
PHYSICAL REVIEW E 68, 061406 ~2003!
Crystal structures of two-dimensional magnetic colloids in tilted external magnetic fields

V. A. Froltsov, R. Blaak, C. N. Likos, and H. Lo¨wen
Institut für Theoretische Physik II, Heinrich-Heine-Universita¨t Düsseldorf, Universita¨tsstraße 1, D-40225 Du¨sseldorf, Germany

~Received 25 September 2003; published 30 December 2003!

The stability of different crystal lattices of two-dimensional superparamagnetic suspensions that are confined
to a planar liquid-gas interface and exposed to a tilted external magnetic field is studied theoretically by lattice
sum minimizations. The magnetic field induces magnetic dipoles onto the colloidal particles along its direction,
whose strength can be controlled by the amplitude of the external field. The mutual interaction between the
colloids is governed by dipole-dipole forces and a short-ranged repulsion having its physical origin at the
presence of the colloidal cores. If the direction of the magnetic field is perpendicular to the liquid-gas interface,
there is a purely repulsive interaction leading to stable triangular crystals. By tilting the external field, the
interaction becomes anisotropic and a mutual attraction appears upon a threshold tilt angle. We have calculated
the full phase diagram at zero temperature varying the tilt angle, the colloidal density, and the strength of the
magnetic field. Apart from the triangular lattice we find a variety of stable crystal lattices including rectangular,
oblique, chainlike oblique, and rhombic structures. We also present the accurate derivation of the Hamiltonian
of two polarizable particles of finite arbitrary geometries in external magnetic and electric fields.
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I. INTRODUCTION

Crystallization in colloidal monolayers that are confin
to a vapor-liquid interface is a fascinating self-organizat
process, details of which have been studied recently@1–7#.
In particular, superparamagnetic microspheres suspende
a pendant drop in gravity are excellent realizations of stric
two-dimensional classical many-body systems; for recent
views, see Refs.@8,9#. An additional external magnetic fiel
will induce magnetic dipole moments on the particles, who
direction and strength can easily be tailored via the exte
field @10#: the dipole moments almost perfectly align alo
the field direction and the magnitude of the dipole momen
proportional to the field amplitude. In the conventional set
the magnetic field is perpendicular to the air-water interfa
so that the colloidal particles will interact via purely repu
sive dipole-dipole forces, additional to the short-ranged
pulsion arising from the physical core of the particles. F
large magnetic fields, the typical strength of the repuls
interaction is much larger than the thermal energy, enforc
crystallization of the microspheres into a triangular mon
layer. It is known that the three-dimensional melting tran
tion @11# can be qualitatively different from that in two spa
tial dimensions following a two-stage scenario with
intermediate hexatic phase as theoretically predicted by
sterlitz, Thouless, Nelson, Halperin, and Young~KTNHY !
@12#. In fact, by using video microscopy and digital imag
processing, it was shown by Maret and co-workers that tw
dimensional superparamagnetic colloidal suspensions ind
follow the KTNHY scenario@13–16#.

In the present paper, we consider the case of a magn
field that istilted with respect to the surface of the gas-liqu
interface. The reason for doing so is twofold: first, a se
with a tilted external magnetic field can easily be realized
an experiment@17#. Second, more fundamentally, a tilt ang
induces an anisotropic interaction and therefore new phys
Furthermore, if the tilt anglew of magnetic field with its
projection on the surface is smaller than 54.7°, the dipo
1063-651X/2003/68~6!/061406~10!/$20.00 68 0614
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dipole interaction exhibits also attractive parts which c
give rise to new phenomena. By varying the tilt anglew, one
continuously interpolates between two extreme limits ofw
50° andw590°, both of which have been already studie
the preceding studies of the melting process invoke a perp
dicular field (w590°), while the parallel field case (w
50°) corresponds to two-dimensional dipoles with a fix
orientation in the plane. The latter model was considered
the context of ferrofluidic monolayers where chain formati
has been simulated by Satohet al. @18#.

In this paper, we calculate by lattice sum minimization t
stable bulk crystalline lattices in the case where the inter
tion energy between the colloids is much larger than
thermal energykBT, so that thermal fluctuations can be n
glected. As expected, the resulting stable bulk solid str
tures are strongly anisotropic and different from their cou
terpart arising from purely repulsive interactions, which
the triangular lattice that has a high degree of isotropy. T
anisotropy of the interactions together with the addition
attractions generate various two-dimensional crystall
structures such as rectangular, oblique, chainlike obliq
and rhombic lattices. We obtain the whole phase diagr
varying the tilt angle, the particle concentration, as well
the magnetic field strength relative to the strength of a sh
ranged repulsion that stems from a soft physical colloi
core. Both first- as well as second-order transitions betw
the different lattice structures are found.

