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Laser-induced condensation in colloid–polymer mixtures
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2The James Franck Institute, University of Chicago, South Ellis Ave 5640, Chicago,
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(Received 11 October 2002; accepted 22 November 2002)

We study a mixture of hard sphere colloidal particles and non-adsorbing polymers exposed to
a plane wave external potential which represents a three-dimensional standing laser field. With
computer simulations and density functional theory we investigate the structure and phase
behaviour using the simple Asakura–Oosawa model. For varying laser wavelength � we
monitor the emergence of structure in response to the external field, as measured by the
amplitude of the oscillations in the one-body density distribution. Between the ideal gas
limit for small � and the bulk limit of large � there is a non-monotonic crossover that is
governed by commensurability of � and the colloid diameter. The theoretical curves are in
good agreement with simulation results. Furthermore, the effect of the periodic field on the
liquid–vapour transition is studied, a situation that we refer to as laser-induced condensation.
Above a threshold value for � the theoretical phase diagram indicates the stability of a
‘stacked’ fluid phase, which is a periodic succession (in the beam direction) of liquid and
vapour slabs. This partially condensed phase causes a splitting of the liquid–vapour binodal
leading to two critical and a triple point. All our predictions should be experimentally obser-
vable for colloid–polymer mixtures in an optical resonator.

1. Introduction

When a non-adsorbing polymer is added to a steri-

cally-stabilized colloidal dispersion of spherical parti-

cles, an effective attraction between the colloids is

generated via the depletion mechanism. This mechanism

can be understood qualitatively as follows. Each col-

loidal particle is surrounded by a polymer depletion

zone due to the repulsion between the colloidal surface

and the polymer. Close to colloidal contact, two deple-

tion zones overlap, such that the polymers have more

accessible volume, i.e. their entropy increases. As a

consequence, two colloidal particles effectively attract.

The depletion attraction was first studied and explained

in a simple model of non-interacting polymers by Asa-

kura and Oosawa (AO) in 1958 [1], and later indepen-

dently by Vrij [2]. In their model, the colloid–polymer

interaction is hard-sphere like with a range Rc þ Rp
larger than the colloidal radius Rc, where Rp is the
radius of gyration of the polymer coils [3]. By inte-

grating out the polymeric degrees of freedom [4–6], an

analytical form of the attraction is obtained. One lesson

to be learned from this expression is that both the range

and the depth of the attraction can be tuned by changing

the molecular weight and the concentration of the poly-

mers [7, 8].

The effective attraction causes fluid–fluid demixing of

the colloids into a colloid-rich (liquid) and colloid-poor

(vapour) phase above a critical polymer concentration.

A full quantitative understanding of the demixing tran-

sition is meanwhile available and experimental data for

fluid–fluid phase coexistence are well understood by

theory and simulation. What is less clear in the bulk

are kinetics from metastable states as well as the gel

and glass transition (for a recent review see [9]).

If colloidal dispersions are exposed to an external

field, a wealth of new phenomena occur both in equi-

librium and non-equilibrium (for a recent review see

[10]). One simple possibility for an external field is a

hard planar system wall where the AO model of col-

loid–polymer mixtures was investigated recently.

Building on Rosenfeld’s ideas [11] a density-functional

theory (DFT) for the AO model [12, 13] was proposed

and near fluid–fluid coexistence, a novel scenario of

entropic wetting and a finite sequence of layering transi-

tions was found [14, 15]. This scenario was recently con-
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firmed by computer simulations [16], and there exists
also experimental indications [17, 18].
In this paper we study a different kind of external field

which can be easily realized in experiments, namely a
laser-optical field. This establishes a periodic external
potential acting on the colloids of the form

