARTICLES IN EMULSIONS
p~s!5K 1

ND
(
k51

ND

d~s2sD,k!L , ~7!

where~¯! denotes a canonical average with the total pot
tial energy given in Eq.~4!.

The polydispersitys is the standard deviation of the drop
let size distribution divided by the mean~see, e.g.,@17,18#!,

s5
A~m22m1

2!

m1
, ~8!

wheremi are moments of the droplet size distributionp(s),

mi5E
0

`

dsp~s!s i . ~9!

The calculation of the polydispersity requires knowledge
the momentsm1 and m2 of the distributionp(s). Since in
our system the droplet diameters is related~via material
conservation! to the numberN of colloids inside the droplet
we shall use this relation to obtain approximate express
for m1 andm2 . Explicitly, material conservation implies

N5
s32sD

3

sC
3 ~10!

and then

^N&5
m32sD

3

sC
3 ~11!

and

^N2&2^N&25
m62m3

2

sC
6 , ~12!

where we have used the identitymk5^sk&. Expressions~11!
and ~12! are exact but difficult to handle since they involv
the momentsm3 andm6 . These moments can be related
m1 andm2 if we assume thatp(s) can be approximated b
a Gaussian of meanm1 and standard deviationAm22m1

2

5m1s. We obtain

^N&5
1

sC
3 ~m1

313s2m1
32sD

3 !, ~13!

^N2&2^N&25
1

sC
6 3s2m1

6~3112s215s4!, ~14!

which are our final expressions for linking the polydispers
s and the first momentm1 to the average number of particle
in a droplet and its fluctuations. In the following subsecti
we consider the case of low emulsion density where one
address suitable approximations for the relative fluctua
(^N2&2^N&2)/^N& and the momentm1 that will allow us to
obtain the polydispersity of the droplets.
-

f

s

n
n

A. The limit of low droplet densities

For low droplet densitieshD→0, the interaction between
emulsion droplets can be neglected. The interaction in
system is such that the colloidal particles are undisturbed
the presence of the droplet. Then the colloids form a sim
bulk hard sphere system, which is, of course, monodispe
We can therefore obtain the momentm1 ~the mean diamete
of the droplets! from the following material conservation ex
pression@see Eq.~3!#:

p

6
m1

3~12hC!5
p

6
sD

3 . ~15!

Moreover, if we consider a droplet with volumeV5ps3/6
then it is possible to write the fluctuation in the number
colloidal particles inside the droplet as

^N2&2^N&2

^N&
511

rC

V E
V
E

V
drdr 8@gCC~ ur2r 8u!21#,

~16!

whererC56hC /psC
3 is the number density of the colloid

andgCC is the uniform fluid pair distribution function of the
colloid. When the sizeV of the droplets becomes very larg
Eq. ~16! can be written in terms of the isothermal compre
ibility of the colloid xT ,

lim
V→`

^N2&2^N&2

^N&
5rCkBTxT , ~17!

wherekB is Boltzmann’s constant andT is the temperature o
the system. However, for small droplets finite size effe
arise~see, e.g., Refs.@19#, @20#! and one must take into ac
count the limits of integration in Eq.~16!.

The procedure for the calculation of Eq.~16! follows the
same basic ideas of Refs.@21#, @19#, @20#. First we write Eq.
~16! in Fourier space,

^N2&2^N&2

^N&
511

rC

~2p!3V E dkĜ2~k!ĥ~k!, ~18!

whereĜ(k) is the Fourier transform of a geometry functio
that accounts for the limits of integration~it is 1 inside the
droplet and zero otherwise!, and ĥ(k) is the Fourier trans-
form of the total correlation functionh(r )5g(r )21. Then,
taking into account thatG(r ) is a sphere of diameters, we
get

Ĝ~k!5Ĝ~k!5
4p

k3 FsinS ks

2 D2
ks

2
cosS ks

2 D G . ~19!

On the other hand, we use the Ornstein-Zernike relation
the total correlation function

ĥ~k!5
ĉ~k!

12rCĉ~k!
, ~20!

whereĉ(k) is the Fourier transform of the direct correlatio
function. For simplicity, we use the Percus-Yevick soluti
for the direct correlation function since in this case we obt
analytical results forĥ(k) and the fluctuations~18!. In our
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5448 PRE 61ROMÁN, SCHMIDT, AND LÖWEN
system the diameters is not a constant but depends on t
number of particles inside the droplet. As an approximat
we consider the following effective diameter:

s̄5m11sC , ~21!

wheresC accounts for the size of the colloids. From Eq.~21!
we obtain

V5
p

6
~m11sC!3. ~22!