In relation to other previous work, our study is fir
complementary to those assuming a perpendicular magn
field (w590°) but exposing the system to an additional e
ternal potential, such as gravity, that leads to the formation
nonhomogeneous conformal crystals@19,20#. Second, in our
model the orientation of the dipoles is fixed by the fie
which makes our model different from that of orientable d
poles where the dipole orientation is treated as an additio
statistical degree of freedom. Such models have been in
tigated in detail in two spatial dimensions for the sphe
centers and the dipolar orientations of the spheres fixed
©2003 The American Physical Society06-1
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FROLTSOVet al. PHYSICAL REVIEW E 68, 061406 ~2003!
the three-dimensional unit sphere@21,22# and two-
dimensional unit circle@23#. In the latter case, ring formatio
of dipolar chains was obtained by computer simulation.

The paper is organized as follows: in Sec. II we define
model; details for the derivation of the Hamiltonian are p
sented in the Appendix. The lattice sum minimization tec
nique is explained in Sec. III, whereas the resulting ph
diagrams are presented and discussed in Sec. IV. Finall
Sec. V we summarize and conclude.

II. THE MODEL

We consider a system of superparamagnetic colloidal
ticles interacting with each other via the dipole-dipole p
potential, valid for pointlike magnetic dipoles,

udd~r ,mi ,mj !5
1

2

mi•mj23~mi•n!~mj•n!

r 3
, ~1!

and a truncated-and-shifted Lennard-Jones pair potentia

uLJ~r !5H 4«F S s

r D 12

2S s

r D 6

1
1

4G if r<21/6s

0 if r .21/6s,

~2!

where r is the interparticle separation vector,n5r /r is the
unit vector along the line connecting the colloids’ centers,mi
andmj are the magnetic moments carried by particlesi andj
( iÞ j ), s is the effective particle diameter, and« sets the
energy scale of the short-ranged soft core repulsion. The
tor 1/2 in Eq.~1! appears due to the paramagnetic nature
colloids, i.e., it stems from the fact that the dipoles on
particles are not permanent but rather induced by the exte
magnetic field. A detailed derivation of the interaction ene
of two polarizable particles in an arbitrarily varying extern
field is presented in the Appendix. The purely repuls
Lennard-Jones potential, Eq.~2!, is used to model the short
ranged repulsion between the physical cores of the partic
whereas dispersion attractions between them are ignore

In our problem the colloids are spherical with a fini
extent but, for the sake of simplicity, we consider their ma
netic dipoles as pointlike. Their motion is confined on t
plane formed by the water-air interface. This tw
dimensional system consisting ofN particles is placed unde
a spatially homogeneous magnetic fieldB0, which induces in
each particle a magnetic momentmi , i 51,2, . . . ,N. Since
water has roughly the same magnetic permeabilitym as air,
the presence of the interface is not relevant from the poin
view of the magnetic interactions and thus the derivation
the Appendix~which is carried out in the absence of su
physical interfaces! carries over to the problem at hand.
this paper we considersuperparamagneticcolloids @13# for
which the magnetic momentmi completely aligns with the
external fieldB0 and the following relation holds:

mi5xB0 ,

wherex is a magnetic susceptibility of the particles and f
the superparamagnetic particles it has a typical value ox
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>10211 A m2/T @10#. In this case, in the two-particle Hamil
tonian of the system, Eq.~A6!, the dipole-field interaction
termsud1B0, ud2B0 @Eqs.~A3! and ~A4!# as well as the field
energyuB0 @Eq. ~A2!#, become irrelevant constants. Thus, f
our two-dimensional superparamagnetic particles the dip
dipole interaction potential~1! takes the form

udip~r ,B0!5udd~r ,xB0 ,xB0!

5
~xB0!2

2

1

r 3
~123 cos2w cos2u!, ~3!

where cosu5r•Bi /(rB i), Bi is the in-plane component o
the magnetic field,w is the tilt angle of the magnetic field
with respect to the confining plane. We introduce the no
tion udip(r ,B0) to discriminate from the general case, Eq.~1!.
Assuming pair additivity of the interactions, the total Ham
tonianH of the system takes the form

H5(
i

pi
2

2m
1(

i , j
@udip~r i2r j !1uLJ~ ur i2r j u!#, ~4!

where the first term is the total kinetic energy, with the m
mentapi and the massm of the particles, and the second
the total potential energy. Since we are going to work
temperatureT50 in what follows, the kinetic energy is ir
relevant. Figure 1 shows a side view and a view from abo
for our system, in order to elucidate the considered geom
and the physical setup.

The relative strength of the isotropic truncated and shif
Lennard-Jones interaction and the orientationally depend
dipole-dipole interaction is characterized by the dimensi
less coupling constant

l5
~xB0!2

s3«
. ~5!

