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Correlations of two-dimensional super-paramagnetic
colloids in tilted external magnetic fields

NORMAN HOFFMANN, CHRISTOS N. LIKOS* and HARTMUT LÖWEN

Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität
Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany

(Received 5 April 2007; in final form 8 May 2007)

We outline the formalism of liquid integral equation theory for anisotropic interactions in two
dimensions and subsequently apply this theory to one-component super-paramagnetic
particles exposed to a tilted magnetic field. Inhomogeneous local ordering of the particles
is observed for different in-plane directions. The anisotropy of the interaction as well as of the
liquid structure is increased by increasing the tilt angle. Furthermore, the particles favour
an alignment in the direction of the in-plane component of the magnetic field. For increasing
tilt angle, the anisotropy of the structural correlations is qualitatively similar to that of the
corresponding solid lattice which is stable at lower temperatures. However, the mean-square
displacements behave qualitatively different in the solid and fluid phases as a function of the
tilt angle.

1. Introduction

While the theory of simple liquids with a radially
symmetric pair potential is well developed and estab-
lished by now [1], anisotropic interactions induce a much
richer liquid structure. Both molecular fluids and
colloidal suspensions of anisometric particles are typi-
cally described by anisotropic pair potentials. The
theoretical treatment of anisotropic interactions requires
expansions in appropriate spherical harmonics [2, 3] and
therefore becomes more cumbersome than the radially
symmetric case. While the corresponding formalism has
been well developed in three spatial dimensions (see e.g.
[4–6] for some applications) much less is known for two-
dimensional fluids with anisotropic pair interactions [7].
The reason for this appears to lie in the fact that strictly
two-dimensional systems are not easily realized in
nature.
In the past decades, excellent realizations of two-

dimensional liquids have been proposed by Maret and
co-workers [8–12]. In this set-up, super-paramagnetic
colloidal particles are confined by gravity to the two-
dimensional air–water interface of a pendant droplet.
An external magnetic field which is directed through the
droplet surface induces parallel magnetic dipole

moments onto the particles, which lead to a dipole–
dipole pair interaction among them. The direction of
the induced dipole moment coincides with that of the
external field and stays fixed, i.e. the dipole moments are
not orientable as in complementary studies [5, 13]. The
strength of the induced dipole moment can conveniently
be tailored by the magnitude of the external magnetic
field. If the magnetic field points perpendicular to the
water–air interface, the dipoles repel each other with
a pair potential that is proportional to the inverse cube
of the interparticle separation. For this system, the
fluid structure has been explored in great detail and
compared to experiments and simulations [14–16].
However, if the magnetic field is tilted relative to the
surface normal, the interaction becomes anisotropic
[17, 18]. If a threshold tilt angle of 54:7� is exceeded
the interaction develops an attractive part. Recent
theoretical work on tilted fields has been focused
on the zero-temperature phase diagram of freezing [19]
and on the anisotropic Lindemann parameters in
two-dimensional crystals [20] wherein full agreement
was found with the experimental data.

In this paper, we propose a liquid integral equation
scheme for anisotropic interactions in two spatial
dimensions and apply it in particular to the model
potential of magnetic colloids in tilted external magnetic
fields. We calculate the anisotropic pair correlations for
different tilt angles. For a given tilt angle, we compare
the local fluid order to that in the solid phase at lower*Corresponding author. Email: likos@thphy.uni-duesseldorf.de
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temperature and find that the local fluid ordering reflects
that of the crystal. Details like the mean-square
displacements, however, are different in the solid and
fluid phases. Our liquid integral equation scheme is
flexibly applicable also to other two-dimensional aniso-
tropic interactions, such as confined colloidal rods or a
fluid mono-layer of adsorbed molecules on an attractive
surface.
The paper is organized as follows: in section 2 we

define the model. The liquid integral equation scheme is
outlined in section 3. The results are presented in
section 4. Section 5 contains a comparison of our results
to the solid phase, and finally we conclude in section 6.