In summary, the calculation of the polydispersity for t
low density case is as follows. First we use Eq.~15! to obtain
m1 . Then, from Eqs.~22! and~18! we calculate the fluctua
tions (̂ N2&2^N&2)/^N&. Finally, making use of Eqs.~13!
and ~14! we solve

^N2&2^N&2

^N&
5

1

sC
3

3s2m1
6~3112s215s4!

m1
313s2m1

32sD
3

~23!

to obtain the polydispersitys.

B. Intermediate and high emulsion densities

For high or intermediate densities of the emulsion,
interaction between droplets cannot be neglected. This in
action has an impact on the colloidal fluid. Thus the effect
volume of the droplet used in expression~18! cannot be cal-
culated as in Eq.~15!, since in this case it depends not on
on the mean density of colloidal particles but also on
density of the emulsion droplets. Because of this inhomo
neous character of the density of the colloid, we have
derived theoretical results for the polydispersity.

However, on the basis of the behavior at low density, i
possible to argue about the behavior of the polydispersit
higher emulsion densities. On the one hand, the exclu
interaction between droplets does not allow for the possi
ity of growth, but, on the other hand, at intermediate a
high densities the colloid particles do not allow for th
shrinking of the droplets. As a consequence, we expect
the probability distributionp(s) should become narrow an
then the polydispersity should decrease. As we shall see
low, this will be confirmed from results of computer simul
tion. These simulation results indicate that, for a given fix
colloid density, the low emulsion density result provides
upper bound for the polydispersity of the emulsion.

IV. COMPUTER SIMULATION

A. Monte Carlo technique

From a general viewpoint, the simulation handles t
coupled systems. One is the emulsion droplet system, w
is a polydisperse system of hard spheres of variable di
eters$sD,i% i 51,...,ND

. The other is the colloid system, whic
consists of a standard monodisperse hard sphere system
particles of diametersC . Both, the emulsion droplets an
colloidal particles are coupled via the interaction poten
~4!.

The simulation runs with a fixed number of emulsio
dropletsND and a fixed number of colloidal particlesNC . In
accordance with the standard Monte Carlo method, one
n
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ceeds as follows. First, one particle is randomly chosen~it
can be either a droplet or a colloid particle! and a random
displacement is proposed. The test for acceptance or re
tion of the move depends on the energy change. As we
dealing with a hard potential, the energy change is eit
zero~if no overlapping situation is reached! or infinity ~when
there is an overlap!. In the former case the state is accepte
in the latter it is rejected. The overlapping states can
reached because of both the simple movement of a partic
the growth of a droplet due to the inclusion of colloid
particles.

After proposing a new position for a droplet or colloid,
is necessary to calculate the new diameters for the drople
order to test for possible overlapping situations. This is do
by means of conservation of both the total amount of ma
rial in the droplets and the positions of the centers of
droplets. The growth for the droplets is isotropic with resp
to the center of each droplet~see Fig. 3!.

The algorithm for calculating the new proposed diame
of the droplet is as follows. Let us suppose that a trial mo
is proposed for the dropletj with diametersD, j and position
r D, j , and the proposed position for this droplet isrD, j* . In
order to calculate its new diametersD, j* , we solve the equa-
tion

p

6
~sD, j* !32(

i 51

NC

I ~ urD, j* 2rC,i u,sC ,sD, j* !2
p

6
sD

3 50,

~24!

whereI is the intersection volume between particlei and the
displaced dropletj. The geometrical functionI is given for
two intersecting spheres with center separation distancer and
diameterss1 ,s2(s1,s2) by

I ~r ,s1 ,s2!

5H ps1
3/6 if r<~s22s1!/2

L~r ,s1 ,s2! if ~s22s1!/2,r<~s21sC!/2

0 otherwise,

~25!

where the auxiliary functionL is the volume of a lenslike
shape and is given by

L~r ,s1 ,s2!5
p

12r S s21s1

2
2r D 2

3F r 223S s22s1

2 D 2

12r S s21s1

2 D G .
~26!

FIG. 3. Swelling of droplets. If a colloidal particle tries to mov
~arrow! inside a droplet, the swelling of the droplet happens aga
the pressure of the surrounding droplets.
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PRE 61 5449COLLOIDAL PARTICLES IN EMULSIONS
In practice, the terms that actually contribute to the sum o
i in Eq. ~24! are selected through a neighbor list.