UextðzÞ ¼ U0 cos ð2pz=�Þ; ð1Þ

where U0 is the amplitude, � is the wavelength and z is
the spatial coordinate in the beam direction. Research is
very active for the freezing transition in similar periodi-
cally modulated external potentials (so-called laser-
induced freezing). Most of the studies have been done
in two dimensions and with mutually repelling colloidal
particles. Simultaneously, experiments [19–22], com-
puter simulations [23–25] and theories such as density
functional approaches of freezing [26–28] and phenom-
enological elastic theory [29, 30] have been developed
recently. The most striking results are re-entrant melting
transitions for increasing U0 and novel hexatic-type
intermediate phases.
However, to the best of our knowledge, a system with

attractive interactions—such as the effective attraction
generated in a colloid–polymer mixture—has not yet
been studied in an external periodic field. This is the
aim of the present paper, where we consider a fluid
colloid–polymer mixture in an oscillatory potential.
We investigate the density profiles caused by the
external field, both far away and close to the bulk
fluid–fluid phase separation and study them, in particu-
lar, as a function of the wavelength � of the external
field (equation (1)) for fixed average densities of both
species. Since � and the particle radii, Rc and Rp, are
competing length scales of the problem, interesting be-
haviour can be expected as one of these variables is
changed. For fixed size ratio Rp=Rc we find that there
are marked oscillations of the density peak heights as a
function of � provided � is smaller than about twice the
colloid diameter �c. These oscillations reflect possible
commensurability of � and �c. For � larger than
about 2�c, on the other hand, the colloidal density
peak height increases monotonically with increasing �.
This is in contrast to a polymer-free colloidal system
(hard spheres) where the density peak height decreases
with increasing �. As explained in detail below these
results stem from computer simulations and a recent
DFT. In general, we find good agreement between
both approaches, hence we trust the theory to correctly
describe the system.
Furthermore, we study the bulk liquid–vapour transi-

tion in the presence of the external potential (1). It is
expected that the presence of the external field will
change the phase diagram qualitatively, an effect that
we anticipate as laser-induced condensation, in analogy

with laser-induced freezing in the case of the liquid–solid
transition in a periodic field. The theoretical results
for the phase diagram show a splitting of the
colloid liquid–vapour binodal. In the colloid chemical
potential versus polymer reservoir density representa-
tion, an unusual (for fluid states) shaped coexistence
curve results, resembling an inverted letter y. It features
two critical points, one between colloid vapour and a
novel phase, the stacked fluid; the other is between
stacked fluid and colloid liquid. Naturally, we find a
triple point where colloid vapour, colloid liquid and
the stacked fluid coexist. It is argued that upon
decreasing � the two critical points merge into a bicri-
tical point. Below the corresponding finite value of � the
stacked phase ceases to exist and a single liquid–vapour
binodal is recovered.
The paper is organized as follows: in } 2 we describe

the AO model in an external laser field. The simulation
method and the density functional technique are
described in } 3 and } 4, respectively. Results for the
density profiles and the phase behaviour are presented
and discussed in } 5. We conclude in } 6.

2. The model

The AO model is a simple idealized model for colloid–
polymer mixtures, where the colloids are treated as hard
spheres with a diameter �c ¼ 2Rc, and the polymers as
interpenetrating, non-interacting particles. The poly-
mers are excluded by a centre-of-mass distance of
ð�c þ �pÞ=2 from the colloids, where �p ¼ 2Rp with Rp
the radius of gyration of the polymer. The number of
colloids is denoted byNc, the number of polymers byNp
and the total volume of the sample by V.
In detail, the pair interaction potentials UijðrÞ between

species i; j ¼ c; p as a function of the centre-to-centre
distance r are given by

UccðrÞ ¼
1; for r < �c;

0; otherwise,

(
ð2Þ

UcpðrÞ ¼
1; for r < Rc þ Rp;

0 otherwise,

(
ð3Þ

UppðrÞ ¼ 0: ð4Þ

Furthermore we consider the external potential UextðzÞ
given in equation (1) acting only on the colloids. No
external potential is applied directly to the polymers.
Thermodynamic parameters are the packing fractions

�i ¼ pNi�
3
i =ð6VÞ ¼ p�3i �i=6 of species i ¼ c; p, and we

also use the packing fraction �rp in an ideal reservoir of
polymers that is in chemical equilibrium with the
system. The size ratios q ¼ �p=�c and �=�c and the
strength (relative to the thermal energy) of the external