FIG. 1. A schematic view of two superparamagnetic collo
confined to a plane and placed in a tilted magnetic fieldB0. For
superparamagnetic particles, the magnetic momentsmi , mj align
completely along the external fieldB0.
6-2
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CRYSTAL STRUCTURES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW E 68, 061406 ~2003!
Changing of the tilt anglew of the magnetic field allows for
an interplay between the repulsive and attractive contri
tions of the dipole-dipole interaction. In addition to the ste
repulsion, the freedom of varyingl andw makes the inter-
action dependent on the relative orientation of the dipo
and offers wide freedom in tailoring the forces between
particles. The dipole-dipole interaction favors fully aligne
moments~head-to-tail configurations!, as seen in Fig. 2. Due
to the presence of the vertical component of the field,
attractions between particles show up for head-to-tail c
figurations (u50) only when the tilt anglew lies below the
threshold value arccos(1/A3)'54.7°.

Our purpose is to find the stable crystal structures form
by the systemat zero temperature. The area densityn of the
system is given asn5N/A, with the areaA occupied by the
colloids, and it is understood throughout that the thermo
namic limit is taken. We define the dimensionless area d
sity asn* 5ns2. The problem is thus characterized by thr
parameters,l, n* , and the tilt anglew of the external field.
If the particles arrange themselves in a Bravais lattice,
total energy per particleU1 is given by the expression

U15
1

2 (
rÞ0

@udip~r ,B0!1uLJ~r !#1const, ~6!

where the sum runs over the set of Bravais lattice vectors
the additive constant includes the irrelevant contributio
from the dipole-field interaction and the field energy.

III. CALCULATION OF THE PHASE DIAGRAM

Strictly speaking, the determination of the periodic stru
ture that corresponds to the absolute minimum of the ene
is unfeasible: though there are only five Bravais lattices
two dimensions and they can be easily parametrized, on

FIG. 2. The total potential of interaction between two superpa
magnetic colloidal particles at coupling constantl53, as a func-
tion of interparticle separationr. Here the dipoles are fully aligned
u50, and the curves correspond to different tilt angles, as indica
in the legend.
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faced with the additional complication that these can
decorated with bases of an arbitrary number of particles
order to keep the calculation manageable, we have chose
restrict ourselves to two classes of periodic structures o
those with one particle per unit cell, which are indeed B
vais lattices, and those with a two-particle basis. The lo
range character of the dipole-dipole interaction requires
implementation of special summation techniques and
corresponding formulas take different forms for the tw
cases at hand. In what follows, we present the method of
calculation in some detail.

A. One particle per unit cell

In this case, the possible candidate structures are re
sented by a two-dimensional unit cell that is repeated p
odically over the space. In full generality, the unit cell is
parallelogram formed by the vectorsa andb that sustain an
anglec between them, as shown in Fig. 3. The position of
arbitrary particle on the lattice site is given by the line
combinationr5 la1mb, wherel and m are integers. Intro-
ducing a coordinate system (xy) and choosing thex axis
parallel to the unit-cell vectora, the componentsr x andr y of
the vector r5(r x ,r y) can be written as follows:r x5a l
1bm, r y5gm, where we have introduced parametersa
5a, b5b cosc andg5b sinc, with c being the angle be-
tween the vectorb and thex axis. Having inserted the ex
plicit expressions of particle positions in Eq.~3!, the energy

-

d
FIG. 3. Geometry of a two-dimensional candidate lattice w

one and two particles per unit cell, view from above. Shown are
unit vectorsa andb of the candidate Bravais lattice with one pa
ticle per unit cell, as well as the basis vectorc that characterizes the
position of the second particle in the cell, for the case of a latt
with a basis. The small arrows on the particles denote the orie
tion of the in-plane magnetic dipole momentsmi , which coincides
with the direction ofBi . The two different coordinate systems (xy)
and (x8y8) are introduced for technical reasons in the computat
of the lattice sums via the Lekner method; for an explanation
the text.
6-3
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FROLTSOVet al. PHYSICAL REVIEW E 68, 061406 ~2003!
U1 in Eq. ~6! takes the form of a lattice sum
( l 52`

` (m52`
` (•••) running over integersl andm, with the

combination (l ,m)5(0,0) being excluded. In order to fin
stable structures of solid that correspond to the lowest t
energy, we need to minimize the lattice sum with respec
all free variational parameters. In the case at hand, there
a, b, and g, which are introduced above for convenien
instead of unit-cell parametersa, b, and c. Working at a
fixed densityn acts as a constraint that eliminates one
those due to the relationshipa51/gn, therefore we are left
with the two parametersb andg. One additional variationa
parameterd is the angle between the in-plane magnetic fi
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componentBi and thex axis~see Fig. 3!, which characterizes
the relative orientation of the magnetic dipoles with resp
to a lattice direction in the crystal.