Once the new diameter is calculated, the next step i
verify whether an overlapping situation is reached. Fig
shows that it is possible to reject a colloid particle displa
ment because of droplet growth. This is also possible
droplet is displaced in such a way that its growth leads to
overlap with a neighboring droplet. Then the displacem
has to be rejected. Of course, situations in which a collo
particle can interact with two or even more droplets are p
sible, and it is necessary to calculate the final diamete
each droplet before testing for droplet overlaps.

B. Simulation details

Several simulations for different values of the paramet
hC and hD have been performed to obtain the behavior
the polydispersity of the emulsion droplets. In all of th
simulations the size ratio issD /sC53. A typical run starts
from a face-centered cubic lattice ofND532 droplets and a
given number of colloidal particlesNC ranging from 50 to
1000. The number of Monte Carlo steps~MCS! used to ther-
malize the system is 107. After that the probability distribu-
tion function p(s) as well as the pair correlation function
are measured during 108 MCS. Finally, the polydispersity is
calculated by using Eq.~8!.

FIG. 4. Overlap due to swelling. A colloidal Monte Carlo mov
~indicated by an arrow! may be rejected, because the swollen dro
let would overlap~shaded region! with another droplet.

FIG. 5. The diameter probability distributionp(s) for a system
with a single emulsion droplet and various packing fractions of
colloid hC50.02, 0.09, 0.32, 0.52, and size ratiosD /sC53. As the
packing fraction of colloid increases, the width of the distributi
~polydispersity! decreases.
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V. RESULTS

A. Intrinsic polydispersity

The behavior of the probability distribution functionp(s)
for several colloid densitieshC50.02,0.09,0.32,0.52 is
shown in Fig. 5. We consider the case of infinite dilution
droplets, namely, a system with a single droplet. For la
colloid packing fractions, nearly Gaussian behavior forp(s)
emerges. The mean value grows upon increasinghC , reflect-
ing the size of a typically swollen droplet. The width of th
distribution, however, decreases upon increasing the col
density fromhC50.32 to 0.52. The underlying mechanism
the reduction of bulk hard sphere density fluctuations for
dense colloidal fluid.

The Gaussian picture, however, breaks down for low d
sities of colloids,hC50.02 and 0.09~see Fig. 6!. A hump-
like shape is still present, but there arise additional spik
We find that these spikes appear in the distribution when
integer number of particlesNin is completely inside the drop
let so that no particle intersects with the droplet surface. T
happens ats/sC5@(sD /sC)31Nin#1/3, whereNin is an in-
teger or zero. As an explanation for this droplet size dis
bution, we note that the number of states with one part

-

e

FIG. 6. Detail of Fig. 5. Note the probability spikes correspon
ing to integer numbersNin of colloid particles inside the droplet.

FIG. 7. Polydispersitys of the droplets versus the packing fra
tion of the colloidhC . Circles, squares, and diamonds represent
simulation data obtained for systems of one droplet,hD50.45, and
hD50.53, respectively. The solid line represents the theoretica
sults coming from Eq.~18!. The dashed line represents Eq.~17!
~when the size of the droplet is very large!. Note that the very low
density case~one droplet! is an upper bound for the polydispersity
The size ratio issD /sC53.
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5450 PRE 61ROMÁN, SCHMIDT, AND LÖWEN
inside the droplet~proportional to the volume of one sphe
of diametersD2sC/2! will be greater than the number o
states with one particle intersecting the surface of the dro
~proportional to the surface of the droplet!. For higher den-
sities of colloid, the presence of more particles located at
border of the droplet smooths the behavior of the probab
distribution. This leads to a highly nontrivial size distributio
that consists of finite probabilities at discrete diameter val
with a superimposed continuous probability density that
terpolates between the spikes.

In order to condense the information, we study the wid
of the distribution as a function of the thermodynamic p
rameters. Figure 7 shows the simulation results for the p
dispersity versus the packing fraction of the colloid. Circ
correspond to the case of one emulsion droplet in the sys
squares and diamonds correspond, respectively, to pac
fractions of the emulsion dropletshD50.45 andhD50.53.
We observe that the case of low emulsion densities is
upper bound for the polydispersity. Its behavior is as follow
All points start from the value zero that corresponds to
monodisperse emulsion. As the density increases, more
loidal particles are added to the system and, as a co
quence of that, the polydispersity increases up to a maxim

FIG. 8. Distribution functions of colloidal pairsgCC(r ) and
droplet pairsgDD(r ). The droplet packing fraction ishD50.452.
Three concentrations for colloids are shown,hC50.026, 0.209,
0.314. Lines are guides to the eye.