2. The model

We consider a two-dimensional system of N colloidal
particles in a plane of surface area A. With � ¼ N=A
denoting the system’s density we define the characteristic
length a as a � 1=�1=2. The particles are exposed to an
external magnetic field B that can be tilted with respect
to the two-dimensional plane. This external field induces
a magnetic moment mi onto each particle. The colloids
are assumed to be super-paramagnetic, i.e. the magnetic
moment of each particle aligns perfectly with the
external field:

m ¼ �B0, ð1Þ

with the proportionality constant � being the particle’s
susceptibility. The colloids are of finite extent with a
hard-core radius �. The particles interact with each
other via a dipole–dipole pair potential, valid for point-
like magnetic dipoles,

uddðr,mi,mjÞ ¼
mi �mj � 3ðmi � n̂Þðmj � n̂Þ

r3
, ð2Þ

for distances larger than or equal to their hard-core
radius; n̂ ¼ r=r is the unit vector connecting the centres
of a pair of discs. For distances smaller than the hard-
core radius the interaction is described by a hard disc
repulsion. Using the aforementioned length scale a, we
introduce the so-called coupling strength, a dimension-
less parameter that reads as

G ¼ �
ð�B0Þ

2

a3
, ð3Þ

where � ¼ 1=ðkBTÞ, with kB being Boltzmann’s constant
and T being the absolute temperature. Rescaling the
particle coordinates with the inter-particle distance,
ri ! xi � ri=a, and using equations (1) and (3), we can

re-write the dipole–dipole interaction potential,
equation (2), as

�uddðxÞ ¼
G
x3

ð1� 3 cos2 � cos2 �RÞ, ð4Þ

with x ¼ x1 � x2, x ¼ jxj, and cos �R ¼ r � Bk=ðrBkÞ,
Bk is the in-plane component of the magnetic field; �
denotes the angle between the magnetic field and its
projection to the confining plane. A sketch of the setup
is shown in figure 1. The previously mentioned hard disc
diameter � is necessary in order to stabilize the system
when the tilt angle increases and attractions in a head-
to-tail configuration start appearing. In this study, we
will strictly maintain the tilt angle � larger than the
critical value of 54:7� but keep nevertheless the hard core
for completeness. As long as the density ��2 is small, the
particles only see the dipolar potential and the physics is
determined entirely by the coupling strength G. In this
study, we fixed ��2 ¼ 0:25, which is an intermediate
value between the dipolar-dominated and packing-
dominated regimes. It will be seen that the head-to-tail
configurations, for which the repulsion is the weakest,
do feel the hard core exclusion.

3. Theory

The radial distribution function gðrÞ, or equivalently the
total correlation function

hðrÞ ¼ gðrÞ � 1 ð5Þ

is a quantity of central interest for classical fluids in
equilibrium. The radial distribution function measures
the extent to which the structure of a fluid deviates from
complete randomness and expresses the ordering of the
rest of the system around a given particle of the liquid. It
plays a key role in liquid theory because some important
thermodynamic properties, such as the internal energy
of the system, can be written as integrals over gðrÞ [1].

3.1. Integral equation theory

The liquid integral equation theory consists of the
Ornstein–Zernike (OZ) relation

hðrÞ ¼ cðrÞ þ �

Z
dr0hðr� r0Þcðr0Þ ð6Þ

coupled to a closure relation. We have opted for the
hypernetted chain closure (HNC) for reasons to become
clear in what follows. The HNC can be written in the
form

cðrÞ ¼ hðrÞ � ln gðrÞ � �uðrÞ, ð7Þ

1850 N. Hoffmann et al.
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with cðrÞ denoting the direct correlation function and
�uðrÞ the pair interaction potential as explained above.
Equations (6) and (7) cannot be solved analytically, but
a solution can be obtained numerically by an iterative
scheme. For convenience we introduce the function

�ðrÞ ¼ hðrÞ � cðrÞ ð8Þ

in order to cast the OZ relation in the following form

�ðrÞ ¼ �

Z
dr0½�ðr� r0Þ þ cðr� r0Þ�cðr0Þ: ð9Þ

For potentials with a hard-core part, hðrÞ and cðrÞ are
separately discontinuous at the hard-core radius. The
indirect correlation function �ðrÞ is devoid of that
discontinuity, and therefore a strictly continuous func-
tion. Nevertheless, solving equations (7) and (9) is very
difficult because each function depends on four variables
and the integration in equation (9) goes over the two
position and angular coordinates. In order to simplify
and solve the equations, we expand the correlation
function into a basis set of orthogonal functions. This
expansion leads to an easily tractable form of the
OZ equation. Then, it is possible to expand the HNC
closure analytically to all orders in the same basis set,
hence allowing a solution of equations (7) and (9).