While the short-ranged Lennard-Jones term(uLJ(r ) does
not cause any problems during computation, the long-ran
dipole-dipole interaction summation(udip(r ,B0) converges
slowly and it takes too long time to obtain the required a
curacy of the resulting value. To accelerate convergence
rewrite the series(udip(r ,B0) in terms of the modified
Bessel functionsK0(x) and K1(x) following the Lekner
method. Making use of the substitutions proposed by Lek
@24#, it is straightforward to derive the expression
2

~xB0!2 (
rÞ0

udip~r ,B0!5 (
l ,m52`

( l ,m)Þ(0,0)

`
1

@~a l 1bm!21~gm!2#3/2F123 cos2w
@~a l 1bm!cosd1~gm!sind#2

~a l 1bm!21~gm!2 G
5@12cos2w~11sin2d!#

16p

a2g
(
l 51

`

(
m51

`
l

m
cosS 2p

b

a
lmDK1S 2p

g

a
lmD

1cos2wcos~2d!
32p2

a3 (
l 51

`

(
m51

`

l 2cosS 2p
b

a
lmDK0S 2p

g

a
lmD

2cos2wsin~2d!
32p2

a3 (
l 51

`

(
m51

`

l 2sinS 2p
b

a
lmDK1S 2p

g

a
lmD1@12cos2w~11sin2d!#

2

3

p2

ag2

1~123 cos2wcos2d!
2

a3
z~3!, ~7!
s,
res
o-
rlo

s
ce.

-

to

ice
where z(x) is the Riemann zeta function. The use of t
right-hand side of Eq.~7! instead of the original expressio
drastically improves the convergence speed and allows f
very fast computation of the energyU1 during its minimiza-
tion procedure. The lattice structures minimizing the ene
U1 with respect to variational parametersb, g, d span in
this way the five two-dimensional Bravais lattices, nam
the triangular, square, rectangular, rhombic@25#, and oblique
lattices. The results of the minimization procedure are p
sented in the following section.

B. Two particles per unit cell

The second possible class of candidate structures we
sider are generated by the periodic repetition of a unit c
defined as above bya, b, andc, having one more additiona
particle placed inside the parallelogram. The position of
added particle is specified by the vectorc5(cx ,cy). When
such a cell is repeated periodically over the space, it p
duces two lattices shifted with respect to each other by
vectorc, as shown in Fig. 3. In other words, we are deali
here with lattices possessing a two-particle basis. The p
tions of the particles of the first lattice on the (x,y) plane are
given by the vectorsr5(a l 1bm,gm), while the sites of the
a

y

y

-

n-
ll,

e

-
e

si-

second lattice are located at the pointsr1c5(a l 1bm
1cx ,gm1cy), where l, m are integers anda5a, b
5b cosc, g5b sinc. The class of such structures include
among others, the honeycomb and ‘‘herringbone’’ structu
as possible lattices, as well as periodic repetitions of tw
chain bundles, similar to those observed in Monte Ca
simulations in the fluid phase@18#.

For this system the total energy per particle reads as

U25U11
1

2 (
rÞ0

@udip~r1c,B0!1uLJ~ ur1cu!#, ~8!

which is the energyU1, given by Eq.~6!, of a particle inter-
acting with all other particles within its own sublattice, plu
the additional energy of interaction with the other sublatti
Once more, the set$r% spans a Bravais lattice. The param
eters characterizing the lattice structure area, b, g, cx , and
cy . The constraint of constant particle density allows
eliminate the parametera52/gn. As before, we do not fix
the direction of the magnetic field with respect to the latt
axis and allow for the variation ofd, the angle betweenBi
6-4
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and thex axis. The stable crystal structures are found
minimization of energyU2 with respect to the parametersb,
g, d, cx , andcy .

To achieve rapid convergence of the dipolar series in
t-
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~8!, we apply the Lekner method@24# as in the preceding
section. Accordingly, the slowly converging sum(udip(r
1c,B0) is written in terms of the modified Bessel function
K0(x) andK1(x) as follows:
2

~xB0!2 (
rÞ0

udip~r1c,B0!