FIG. 9. Distribution function for colloid-droplet pairsgCD(r ),
for the same parameters as in Fig. 8. The arrow denotes the ra
of an empty droplet. Note the different ordinate scale compare
Fig. 8.
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value. When still more colloid particles are added, the po
dispersity decreases since the colloid system approach
dense liquid or even solid phase, and fluctuations in the n
ber of particles inside a droplet decrease. We have fo
that, as the density of the emulsion increases, it is not p
sible to reach high colloid densities. This is due to the exc
sion interaction for the droplets since the more colloid
added, the bigger the emulsion droplets become, and
even possible to freeze the emulsion.

Solid and dashed lines in Fig. 7 represent the theoret
results obtained from Eqs.~18! and ~17!, respectively. Note
that our incorporation of finite size effects improves on t
result for the thermodynamic limit. We get good agreem
for the case of low emulsion density. Differences betwe
simulation results and results obtained by using Eqs.~18!
and ~23! have a different origin depending on the collo
density. For low colloid densities, our Gaussian approxim
tion for p(s) breaks down~see Fig. 6.! For the high colloid
density case, deviations arise partly because of the Per
Yevick form of the total correlation function in Eq.~18! and

ius
to

FIG. 10. Snapshot from computer simulation. The large tra
parent spheres are droplets, the smaller ones represent coll
particles. A colloid is shaded dark if its center is not inside a
droplet. The packing fractions arehC50.026, hD50.452. The
droplet subsystem is in a fluid state.

FIG. 11. Same as Fig. 10, but at a higher particle volume fr
tion hC50.314. The droplets are frozen on a face-centered cu
lattice, while the colloids remain liquid.
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mainly because the volumeV in Eq. ~18! is approximated by
that of a sphere of the mean diameter of the droplets.

B. Structural correlations

As the system has two components, one can investi
three different static pair distributions. First, we discuss
symmetric correlationsgCC(r ) between colloidal pairs and
gDD(r ) between droplet pairs~see Fig. 8!. The packing frac-
tion of the droplets is high,hD50.452, and there are thre
cases of particle packing fractions shown, namely,hC
50.026,0.209,0.314. The behavior of the colloids is sim
to that of monodisperse hard spheres, except for a slight
of the second peak toward larger distances compared to
one-component system. The droplet behavior is also h
sphere-like but the intrinsic polydispersity washes out
first peak. At the largest values ofhC50.314, the droplet
subsystem is found to be in a crystalline state.

A quite different behavior is found for the asymmetr
correlations between pairs of one particle and one drop
gCD(r ), Fig. 9. This distribution function can be regarded
the density profile of particles inside~and around! a fixed
droplet. Of course, it also has the meaning of the den
profile of droplets around a fixed particle. There are we
oscillations inside one droplet radius, which become rapi
damped outside. The amplitude of the oscillations is ti
even at the highest packing fraction considered. The beh
ior is dissimilar from that of a hard sphere fluid inside a ha
cavity @22–25#, where much stronger structure emerges.

To illustrate our findings we show snapshots genera
from the simulation. In Fig. 10 the high density droplet li
uid phase containing few particles is shown. By adding m
particles, freezing of the droplet system occurs, Fig. 11. T
bare droplet packing fraction ofhD50.452 is well inside the
fluid branch of the hard sphere phase diagram. The swo
droplets, however, build a nearly close-packed face-cent
cubic crystal.
-
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VI. CONCLUSIONS

A model for the behavior of emulsions in the presence
colloidal particles has been proposed. It describes colloid
monodisperse hard spheres and emulsion droplets as pol
perse hard spheres. Migration of colloids into and out of
droplets is allowed. The droplet size distribution is not a
sumeda priori, but evolves self-consistently. Therefore i
teractions between colloidal particles and emulsion drop
are taken into account so that conservation of the emuls
droplet material is fulfilled. Then the exclusion rule of ha
spheres drives the droplet size distribution. We show t
this distribution has quite a rich structure, ranging from m
tispike to Gaussian behavior. By means of the study of
size dependent fluctuations in the number of particles loca
inside the droplets, we found an upper bound for the po
dispersity of the emulsion.

Concerning future work, we remark that the prese
model may be readily generalized to account for nonvan
ing surface tensions. In general, there are three surface
sions between the three materials, colloid, oil, and wa
Within the current approach, the surfaces themselves
given geometrically by intersections of spheres. Hence
can take into account the potential energy that comes f
the presence of these interfaces. By tuning the surface
sions, one then has additional control over the colloidal t
dency to aggregate inside droplets.
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