3.2. Expansion

Unlike systems with isotropic interactions, in our case
the correlation functions depend on both r � jrj and the
angle between r and the projection of the dipole moment
on the x axis, which lies parallel to Bk. Accordingly, an
expansion of hðrÞ and cðrÞ on orthogonal functions is
required. The formalism for three spatial dimensions
was developed by Caillol et al. [21] for fixed dipoles
(as in our case) and involves the spherical harmonics
YlmðOÞ. In two spatial dimensions, Caillol et al. [22] have
introduced the expansion which we also utilize in what
follows but they focused there on a system with
orientable dipoles, rather than fixed ones. Moreover, in
[22] emphasis was put on a restricted set of expansion
coefficients of the correlation functions, related to the
internal energy of the system. Finally, we combine
the expansion with a technique for rapid evaluation of
the mth order Hankel transformations, which naturally
arise in the formalism.
Since we are working in a two-dimensional system,

the complex exponential function is a natural choice for
an orthogonal basis set to expand the correlation
functions cðrÞ and hðrÞ. Exemplary, we just show the
direct correlation function as a representative for all

correlation functions

cðrÞ ¼
X
m

cmðrÞ expð�im�RÞ, ð10Þ

with �R denoting the angle between r and the x axis, and
identifying r � ðr, �RÞ. Due to symmetry, this expansion
can be rewritten as

cðrÞ ¼ c0ðrÞ þ
X
jmj6¼0

cjmjðrÞ cosðm�RÞ ð11Þ

with

cjmjðrÞ ¼

1

p

Z p

0

d�RcðrÞ, for m ¼ 0,

2

p

Z p

0

d�RcðrÞ cosðm�RÞ, for m 6¼ 0,

8>><
>>:

where m has to be an even number.
The interaction potential can be expanded in the same

basis set as the correlation functions and is fully
determined by the first two coefficients with the
remaining terms vanishing:

�u0ðrÞ ¼ �
ð�B0Þ

2

r3
1�

3

2
cos2 �

� �
, ð12Þ

�u2ðrÞ ¼ ��
3

2

ð�B0Þ
2

r3
cos2 �: ð13Þ

Solving equations (7) and (9) simultaneously requires
the expansion of the HNC closure in the same set of
basis functions as all the other correlation functions.
At first sight, it seems that the logarithmic term in
equation (7) causes trouble, but this problem has been
overcome by Fries and Patey [23] as follows: partial
differentiation of equation (7) with respect to r yields

@cðr, �RÞ

@r
¼ �hðr, �RÞ

@Wðr, �RÞ

@r
� �

@uðr, �RÞ

@r
, ð14Þ

introducing Wðr, �RÞ � ��ðr, �RÞ þ �uðr, �RÞ as the
dimensionless angle-dependent potential of mean force.
Now, since cðr, �RÞ ! ��uðr, �RÞ as r ! 1 , it is clear
that

Z 1

r

dr0
@cðr0, �RÞ

@r0
¼ cðr ¼ 1, �RÞ � cðr, �RÞ½ � ¼ �cðr, �RÞ:

ð15Þ

Correlations of two-dimensional super-paramagnetic colloids in tilted external magnetic fields 1851
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Combining equations (14) and (15), the HNC closure
reads as

cðr, �RÞ ¼

Z 1

r

dr0hðr0, �RÞ
@Wðr0, �RÞ

@r0
� �uðr, �RÞ: ð16Þ

The advantage of writing the HNC closure like this
amounts to the analytical expansion of the binary
product �hðr, �RÞ½@Wðr, �RÞ=@r� in the common basis
set. After some algebra, we obtain

cðr, �RÞ ¼
X
m

Xm
n¼0

In,m�nðrÞ expð�im�RÞ

� �
X
m

umðrÞ expð�im�RÞ, ð17Þ

with

Im, nðrÞ ¼

Z 1

r

dr0hmðr
0, �RÞ

@Wnðr
0, �RÞ

@r0
: ð18Þ

For distances smaller than the hard-core radius � the
radial distribution function is zero, hence the direct
correlation function can be calculated by means of
equation (8) as

cðr, �RÞ ¼ �1� �ðr, �RÞ for r < �: ð19Þ

3.3. Fourier transform

In solving the two coupled integral equations, the
OZ and the HNC closure invoke an iterative procedure
that requires the repeated calculation of convolution
integrals. These are evaluated most efficiently and
rapidly in reciprocal space. Therefore we first transform
the OZ relation to reciprocal space in order to render the
convolution integral into a simple product. Then, we
introduce the expansion of correlation functions in
reciprocal space into the OZ relation.
We define the Fourier transform for an arbitrary,