5 (
l ,m52`

`
1

@~a l 1bm1cx!
21~gm1cy!2#3/2F123 cos2w

@~a l 1bm1cx!cosd1~gm1cy!sind#2

~a l 1bm1cx!
21~gm1cy!2 G

5@12cos2w~11sin2d!#
8p

a2 (
l 51

`

(
m52`

`
l

ugm1cyu
cosS 2p l

a
~bm1cx! DK1S 2p l

a
ugm1cyu D

1cos2w cos~2d!
16p2

a3 (
l 51

`

(
m52`

`

l 2cosS 2p l

a
~bm1cx! DK0S 2p l

a
ugm1cyu D

2cos2w sin~2d!
16p2

a3 (
l 51

`

(
m52`

`

l 2
~gm1cy!

ugm1cyu
sinS 2p l

a
~bm1cx! DK1S 2p l

a
ugm1cyu D

1@12cos2w~11sin2d!#
2p2

ag2sin2~pcy /g!
, ~9!
m.
ma-
ere
for

d,
m

i-
ion
ro-
ture
dy

a-
for

the
of
where (a l 1bm1cx ,gm1cy)Þ(0,0).
For gm1cy.0 the first three summations of the righ

hand side of Eq.~9! can be obtained directly from Eq.~7! by
making use of the substitutionsbm→bm1cx and gm
→gm1cy , which correspond to a shift in the coordina
space:r x→r x1cx , r y→r y1cy . However, the last terms o
Eqs.~7! and~9!, corresponding tor x50 or r y50, are totally
different.

During the calculation of the lattice sum, it can happ
that the argument of the Bessel functions becomes smal
this case, the values of the Bessel functions are large and
many terms of the series will be necessary to add in orde
obtain the required precision. We cope with this proble
following the approach proposed in Ref.@26#, namely we
rewrite both summations~7! and~9! in a different coordinate
system (x8y8). While in the coordinate system (xy) the di-
rection of the vectora coincides with thex axis, in the new
coordinates (x8y8) they8 axis is directed along the vectorb,
see Fig. 3. The transformation between the two coordin
systems is the rotation aroundz axis by the anglep/22c. It
is easy to derive the substitutions that are necessary fo
writing the right-hand sides of Eqs.~7! and ~9! in the new
coordinate system: a→a85Ab21g2, b→b8
5ab/Ab21g2, g→g85ag/Ab21g2, sind→sin(c2d),
cosd→cos(c2d), cx→cx85cxcosc1cysinc, and cy→cy8
5cxsinc2cycosc. After making these substitutions, the e
pression of summations will change and the arguments
Bessel functions will take different values, leaving, howev
In
oo
to

te

e-

of
r,

the value of the lattice sum~total energy of the system! in-
variant with respect to the rotation of the coordinate syste
Thus, switching between the two representations of sum
tions allows us to achieve fast convergence. In general, th
are infinitely many coordinate systems that can be chosen
the representations of the series~7! and ~9!.

To find the energy minimum we used the Powell metho
the initial input for which was the approximate minimu
found by scanning through the grid in the space of minim
zation parameters. Finally, we remark that the minimizat
with respect to the lattice vectors does not automatically p
duce the shortest ones, so that the resulting crystal struc
is not always automatically recognizable. In order to reme
this shortcoming, we calculate subsequently theshortestlin-
early independent vectorsamin and bmin that span the given
lattice. Their lengths are given asamin5minkub2kau and
bmin5minluamin2lbu, wherek and l are integers. In what fol-
lows, we adopt the conventionamin>bmin .

IV. RESULTS AND DISCUSSION

We have carried out the minimizations ofU1 and U2
@Eqs. ~6! and ~8!# with respect to the corresponding vari
tional parameters and found the stable crystal structures
various values of parametersl, n* , andw. Our numerical
calculation has shown that both sumsU1 and U2 have ex-
actly the same minima with the same crystal phases over
whole parameter space. In other words, the optimal value
6-5
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FIG. 4. The phase diagram in the (n* ,w)
plane at magnetic field strengthl53. The dotted
~solid! lines denote continuous~discontinuous!
transitions. The dashed line, termed ‘‘unstickin
line’’ in the text, indicates second-order transitio
from the oblique phase to the chainlike obliqu
for a quantitative characterization of thes
phases, see the text. The open circles denot
continuous transition within the chainlike obliqu
phase. The gray region denotes phase separa
between the phases lying at the two oppos
boundaries for a given value ofw. Accordingly,
the transitions denoted by the lines that penetr
this region are preempted by it but they are ne
ertheless shown in order to demonstrate the
velopment of the structural changes of the latti
at all w values.
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the variational quantityc that describes the positioning of th
basis is always such that a Bravais lattice is generated
there are no stable periodic non-Bravais arrangements w
nontrivial two-particle basis for the system at hand. Thou
this does not rule out the existence of structures with a la
number of basis members, it acts as an indication that
system prefers the simpler periodic Bravais structures
wealth of those appears in the phase diagram neverthele

First, we note that for all stable lattice structures th
minimize the energy, the direction of the in-plane compon
of the magnetic field,Bi , coincides with that of the shortes
elementary lattice vector. This result is in agreement w
results obtained by Monte Carlo@18# and molecular dynam
ics @27# simulations.