1652 I. O. Götze et al.
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potential 	U0 are control parameters, where
	 ¼ 1=ðkBTÞ, kB is the Boltzmann constant and T is
absolute temperature.
By integrating out the polymer degrees of freedom the

binary AO model can be mapped onto a one-component
model with effective interactions [4]. Truncating at the
two-body level one arrives at the familiar AO potential.
If the distance r of two colloids is smaller than �c þ �p,
the polymers are excluded from a region between them,
so that the osmotic pressure of the polymers on the
opposite sides of the colloids is not compensated, and
an effective depletion attraction between colloids is
induced. The effective potential UAOðrÞ between colloids
is proportional to the overlap-volume of the excluded
volumes [1]:

UAOðrÞ ¼
1; for r4 �c;
�PpVoverlapðrÞ; for �c < r4 �c þ �p;
0; otherwise,

8<
:

ð5Þ
where Pp ¼ �rpkBT is the osmotic pressure of the poly-
mers, where �rp is the number density in the polymer
reservoir. The pairwise overlap-volume Voverlap for
�c < r4�c þ �p is given by

VoverlapðrÞ

¼ 1� 3r
2�cð1þ qÞ

þ 1
2

r
�cð1þ qÞ

� �3 !
p
6
�3cð1þ qÞ3: ð6Þ

The effective potential (5) with (6) can be used to treat
the mixture as a one-component system with pairwise
interactions. This mapping is exact for
q < ð2=31=2 � 1Þ ¼ 0:1547 . . ., where for geometrical
reasons only pairwise overlaps occur. When q is
above this threshold, there occur higher-body terms,
and using only the pairwise contribution is an
approximation.

3. Computer simulation method

In order to treat the full model we perform direct
Monte Carlo (MC) simulations of the binary mixture,
i.e. besides the colloids, we also simulate the polymers
explicitly. This is potentially difficult due to the typically
large number of polymers, but still possible as the poly-
mers are non-interacting. Using Nc colloids and Np
polymers, the simulation time scales with N2c and
NcNp (not with N

2
p due to polymer ideality). Of

course, an advantage of the hard interactions is that it
is not necessary to calculate the energy; one only needs
to check for overlap of particles. If the moved particles
overlap with one other, the configuration is rejected, so
the search for further overlaps can be aborted. As the
colloid–colloid interaction and the colloid–polymer

interaction have different ranges, we employ two

Verlet neighbour lists with different Verlet radii in

order to optimize the number of particles in each list.

We use straightforward canonical simulations, hence fix

the numbers of colloids and polymers explicitly. This is

easier than (semi-)grandcanonical methods, because

inserting additional colloids is prohibited by the poly-

mers, filling the space between the colloids. As we fix �p
in the system, �rp is not known a priori . This is deter-

mined during the simulation by the acceptance prob-

ability of inserting (homogeneously distributed) test

polymers.

We also perform MC simulations of the effective one-

component system of colloids employing only two-body

interactions (equations (5) and (6)). These are much

faster than the direct simulations of the binary system.

As we are interested in q > 0:1547, where many-body
terms arise in the effective potential, we can quantita-

tively assess the effect of the higher-order terms by

comparing with the direct simulation. The strength

of the attraction in the AO pair potential (equation (5))

is ruled by �rp. In order to compare with the results
from the direct simulation we need to prescribe this

value. We do this using the accurate free-volume

expression [31].

In more detail, for a given state point we chose corre-

sponding particle numbers of colloids and polymers,

Nc ¼ 300 and Np ¼ 0, 1500, 3000, respectively, as well
as the system volume V ¼ 1500�3c . We match the box
length Lz to be an integer multiple of the wavelength
�, and set the box volume to V ¼ Lx � Ly � Lz, where
L� are the box lengths in space direction �, and Lx ¼ Ly.
Periodic boundary conditions are used in all three space

directions. In the range �c4 �4 7:5�c we use Lz ¼ 4�.
For 0:25�c4�4 1:25�c we set Lz ¼ 12�, in order to
avoid finite size effects in the z direction for these smaller
� values.
In the direct simulation we use 5� 106 MC cycles to

equilibrate the system, and typically 2:5N5� 107 cycles
to gather statistics, where one MC cycle consists of one

trial move per particle. In the simulation of the effective

one-component system the maximum displacement per

move can be chosen larger than in the direct simulation,

so that less MC cycles are necessary. Here we use 106

MC cycles to equilibrate the system, and 107 cycles to

gather statistics.