physically smooth function f ðrÞ in 2D as follows

~f ðkÞ ¼

Z
d2rf ðrÞ expðik � rÞ, ð20Þ

and its inverse as

f ðrÞ ¼
1

ð2pÞ2

Z
d2k ~f ðkÞ expð�ik � rÞ: ð21Þ

The OZ relation (9) can be written in Fourier space as

~�ðkÞ ¼ � ~cðkÞ½ ~�ðkÞ þ ~cðkÞ�: ð22Þ

The expansion in orthogonal functions can be written in
Fourier space as

~cðkÞ ¼
X
m

~cmðkÞ expð�im�KÞ ð23Þ

with

~cmðkÞ ¼ 2pim
Z 1

0

drrcmðrÞJmðkrÞ: ð24Þ

Here, �K in Fourier space is the equivalent to �R in real
space. We point out explicitly that the angle �R in the
real space expansion and the angle �K in the reciprocal
space expansion are different. In each system, it is the
in-plane angle between the in-plane magnetic field and
the r- and k-vector, respectively. Moreover Jm(r) is the
mth order Bessel function of the first kind. Conversely,
the coefficients of the expansion in reciprocal space are
obtained by a simple Hankel transform of the coefficient
in real space. Thus, it holds

cmðrÞ ¼ ð2pÞ�1im
Z 1

0

dkk ~cmðkÞJmðkrÞ: ð25Þ

In the appendix, we show a strict derivation of the
interconnection between the coefficients in real and
Fourier space.

The problem of calculating the Hankel transform of
mth order amounts to calculating integrals of the type

~fmðkÞ ¼

Z 1

0

drrf ðrÞJmðkrÞ: ð26Þ

Such integrals can be reduced to those appearing in the
0th order Hankel transform,

~f0ðkÞ ¼

Z 1

0

drrf ðrÞJ0ðkrÞ: ð27Þ

Lado developed a numerically accurate algorithm for
this procedure [24] and for the calculation of the 0th
order Hankel transform in an efficient way [25]. For the
reduction, we need two recurrence relations for
the Bessel functions [26],

d

dx

Jm�1ðxÞ

xm�1

� �
¼ �

JmðxÞ

xm�1
, ð28Þ

d

dx
xmJm�1ðxÞ½ � ¼ xmJm�2ðxÞ: ð29Þ

1852 N. Hoffmann et al.
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Introducing the first recurrence relation, equation (28),
into equation (26) and an integration by parts leads to
the following expression with f (r) vanishing sufficiently
rapidly at infinity:

~fmðkÞ ¼
1

k

Z 1

0

dr
d

dr
rmf ðrÞ½ �

Jm�1ðkrÞ

rm�1
: ð30Þ

We set f ðrÞ � f ðmÞðrÞ and define a new function f ðm�2ÞðrÞ
such that

d

dr
rmf ðmÞðrÞ
� �

¼ r2m�2 d

dr

f ðm�2ÞðrÞ

rm�2

� �
: ð31Þ

Introducing equation (31) into equation (30) leads to

~fmðkÞ ¼
1

k

Z 1

0

drr2m�2 d

dr

f ðm�2ÞðrÞ

rm�2

� �
Jm�1ðkrÞ

rm�1

¼

Z 1

0

dr
1

r

d

dr

f ðm�2ÞðrÞ

rm�2

� � Z r

0

dxxmJm�2ðkxÞ

¼ �

Z 1

0

drrf ðm�2ÞðrÞJm�2ðkrÞ, ð32Þ

where in the first step we used the second recurrence
relation, equation (28), and in the next step we
integrated by parts. Equation (32) allows us, therefore,
to express the original, mth order Hankel transforma-
tion as a m� 2-order one but with a new function
f ðm�2ÞðrÞ instead of the original, f ðrÞ � f ðmÞðrÞ.
To complete the specification, we have to relate the

function f ðm�2ÞðrÞ to its counterpart f ðmÞðrÞ. Thereafter,
we integrate equation (31)

Z 1

r

dr0
d

dr0
ðr0Þmf ðmÞðr0Þ
� �

¼

Z 1

r

dr0ðr0Þ2m�2 d

dr0
f ðm�2Þðr0Þ

ðr0Þm�2

� �
:

ð33Þ

Performing the integration yields

f ðm�2ÞðrÞ ¼ f ðmÞ ðrÞ � 2ðm� 1Þrm�2

Z 1

r

dr0
f ðmÞðr0Þ

ðr0Þm�1
: ð34Þ

We apply repetitively this ‘step-down’ operation until we
reach

f ð0ÞðrÞ ¼ f ð2Þ ðrÞ � 2

Z 1

r

dr0
1

r0
f ð2Þðr0Þ: ð35Þ

Then, we also repeatedly apply the reduction of order of
the Hankel transformation, equation (32), until we reach

the level of transforming f ð0ÞðrÞ by a 0th order Hankel
transform [25].