We begin with the phase diagram for a value of the c
pling parameterl53, presented in Fig. 4. In the absence
anisotropic interactions,w590°, the radially symmetric re
pulsion gives rise to a triangular lattice, as expected by
fact that the latter possesses optimal packing proper
Upon deviation of the magnetic field angle from the val
w590°, the anisotropy of the interaction induces a contin
ous transformation of the triangular lattice into an obliq
one with two unequal lattice constants, and with the in-pla
component of the dipoles,mi , oriented along the shorte
lattice vector. At low values of the anglew, the strongly
attractive dipolar interactions cause a broad coexistence
gion that terminates at a critical point for a tilt anglew
>60°.

The broad phase coexistence region can be suppress
reducing the value ofl, as will be discussed later. In order
obtain some insight into the mechanisms bringing about
stability of the various phases, we neglect for now this
existence region and focus our attention on the struct
characteristics of the oblique phase at arbitrary values ofn*
andw. There exist further phase transitions within this pha
and, in order to characterize them, we introduce the r
amin /bmin between the two lattice constants as a suitable
der parameter.

As can be seen in Fig. 5, upon increasing the anglew
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from 0° to 90°, the size ratioamin /bmin shows cusps at dif-
ferent values ofw, depending on the densityn* . At the low-
w part the size ratios are large and decrease monotonic
upon increasingw. In fact, for low-w values, the paramete
bmin remains practically constant for all densities at a va
that almost coincides with the minimum of the total intera
tion potential for a head-to-tail orientation of the dipoles, s
Fig. 6. The particles form, therefore,chainswith a constant
bead-to-bead distance, whereas an increase of the de
simply reduces the value ofamin , bringing those chains
closer together. In view of this fact, we characterize the
lique lattice in the region below the line delineated by t
locus of cusps in the parameteramin /bmin as chainlike ob-
lique. Above the aforementioned line, the particles formi
the chains ‘‘unstick.’’ The physical reason for this lies in th
increasingly strong repulsions that take place asw grows and
which do not favor such a high degree of anisotropy a

FIG. 5. The aspect ratioamin /bmin between the shortest un
vectors vs the tilt anglew, for various values of dimensionles
densityn* and forl53.
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more as the one present in the chain phase. As can be se
Fig. 7, in the oblique phase the size ratio remains at a c
stant ~but w-dependent! value for all values of the density
thus a change ofn* there simply causes the oblique unit ce
to shrink uniformly. The reason for this behavior lies there
that in this part of the phase diagram the short-range st
repulsionuLJ(r ) is not felt by the particles, which interac
instead exclusively by means of the dipolar interact
udip(r ,B0), Eq. ~3!. Since the latter has the form of a scal
free power law, the average density sets the only length s

FIG. 6. Dependence of the shortest lattice constantbmin on the
density atl53. The arrows on the right denote the positionr min of
the total interaction potentialudip1uLJ for a head-to-tail configura-
tion. The arrow lines are coded in the same way as the curves o
plot, corresponding thereby to the values ofw indicated in the leg-
end. For the anglesw563° and 72°, such a minimum does n
exist.

FIG. 7. The aspect ratioamin /bmin between the shortest un
vectors vs dimensionless densityn* for various values of the tilt
anglew and forl53. The inset shows the high-density part of t
diagram in more detail and its axes carry the same labels as tho
the main plot.
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and the effect of changingn* is merely a shrinking of the
lattice. In the chainlike oblique phase, on the other hand,
smaller lattice constantbmin is essentially density indepen
dent and onlyamin changes. We locate, therefore, a line
‘‘unsticking transitions’’ through the phase diagram th
splits the oblique phase into two domains, the regular
lique and the chainlike oblique. We will discuss the physic
origin of this line shortly.

The same line goes also through a region of the ph
diagram in which the rectangular lattice is stable and wh
occurs typically forn* <0.25 andw,56°. Upon increase of
n* , the rectangular lattice transforms continuously into t
chainlike oblique one, since a staggered configuration of
long chains becomes then energetically more favorable t
the parallel one@18#. At the high-density part of the phas
diagram and for angles 35°<w<78°, a first-order transition
from the chainlike oblique to the rhombic lattice takes pla
as can be seen from the inset of Fig. 7: the aspect r
amin /bmin displays there a jump to the value unity. At lowerw
values, the first-order transition line continues, separa
now two chainlike oblique phases from one another. We e
phasize here that at densitiesn* *0.9, the particles are
densely packed and thus there are no chains to be recogn
anymore. Nevertheless, we still characterize the high-den
phase of the system as chainlike oblique because there
path in the phase diagram that goes around the rhom
phase, still lying below the unsticking line, which connec
the high-density region with the low-density chainlike o
lique phase without crossing any phase boundaries. This
cannot be clearly discerned in Fig. 4 because it is very n
row due to the close proximity of the unsticking line with th
upper tip of the rhombic phase area; but it exists nevert
less. Within the high-density chainlike oblique phase, a
other, continuous phase transition takes place, as witne
by a further cusp in the aspect ratio that can be seen in
inset of Fig. 7. This transition is denoted by the open circ
in Fig. 4.