4. Density functional theory

In order to study the AO model in an external poten-

tial in the framework of DFT one considers the grand

potential O as a functional of the one-particle density
fields �cðrÞ; �pðrÞ. This is given as

Laser-induced condensation in colloid–polymer mixtures 1653
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	O½�cðrÞ; �pðrÞ	 ¼
X
i¼c;p

ð
d3r�iðrÞ½ln ð�iðrÞL3i Þ � 1� 	�i	

þ 	Fexc½�cðrÞ; �pðrÞ	

þ
ð
d3r�cðrÞ	UextðrÞ; ð7Þ

where Li is the (irrelevant) thermal wavelength and �i is
the chemical potential of species i. The excess (over ideal
gas) Helmholtz free energy Fexc arises from interactions
between particles and is in general (and in the present
case of the AO model) unknown. The crucial benefit of
DFT is that Fexc is expressed as a functional only of the
density profile(s), and that it does not explicitly depend
on the external potential(s). This allows one to study
different external potentials using the same prescription
for the excess free energy functional.
Relying on an approximation, we use in the following

the fundamental measure DFT for the binary AO model
developed in [12, 13]. Here we do not report the details
of the approximation; the interested reader is referred
directly to [12, 13]. The theory was shown to give the
same bulk fluid free energy and hence the same fluid
demixing curve as free-volume theory [31], which was
recently shown by computer simulations to be remark-
ably accurate for the AO model [32]. Concerning inho-
mogeneous situations, both fluid–fluid interfaces and
wall adsorption have been considered [14, 15].{

5. Results

5.1. Structure
Fluid–fluid demixing is stable with respect to fluid–

solid for size ratios of (about) q5 0:35 [33]. As we are
interested primarily in fluid states we stay above this
threshold and consider in the following q ¼ 0:6. As a
typical value for the strength of the external field we

chose 	U0 ¼ 1=2, hence the difference between minima
and maxima of the potential energy is kBT.
The prominent effect of the plane wave external

potential UextðzÞ (equation (1)) on the structure is to
generate wave-like (non-decaying) one-body distribu-

tions �iðzÞ of both species. To exemplify this (rather
straightforward) effect, we show in figure 1 a snapshot

and in figure 2 typical results from our computer simula-

tions. The simulation box accommodates four wave-

lengths of the external potential UextðzÞ (upper panel
in figure 2). In response to this influence the colloid

profile �cðzÞ exhibits an ‘out-of-phase’ behaviour, i.e.
its maxima coincide with the minima of UextðzÞ and
vice versa (see the clustering of particles in figure 1).

Of course, this effect occurs already without polymers,

i.e. in the pure hard sphere case. The density distribution

of added polymers, however, is again in-phase with

UextðzÞ. This is expected as the external potential does

1654 I. O. Götze et al.

{As we only deal with z-dependent fluid density profiles in
the present study we follow [14, 15] and use the non-tensorial
form of the DFT [12].

Figure 1. Snapshot of a colloid particle configuration from computer simulation. The polymers are not shown for clarity. The laser
beam is along the horizontal direction in the paper plane. Four wavelengths � are shown, corresponding to figure 2.