Similarly, it can be shown that for the inverse mth
order Hankel transform the following scheme holds.

1. First, we transform the original function
~fðkÞ � ~f ð0ÞðkÞ by a simple 0th order Hankel trans-
form in order to obtain f ð0ÞðrÞ.

2. Then, we apply the following expression repetitively
until the desired order of m is reached

f ðmÞðrÞ ¼ f ðm�2ÞðrÞ �
2ðm� 1Þ

rm

Z r

0

dxxm�1f ðm�2ÞðxÞ: ð36Þ

The latter integral as well as the integral in equation (34)
can be calculated using a simple trapezoidal rule.

Because the direct correlation function c(r) behaves
asymptotically as the potential,

cðrÞ � ��uðrÞ �
1

r3
, ðr ! 1Þ, ð37Þ

the long-range nature of the correlation function may
adversely affect the Fourier transform due to a necessary
truncation of the former one at a finite cut-off value.
We can bypass that problem by subtracting a function
with equal long-range behaviour and an analytically
known Hankel transform. The Fourier transform of that
difference does not entail any difficulties and the Hankel
transform of the subtracted function is added back in
reciprocal space.

For the coefficient c0ðrÞ, we subtract the function

�uLR, 0ðr;�Þ ¼
G
r3

1� expð��rÞ 1þ �rþ
1

2
�2r2

� �� �

¼
1

2
G�3

Z 1

0

dxx2 expð��rxÞ, ð38Þ

whose Hankel transform is analytically known and
reads as

� ~uLR, 0ðk;�Þ ¼ pG
2k2 þ �2

ðk2 þ �2Þ
1=2

� 2k

� �
: ð39Þ

For the coefficient c2ðrÞ, the following function proves
to be apt:

�uLR, 2ðr;�Þ

¼
G
r3

1� expð��rÞ 1þ �rþ
1

2
�2r2 þ

1

6
�3r3

� �� �

¼
1

6
G�4r

Z 1

0

dxx3 expð��rxÞ, ð40Þ

Correlations of two-dimensional super-paramagnetic colloids in tilted external magnetic fields 1853
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whose Hankel transform reads as

� ~uLR, 2ðk;�Þ ¼ �
p
3
Gk2

2

k
�

3�2 þ 2k2

ð�2 þ k2Þ3=2

� �
: ð41Þ

In both cases, � is an arbitrary parameter, which we
chose as � ¼ 1:25.
It is worth noting to treat the discontinuity in c(r)

carefully by doing the Fourier transform. We apply the
Dirichlet condition at this position to guarantee correct
results. This condition states that for a function with
a discontinuity at r0 the Fourier transform at this
position is just the Fourier transform of the mean value
of the lower and upper value.

3.4. Ornstein–Zernike relation

Our initial goal was to cast the Ornstein–Zernike
relation in a numerically tractable form. First, we
broke up its integral in a simple product by passing
over to Fourier space. Then, we outlined the series
expansion in Fourier space. The final step comprises
introducing the series expansion in reciprocal space,
equation (23), into the Fourier transformed
Ornstein–Zernike relation, equation (22), yielding the
following result:

~�pðkÞ ¼ �
X
m

~cmðkÞ ~�ð p�mÞ þ ~cmðkÞ ~cð p�mÞ: ð42Þ

Restricting to a limited number M of coefficients in the
series expansion, the Ornstein–Zernike relation provides
a M�M linear algebraic system which can be solved by
standard numerical algorithms.

3.5. Algorithm

The elements developed above are necessary ingredients
in analysing the two coupled integral equations (6)
and (7). The whole procedure to solve these equations is

best presented in summary form. One iteration for
calculating the cm(r) consists of the following steps:

1. Subtract from the coefficients c0ðrÞ and c2ðrÞ the
functions

�uLR,0ðr;�Þ ¼
G
r3

1� expð��rÞ 1þ�rþ
1

2
�2r2

� �� �
ð43Þ

and

�uLR,2ðr;�Þ

¼
G
r3

1� expð��rÞ 1þ �rþ
1

2
�2r2 þ

1

6
�3r3

� �� �
, ð44Þ

respectively.