We have also calculated the phase diagrams for other
ues of the coupling parameterl; representative results ar
shown in Figs. 8 and 9. The topology of the phase diagr
remains the same. One important quantitative difference
curs for the coexistence region at the bottom of the ph
diagram. This becomes broader forl510 but disappears al
together forl50.0001 since in the latter case the dipol
dipole attractions are very weak.

The location of the ‘‘unsticking line’’ remains exactly th
same in the rangel50.0001, . . . ,1000. This demonstrate
that the physical origin of this line lies exclusively in th
dipolar interaction and has nothing to do with the presence
the Lennard-Jones cores. Indeed, within the whole rang
stability of the oblique phase, the particle positions are s
that the nearest neighbors of the lattice find themselve
distances larger that the cutoff distance 21/6s of the Lennard-
Jones potential. The colloids interact, therefore, exclusiv
by means of the dipolar interaction which causes the tra
tion to the chainlike oblique phase along the unsticking lin
Only inside the chainlike oblique phase do nearest neighb
approach close enough so that the steric repulsion is felt
then the competition between the anisotropic and the radi

he
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symmetric interactions gives rise to alterations of the ph
boundaries. In particular, as can be seen from Figs. 8 an
an increase inl causes the region of stability of the rhomb
phase to shrink, since it increases the strength of the or
tationally dependent potential that favors lattices with u
equal lattice constants. Moreover, an increase inl causes a
slight expansion of the domain of stability of the rectangu
phase towards higher densities.

V. CONCLUSIONS

In conclusion, we have calculated the phase diagram
two-dimensional suspension of superparamagnetic coll
in a tilted external magnetic field in the limit where therm
fluctuations are small. Depending on the tilt angle and
particle concentration, we find a wealth of different stab
two-dimensional crystal lattices including rectangular, o
lique, chainlike oblique, and rhombic structures. These p
dicted structures should be verified in experimental inve
gations and could be interesting to fabricate nanosie

FIG. 8. The phase diagram in the (n* ,w) plane for magnetic
field strengthl510. The meaning of the various lines is the sam
as in Fig. 4.

FIG. 9. The phase diagram in the (n* ,w) plane at magnetic field
strengthl50.001. The meaning of the various lines is the same
in Fig. 4.
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@28,29#, photonic crystals, and microfluidic devices.
Further future investigations should focus on the follo

ing open problems: first, the elastic constants of the cry
can be calculated within lattice sums. In particular, it wou
be interesting to examine the anisotropy of the elastic beh
ior for anisotropic crystalline structures. Second, one sho
consider the effect of a finite temperature. It would be ve
interesting, in particular, to check how the KTNHY scena
is affected in melting anisotropic two-dimensional crys
lattices. Furthermore, the question whether there is a st
chain liquid at finite temperature should be thoroughly e
plored. Finally, the present methods can be transferred
three-dimensionaloriented or unoriented dipolar system
This would be of great interest for ferrofluids@30#. Indeed,
various crystalline structures have recently been obtaine
theory @31–34# and experiments@35–38# but a full compre-
hensive understanding including a possible fluid phase
chains is not available at the moment. This is a challenge
the future.
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APPENDIX: THE HAMILTONIAN OF TWO MAGNETIC
„ELECTRIC … DIPOLES IN A SPATIALLY
INHOMOGENEOUS EXTERNAL FIELD

In this appendix we derive the formula of potential ener
of two polarizable permeable~dielectric! objects placed in
external magnetic~electric! fields.

As a first step, let us consider the situation in which
object of finite volumeV1 and magnetic permeabilitym1 is
introduced into a magnetic fieldB0(r ) in a linear medium of
magnetic permeabilitym0. We assume that the object is ne
tral and there are no external current densities. Affected
the field, the object becomes polarized, forming a magn
dipole and changing the field fromB0(r ) to B8(r ) in all
space. The total energy of such a system is@39#

u85
1

8pE B8•H8d3r , ~A1!

where the integration is performed over the whole space.
quantityu8 can be rewritten as

u85I 181I 281uB0,

where we have introduced the notationsI 18 , I 28 , anduB0 as

I 185
1

8pE ~B82B0!•~H81H0!d3r ,

I 285
1

8pE ~B0•H82B8•H0!d3r ,s
6-8
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uB05
1

8pE B0•H0d3r . ~A2!