Figure 2. External potential UextðzÞ as a function of z=�c
(upper panel) and corresponding density profiles �iðzÞ
(lower panel) of colloids (solid lines) and polymers
(dashed line) for � ¼ 7:5�c. Average densities are
�c�

3
c ¼ 0:2 and increasing �p�

3
c ¼ 0, 1, 2 (indicated by

arrow); the polymer profile is only shown for �p�
3
c ¼ 2

for clarity.
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not affect directly the polymers, which merely pack in
the free space between the colloids. Increasing the
polymer concentration leads to an increase of the ampli-
tude of the oscillation in �cðzÞ. Clearly, the minimum
and maximum values, defined as

�minc ¼ min
z

�cðzÞ; �maxc ¼ max
z

�cðzÞ; ð8Þ

are characteristic measures and we will monitor these
below, in particular as a function of �=�c.
Before doing so, we reconsider the bulk phase dia-

gram. In figure 3 we plot the liquid–vapour binodal
both as a function of �c; �

r
p (left panel) and as a function

of 	�c; �
r
p (right panel). (In order to fix an arbitrary

additive constant to �c we use the convention Lc ¼ �c
in equation (7).) We also indicate the state points where
we will carry out detailed structural analysis. In the limit
of �=�c ! 1, a local density approximation is
becoming asymptotically exact [34], and hence one can
think of locally varying the (bulk) colloid chemical
potential. The corresponding variations in �c are indi-
cated in figure 3 as horizontal lines. We first examine the
(three) cases that are completely inside the one-phase
fluid region (hence do not cross the liquid–vapour
binodal) and consider the variation with � while all
other parameters (amplitude of the potential, colloid
and polymer density and diameters) are kept fixed.
First we consider a pure hard sphere system (i.e.

�p ¼ 0) with colloid density �c�
3
c ¼ 0:2. In figure 4,

results for �minc and �maxc are plotted as a function of

Laser-induced condensation in colloid–polymer mixtures 1655
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Figure 3. Bulk phase diagram of the AO model for size ratio
q ¼ 0:6 as a function of polymer reservoir packing frac-
tion �rp and colloid packing fraction �c (left panel) and
colloid chemical potential 	�c (right panel). The
vapour–liquid binodal (thin line) and critical point (dot)
is shown. Crosses denote the state points where we inves-
tigate density profiles. The horizontal bars centred at
these state points indicate the variation of the chemical
potential along one period of the external field. The
dashed bar corresponds to the stacked fluid phase.

Figure 4. DFT (solid lines) and MC results for the full (filled
circles) and effective model (open circles) for the minimum
(�minc �3c) and maximum (�

max
c �3c) colloid density as a func-

tion of the wavelength � of the external potential for
�c�

3
c ¼ 0:2 and different values of �p. The dotted lines

represent the result for an ideal gas. (a) �p�
3
c ¼ 0 (i.e.

pure hard spheres); (b) �p�
3
c ¼ 1; (c) �p�3c ¼ 2.
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the (scaled) wavelength �=�c. The DFT results match
perfectly those from simulations demonstrating the
excellent accuracy of the theory, which equals, in the
absence of polymers, Rosenfeld’s hard sphere func-
tional.
For � � �c the amplitude of the density oscillation

reaches a maximum. This is the case when two colloids
at contact can be placed in neighbouring minima of
the external potential. This leads to very efficient
packing of the particles in the valleys of UextðzÞ. For
� < �c oscillations appear that become smaller in
amplitude and in wavelength as � ! 0. We attribute
this behaviour to the competition of the length scales
�c and �. In the limit of very small wavelength, i.e.
�=�c ! 0, an exactly solvable case is recovered. Since
there are no hard sphere interactions when a particle
moves over a length �, mainly single-particle motion
in an external field occurs. The corresponding density
profile in this limit is