2. Successively lower the coefficients cm(r) to obtain

cðl�2Þ
m ðrÞ ¼ cðl Þm � 2ðl� 1Þrl�2

Z 1

r

dr0
1

r0l�1
cðl Þm ðr0Þ, ð45Þ

commencing with cðmÞ
m ðrÞ � cmðrÞ and ending up

with cð0Þm ðrÞ.

3. Convert cð0Þm ðrÞ by a 0th order Hankel transform
following the procedure outlined in [25], to obtain ~cmðkÞ.
Be aware of the discontinuity at the hard-core radius
and apply the Dirichlet condition described at the end of
section 3.3.

4. Add the analytically calculated Hankel transforms

� ~uLR,0ðk;�Þ ¼ pG
2k2 þ �2

ðk2 þ �2Þ
1=2

� 2k

� �
ð46Þ

and

� ~uLR,2ðk;�Þ ¼ �
p
3
Gk2

2

k
�

3�2 þ 2k2

ð�2 þ k2Þ3=2

� �
ð47Þ

back to the coefficients ~c0ðkÞ and ~c2ðkÞ.

r
mi mj

B

B

φ

(a) (b)

=

B

Confining plane

r

mi mi

B

θR

=

Figure 1. A schematic view of two super-paramagnetic colloids to a plane exposed to a tilted external magnetic field B: (a) side
view; (b) top view.
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5. Introduce ~cmðkÞ into the Ornstein–Zernike relation

~�pðkÞ ¼ �
X
m

~cmðkÞ ~�ð p�mÞ þ ~cmðkÞ ~cð p�mÞ ð48Þ

to obtain ~�mðkÞ � ~�ð0Þ
m ðkÞ.

6. Apply to these the inverse 0th-order Hankel trans-
form to obtain the function �ð0Þ

m ðrÞ.

7. Raise this function repeatedly according to

�ðl Þ
m ðrÞ ¼ �ðl�2Þ

m ðrÞ �
2ðl� 1Þ

rl

Z r

0

dxxl�1�ðl�2Þ
m ðxÞ, ð49Þ

until the desired function �mðrÞ � �ðmÞ
m ðrÞ is reached.

8. Put together �ðr, �RÞ from the above-calculated
coefficients and make use of the HNC closure

cðr, �RÞ ¼

Z 1

r

dr0hðr0, �RÞ
@Wðr0, �RÞ

@r0
� �uðr, �RÞ ð50Þ

for distances larger than or equal to the hard-core
diameter and

cðr, �RÞ ¼ �1� �ðr, �RÞ ð51Þ

for distances smaller than that diameter to calculate the
new function cðr, �RÞ � cðrÞ for the iteration. For the
derivative in equation (50), we applied a 7-point
derivative scheme for unevenly spaced nodes [27].
This iterative scheme is repeated until convergence for

cm(r) is achieved. To guarantee convergence, we mix the
new cm(r) with the result of the former iterative step

cnewm ðrÞ ¼ 	cnewm ðrÞ þ ð1� 	Þcoldm ðrÞ: ð52Þ

The so-called mixing parameter 0 < 	 < 1 is chosen
empirically to ensure convergence. The whole iterative
scheme is best started with the Mayer function f (r)

f ðrÞ ¼ exp½��uðrÞ� � 1, ð53Þ

which is exact in the zero density limit. The above
scheme can be started with a small density and is
proceeded through the outlined steps until convergence
is reached, and then we slightly increase the density,
repeat the iterative scheme again and then further
increase the density until the desired density is obtained.

4. Results

We have numerically solved the two coupled integral
equations (equations (6) and (7)), according to the

theory outlined in the previous section. Here, we present
representative results for the correlation functions and
their dependence on coupling, tilt angle and angular
orientation in the plane.

First, we varied the interaction strength G for various
parameter combinations of the tilt angle � and the
in-plane angle �R. The results are shown in figure 2.
It can be seen that the peak heights increase with
increasing interaction strength while the peak positions
remain nearly unchanged. This behaviour is physically
plausible: the interaction strength can be increased by
turning the magnetic field B0 stronger while the number
of particles remains unchanged. Therefore, the typical
inter-particle distance is not altered, but the degree of
local ordering is affected, leading to a more pronounced
liquid structure. Interesting is the peak position, which
coincides with the hard-disc diameter for large tilt angles
and lined-up configurations, figure 2(a). The repulsion is
too weak for a tilt angle � ¼ 60� and a head-to-tail
configuration, so the particles feel the hard-disc
constraint.