The integralI 18 vanishes by the following argument. Sinc
there are no free currents~apart from the fixed currents pro
ducing the initial fieldB0), we have from the magnetostatic
Maxwell equations that“3H850. Therefore, a magneti
scalar potentialFM can be introduced,H852“FM . Ex-
pressing the integrand ofI 18 through“FM and performing
integration by parts, one obtains thatI 1850.

Let us now calculateI 28 by splitting the integration spac
into V1 and the outer volume ofV1. Since the medium is
linear in its magnetic properties, we have the following re
tions: inside the volumeV1 , H05B0 /m0 , H85B8/m1 and
outside the volumeV1 , H05B0 /m0 , H85B8/m0. As a re-
sult, the nonvanishing part of the integralI 28 remains only
over the volumeV1:

I 2852
1

2EV1

1

4p S 1

m0
2

1

m1
DB8•B0 d3r 5ud1B0.

We introduce new notationud1B0 in order to make clear
the physical meaning of the integralI 28 . In free space,m0

51. Making use of the definition of the magnetization@39#,
M15(1/4p)(121/m1)B8, we rewriteud1B0 as

ud1B052
1

2EV1

M1•B0d3r . ~A3!

Thus, the energy of the system ‘‘external field1 polarizable
object’’ reads as

u85ud1B01uB0,

whereud1B0 @Eq. ~A3!# is the energy of interaction betwee
the magnetic dipoleM1(r ) and the fieldB0(r ), anduB0 @Eq.
~A2!# is the initial magnetostatic energy.

At the second step of our derivation, we place an objec
volumeV2 and magnetic permeabilitym2 into the magnetic
field B8(r ), which is the field~considered above! in the pres-
ence of one permeable object. Introducing a second ob
will change the field fromB8(r ) to B(r ). The energy of such
a system is

u5
1

8pE B•Hd3r .

We expressu throughI 1 , I 2, andu8 as

u5I 11I 21u8,

where

I 15
1

8pE ~B2B8!•~H1H8!d3r ,

I 25
1

8pE ~B8•H2B•H8!d3r ,
06140
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andu8 is given by Eq.~A1!.
The integralI 1 vanishes by the same argument asI 18 . The

integral I 2 is zero within the volumeV1 and in the space
outsideV1 and V2, since H85B8/m i , H5B/m i , where i
50,1. I 2 remains nonzero only within the volumeV2 where
H85B8/m0 andH5B/m2. Therefore we have

I 252
1

2EV2

1

4p S 1

m0
2

1

m2
DB•B8d3r .

The magnetizationM2(r ) of the second object is define
asM25(1/4p)(121/m2)B. The field outside the volumeV1
is B85B01Bd1

, with the magnetic dipole field

Bd1
~r 8!5E

V1

3@M1~r !•n#n2M1~r !

ur2r 8u3
d3r ,

obtained as the dipolar contribution in the multipole expa
sion @39#, which can be applied for large separations as co
pared to the linear size of the object. Heren5(r2r 8)/
ur2r 8u. Thus we have

I 25udd1ud2B0,

whereud2B0 is the dipole-field interaction energy,

ud2B052
1

2EV2

M2•B0d3r ~A4!

andudd is the dipole-dipole interaction energy:

udd5
1

2EV1

d3r E
V2

d3r 8

3
M1~r !•M2~r 8!23@M1~r !•n#@M2~r 8!•n#

ur2r 8u3
.

~A5!

Collecting all necessary terms, we finally obtain the e
ergy u of two polarizable objects of finite arbitrary geom
etries in external spatially inhomogeneous magnetic field

u5udd1ud1B01ud2B01uB0, ~A6!

where the dipole-dipole interaction energyudd, the dipole-
field interaction energiesudiB0 ( i 51,2) and initial field en-
ergy uB0 are specified by Eqs.~A5!, ~A3!, ~A4!, and~A2!.

Note that the factor 1/2 in Eqs.~A3!–~A5! is traced to the
linear relation betweenM and B and acquires its physica
explanation from the fact that the dipoles are not perman
but rather induced by the external field.

For the case of pointlike dipoles and making use of
magnetic moment definition

mi5E
Vi

M i~r !d3r ,
6-9
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Eq. ~A5! reduces to Eq.~1!.
The expression for the energy of two polarizable diel

trics in external electric field can be readily derived maki
use of the electrostatic Maxwell equations and following
ce

.
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same approach as for magnetostatics above. The result
obtains are Eqs.~A2!–~A6!, where the place of the magnet
fields B, H, and magnetizationM will be taken by the elec-
tric fields E, D, and polarizationP, respectively.
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