�cðzÞ ¼ L�3
c exp ð�	½UextðzÞ � �c	Þ: ð9Þ

Hence �minc ¼ L�3
c exp ð�	U0 � �cÞ and �maxc ¼

L�3
c exp ð	U0 � �cÞ. This limit is shown in figure 4 as a
dotted line.
For long wavelengths, on the other hand, the maxi-

mum density is lower than in the ideal gas case due to
the repulsion of the hard spheres. It is decreasing, in
general, with increasing �. This can be understood intui-
tively as follows. A hard sphere system reacts with
marked density oscillations to the presence of an
external potential. The amplitude of the density
response depends on the range of the external potential;
if it is of the order of �c the density oscillations are most
pronounced while for smooth and longer ranged
external potentials the oscillations are weaker. For
large �=�c the above mentioned local density approxi-
mation holds, and �minc , �maxc correspond to the end
points of the paths indicated in figure 3.
In figure 4 (b), the minimum and maximum colloid

densities are plotted as a function of the wavelength
for �p�

3
c ¼ 1. Adding polymers, the effective attraction

causes a higher maximum density in the potential val-
leys. As the total density is constant, the minimum den-
sity decreases. We show results from the direct
simulation of the binary mixture and from the simula-
tion of the one-component model. From the binary
simulation we determine �rp ¼ 0:184 65, which we use
in equation (5). This value for �rp is slightly smaller
than the free-volume bulk result �rp ¼ 0:187 376. We
have also checked that �rp does not change significantly
as �=�c varies. From �=�c ¼ 1–7.5 only a small decrease
�rp ¼ 0:185–0:1845 is found, and we are confident that
keeping �rp fixed is a good approximation. As is apparent
in figure 4 (b), the differences between the binary and

the effective models are very small, and we conclude

that the higher-body terms neglected in the one-com-

ponent model do not contribute significantly. Again

the DFT gives a very good account of the observed

behaviour.

In figure 4 (c), the results for an even higher polymer
concentration, �p�

3
c ¼ 2, are presented. At � � 2�c, a

minimum in the amplitude occurs and �maxc increases

with increasing � in striking contrast to the pure hard
sphere case. This can be understood in terms of the

strong effective attraction which prefers locally higher

density and acts oppositely to the correlation effect

discussed above for pure hard spheres. Figure 4 (b) is
an intermediate case where the effective attraction is

not strong enough to lead to increasing �maxc with

increasing �.
For the simulation of the effective one-component

system we use the simulated value �rp ¼ 0:365. This
was determined for small wavelengths (the free-volume

result in bulk is �rp ¼ 0:374 735). In reality �rp decreases,
but only very little with increasing �=�c; we estimate
�rp ¼ 0:363 for �=�c ¼ 7:5. From figure 4 (c), one sees
that in the effective model the effect of the polymers is

overestimated. We attribute this mainly to the fact that

the (repulsive) three-body forces are neglected. The DFT

still describes the simulation results quite well, although

the agreement is slighlty inferior to the above cases.

Finally, we show results for 0:25 < �=�c < 1:25 on an
expanded scale in figure 5. The damping and increasing

of wavelength of oscillations as �=�c decreases is
apparent. The presence of the polymers shifts the abso-

lute maximum (minimum) of �maxc (�minc ) to smaller

�c=�c. Having gained confidence in the theory, in the

1656 I. O. Götze et al.

Figure 5. Same as figure 4, but for 0:25 < �=�c < 1:25. Lines
are DFT results, symbols denote computer simulation
results. The hard sphere case for �p ¼ 0 (dashed line
and crosses) and �p�c ¼ 2 (solid line and open circles)
are shown; results for �c�

3
p ¼ 1 are omitted for clarity.
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following we investigate the effect of increased polymer
density so that demixing occurs.

5.2. Phase behaviour
In order to study the fluid demixing phase behaviour

we use the same parameters as before, i.e. q ¼ 0:6 and
	U0 ¼ 0:5. We restrict ourselves to � ¼ 8:192�c, where
we show detailed results, but we have also considered
smaller � to assess the principal scenario. In figure 6 the
phase diagram as obtained from DFT is shown. For
large �rp the presence of the plane wave potential shifts
the bulk transition slightly to higher colloid chemical
potentials 	�c. Strikingly however, at lower �

r
p values a

bifurcation of the binodal occurs. It appears that the
two bifurcated critical points lie at the same �rp value
as the bulk critical point but numerically we could not
determine whether they are exactly the same. Three state
points are indicated where we plot the density profiles in
figure 7, one in each region. The three state points are all
at �rp ¼ 0:65 and (i) modulated gas, 	�c ¼ 8:7, (ii)
stacked fluid, 	�c ¼ 9:2 and (iii) modulated liquid,
	�c ¼ 9:7. The stacked fluid phase is a novel phase
which is absent in the bulk but is stabilized by the
external field. It consists of periodic slabs of vapour
centred around the maxima of the external potential
and of slabs of liquid centred around the minima of
the external potential. The relative width of the vapour
and liquid portion do vary with the thermodynamic par-
ameters. The occurrence of the stacked fluid phase is
most directly understood in the limit �=�c ! 1 where

a local density approximation is valid. When the combi-
nation �c �UextðzÞ equals the chemical potential at
liquid–vapour coexistence (see the dashed bar in the
right panel of figure 3) a liquid–vapour interface is
built up [34].
For smaller values of �=�c we have confirmed that the

stacked fluid ceases to exist and the usual type of
vapour–liquid phase diagram is recovered. The disap-
pearance is due to the increasing contribution of surface
free energy between liquid and vapour slabs in the
stacked phase as � is decreased. We have checked that
eventually, at a finite value of �=�c, the stacked fluid is
no longer stable. Upon decreasing �=�c the triple point
moves toward both critical points eventually merging in
a bicritical point. We leave a more thorough study of the
details of this scenario to possible future work.

6. Conclusions

We have considered a model colloid–polymer mixture
exposed to a three-dimensional plane wave external
potential representing an optical standing wave. By
tuning the size and concentration of the polymers, one
can influence the range and strength of an effective
depletion attraction, and this can be adjusted so that
stable colloid vapour–liquid coexistence is observed.
We have demonstrated that a recent DFT quantita-

tively predicts the inhomogeneous density profiles when
compared to simulation results. As a function of the
wavelength of the external potential we find interesting,
non-monotonic behaviour of the amplitude of the oscil-
lations in the one-body density distributions. Further-
more we demonstrate the stability of a stacked liquid
phase. All our predictions can in principle be verified
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Figure 6. Fluid demixing phase diagram of the AO model as
a function of colloid chemical potential 	�c and polymer
reservoir packing fraction �rp for size ratio q ¼ 0:6 for the
cases without external potential (solid line) and with
external potential of strength 	U0 ¼ 0:5 and wavelength
� ¼ 8:192�c. In the latter case three phases (vapour,
stacked fluid, liquid) are observed. Solid symbols denote
critical points. Open symbols denote state points where we
display density profiles in figure 6.

Figure 7. Colloid density profiles for 	U0 ¼ 0:5,
� ¼ 8:192�c, q ¼ 0:6 and �rp ¼ 0:65 in three different
phases corresponding to different chemical potentials:
modulated vapour for 	�c ¼ 8:7 (solid line), stacked
fluid for 	�c ¼ 9:2 (dashed line) and modulated liquid
for 	�c ¼ 9:7 (dot-dashed line).
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in experiments of colloid–polymer mixtures. We believe
that the trends and the appearance of the stacked fluid
phase are very general phenomena which should also be
present for more realistic polymer–polymer and colloid–
polymer interactions [35].
Motivated by the experimental situation, in our study

the external potential acts only on the colloids. It might,
however, also be interesting to study external potentials
that act solely or differently on the polymers. In the
depletion picture this would lead to spatially varying
pair potentials—an interesting issue.
In order to realize small �=�c one needs to use core-

shell colloidal particles, where the laser only couples to
the particle core.
The principal physical mechanism that underlies the

stability of the stacked fluid should also apply to two-
dimensional systems; these might be easier to access
experimentally.
Finally we note that an analogue of the stacked fluid

phase was found before in parallel slit pores where the
confining walls are periodically structured. The familiar
capillary condensation from gas to liquid is enriched in
this case by a phase that consists of liquid bridges
between both walls [36, 37]. This phase was also
obtained within a lattice model between decorated
walls [38]. We emphasize, however, that our external
potential is simpler as it has only two additional control
parameters such that in our situation the occurrence of
the intermediate fluid phase is more direct.
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