Secondly, we can examine the local ordering of the
particles for different in-plane directions while keeping
the interaction strength and the tilt angle fixed. The
results are shown in figure 3 for different fixed tilt angles.
In contrast to the case of a perpendicular field, the radial
distribution functions for different in-plane directions
do not coincide anymore. This effect is clearly traced
back to the anisotropy of the interaction induced by the
tilted magnetic field. We realize for all tilt angles that
the local structure is most pronounced in the direction of
the in-plane component of the external field. The dipole–
dipole interaction favours a fully aligned moment, i.e.
head-to-tail configuration, in agreement with previous
results [19] and with the previously discussed ones.
Furthermore, the deviation among the different local
radial distribution functions increases with increasing
tilt angle. The differences are most obviously observed
for � ¼ 60� whereas for � ¼ 85� we barely recognize any
significant distinctions. This can be understood by the
growth of anisotropy with larger tilt angles.

Finally, we explicitly compare different tilt angles
� for fixed interaction strength and fixed in-plane angles
�R. We present the results in figure 4 for different fixed
in-plane angles. Only for the in-plane direction of the
magnetic field the structure is more pronounced
the more the field is tilted. While always working in
the repulsive regime, the repulsion between head-to-tail
configurations become weaker, leading to a
stronger alignment among the particles in the field
in-plane direction. This does not hold true for any other
in-plane direction and therefore no predictions of the
heights of the different local ordering can be made. It
can be stated, though, that the anisotropy is rather weak

Correlations of two-dimensional super-paramagnetic colloids in tilted external magnetic fields 1855
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in the �-regime between 75� and 90� but well
pronounced for � ¼ 60�.

5. Comparison to the solid phase

In this section, we compare the correlations in the
above-described fluid phase to that of the solid state
which is stable at lower temperature at the same fixed tilt
angle. Properties of the solid phase have been examined
elsewhere [17, 20]. In the ranges of tilt angles examined
here a two-dimensional body-centred rectangular lattice
was found to be stable. One can define two lattice
constants, a1 and a2, where a1 is parallel to the projected
external field and a2 points to the body-centred particle.
For a perpendicular field the lattice constants are equal,
a1 ¼ a2, but tilting the field yields an anisotropy,
a1 6¼ a2. In general, a1 < a2, which clearly stems from
the fact that there is less repulsion in the direction
parallel to the magnetic field.

First, we want to investigate whether this anisotropy
of the solid is anticipated by the short-range order of the
fluid. As equivalents of the lattice constants in the fluid
state we consider the averaged peak position of the first
maximum of g(r) obtained by performing the first
moment of g(r) up to the first minimum. We examined
this quantity for various �R directions. We have
calculated these peak positions for �R ¼ 0 and
�R ¼ 60� and have plotted their numbers in the inset
of figure 5. Their ratio is compared against the
corresponding number of a2=a1 in the crystalline lattice
at zero temperature [17]. We see the same kind of
anisotropy. However, it is more pronounced in the solid
than in the fluid state. This can be understood
qualitatively since temperature is expected to smear
out anisotropies.

The mean-square displacements of the particles in the
directions parallel and perpendicular to the in-plane
component of the external magnetic field have been
probed by means of real-space experiments and
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Figure 2. The radial distribution function for different tilt and in-plane angles (a) � ¼ 60�, �R ¼ 0�, (b) � ¼ 75�, �R ¼ 30�, and
(c) � ¼ 85�, �R ¼ 60�.
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harmonic lattice theory [20]. The anisotropy of the
mean-square displacement behaves non-monotonically
as a function of the tilt angle and does not correlate with
the structural anisotropy of the crystal. We define
a corresponding mean-square displacement in the fluid
phase by calculating the second moments of g(r) around
the averaged peak positions. The roots of the
different second moments are then divided by their
corresponding peak position and considered as a
‘Lindemann’ ratio in the fluid for various directions.
The ratio of these ‘Lindemann’ ratios for two directions
parallel and perpendicular to the magnetic field is then
given for various tilt angles in table 1. Comparing
them to their solid counterparts from [20], we observe
a different trend as a function of the tilt angle.
The anisotropy of detailed structural quantities,
therefore, is not the same in the fluid and solid phases.
At the same time, it must be noted that whereas the
Lindemann ratio has a well-defined meaning in the
crystal phase, its definition in the fluid is somewhat
arbitrary.

6. Conclusions

In this paper, we have derived the formalism of integral
equation theory for an anisotropic interaction. We have
expanded all correlation functions in a set of orthogonal
functions to cast the integral equation in a numerically
accessible form. The cumbersome task of a two-
dimensional, fast Fourier transform has been tackled
by the introduction of Hankel transforms of higher
orders. These could be in turn reduced to easily
calculable 0th-order Hankel transforms.

Due to the anisotropy of the interaction with tilted
magnetic field, the local ordering of the particles
becomes also anisotropic. A tendency for alignment of
particles in direction of the in-plane component of the
magnetic field is observed, which is a precursor of
the chain formation taking place when attractions set in.
This strong ordering cannot be predicted by integral
equation theory, since the iteration breaks down.
Whether this is due to the very large m-terms needed
in the plane-wave expansion or whether it is a deeper
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Figure 3. The radial distribution function for fixed G ¼ 5:0 and different tilt angles (a) � ¼ 60�, (b) � ¼ 75�, and (c) � ¼ 85�.
The curves of the latter plot have been shifted by 0.25, respectively, for better distinction.
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problem of integral equations, remains a problem for
the future. A comparison with the crystal which is stable
at lower temperature shows that the anisotropy is
similar to that in the fluid phase, but details like mean-
square displacements possess opposite trends as
a function of the tilt angle.

Our study was limited to tilt angles which do not
exceed the limit above which dipolar attractions
between the particles show up. The reason lies in
the fact that the HNC itself becomes unstable for
such strong tilt angles and fails to achieve conver-
gence. The degree of anisotropy for the angles we
considered is still clearly visible and correlated to
ensuing crystal structures. Large tilt angles lead to the
formation of columns of variable thickness, whose
existence has been predicted by simulation [28] and
confirmed experimentally [29]. A theoretical approach
to explain the formation of these columns at high
tilt angles is still missing and will be the subject
of future work.
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Figure 4. The radial distribution function for fixed G ¼ 5:0 and different in-plane angles (a) �R ¼ 0�, (b) �R ¼ 30�, and
(c) �R ¼ 60�.
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Figure 5. The ratio of the lattice constants in direction of the
lattice vectors as a function of the tilt angle � of the external
magnetic field for the solid phase (solid line) and the
corresponding ratio for the fluid (dashed line). The inset
shows peak positions a1 and a2 normalized to those of a
perpendicular external field in the fluid phase.
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Appendix A

In this appendix, we show a strict derivation of the
interconnection between the coefficients of the series
expansion in real and reciprocal space. Performing the
Fourier transform of the direct correlation function c(r)
leads to the following expressions:

~cðkÞ ¼

Z
d2rcðrÞ expðik � rÞ

¼

Z
d2r

X
m

cmðrÞ expð�im�RÞ exp½ikr cosð�R � �KÞ�

¼
X
m

Z 1

0

drrcmðrÞ

Z 2p

0

d�R exp½�imð�R � �KÞ�

exp½ikr cosð�R � �KÞ� expð�im�KÞ

¼
X
m

expð�im�KÞ

Z 1

0

drrcmðrÞ

Z 2p

0

d�R exp½�imð�R � �KÞ� exp½ikr cosð�R � �KÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
IðkrÞ

:

ðA1Þ

We put x � �R � �K, and substitute

IðkrÞ ¼

Z 2p��K

��K

dx expð�imxÞ expðikr cos xÞ, ðA2Þ

using the 2p-periodicity of the integrand, we write

IðkrÞ ¼

Z 2p

0

dx expð�imxÞ expðikr cos xÞ

� 2pimJmðkrÞ: ðA3Þ

Then, we can write the Fourier transform as

~cðkÞ ¼
X
m

expð�im�KÞ2pi
m

Z 1

0

drrcmðrÞJmðkrÞ

¼
X
m

~cmðkÞ expð�im�KÞ ðA4Þ

with

~cmðkÞ ¼ 2pim
Z 1

0

drrcmðrÞJmðkrÞ: ðA5Þ

Similarly, we obtain

cmðrÞ ¼ ð2pÞ�1im
Z 1

0

dkk ~cmðkÞJmðkrÞ: ðA6Þ

The coefficients in real and reciprocal space can be
transformed into each other by a simple Hankel
transform of mth order.
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