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The aim of this paper is to review and to preview some selected topics of crystal
nucleation in colloidal suspensions. First we discuss how the structure of critical
nuclei can be calculated by computer simulations, in particular how linear shear
flow affects the size and shape of the critical nuclei. Second, we preview the
possibilities to access heterogeneous crystal nucleation and dynamics of a crystal
by using the recently developed formalism of dynamical density functional theory.
In particular, data for global crystal heating are presented.

1. Introduction

The theoretical prediction of crystal nucleation phenomena is an active and still open
area of current research [1]. Classical nucleation theory (CNT) is based on the simple
thermodynamical consideration of a spherical nucleus covered by a solid–liquid
interface which separates the stable crystal phase inside the nucleus from the unstable
liquid phase outside. The classical nucleation theory makes explicit predictions for
the nucleation rate and the size of the critical nucleus. If the latter is exceeded,
growth of the crystallite initiated by the nucleus takes place.

Recently, computer simulation techniques have been applied to extract the size
and shape of a critical nucleus in the undercooled melt [2] using the umbrella
sampling technique. It was found that the critical nucleus possesses a pretty rough
interface and is not spherical in general. The same result has also been extracted from
real-space experiments on colloidal suspensions [3].

Very recently a microscopic dynamical theory [4, 5] was put forward to describe
crystal nucleation which is a dynamical analogue of the traditional classical density
functional theory of freezing [6]. This theory was justified on the basis of the
Smoluchowski equation for Brownian systems and allows for a fit-parameter-free
description of one-particle density dynamics. This theory can easily be used to
describe the deterministic crystal growth once a heterogeneous nucleus of fixed seed
particle is offered to the undercooled melt. This can be experimentally realized in
colloidal suspensions [7].
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The aim of this paper is twofold: first, we shall review what is known about
the critical nucleus in sheared colloidal suspensions. Here computer simulations have
been used in a non-equilibrium situation to access the size and shape of the critical
nucleus and its orientation relative to the shear flow. A convenient generalization
of classical nucleation theory including a finite shear rate _� does describe the
data surprisingly well although there is a priori no reason for it to work in
non-equilibrium. Second, we shall briefly introduce and describe dynamical density
functional theory. We apply it to a situation of gradual and rapid global heating
of a bulk solid. The relation to the recently proposed phase-field crystal is also briefly
discussed.

2. Homogeneous nucleation of colloidal melts under shear

A model colloidal mixture consisting of a Yukawa fluid which performs Brownian
motion at fixed temperature was extensively studied by computer simulations [8, 9].
A linear shear flow was imposedy such that a fixed shear rate _� is prescribed. By
generalizing the umbrella sampling technique to non-equilibrium situations [10], the
size and shape of the critical crystal nucleus is obtained for different shear rates and
‘undercoolings’; the meaning of the latter can be rationalized by the pressure
difference to the fluid–solid coexistence pressure.

Results are shown in figure 1 where the number of colloidal particles N*
belonging to the critical cluster is shown as a function of the reduced shear rate
_�=�2D. Here � denotes the inverse screening length of the Yukawa interaction and D
is the free diffusion constant of the colloidal particles. Data are presented for three
different pressures P measured in terms of �3/� where � is the inverse thermal energy.
The cluster size increases with shear rate. At the same time, the crystallization rate
decreases. This implies that shear suppresses crystallization for this particular model.
Although classical nucleation theory does not hold a priori in non-equilibrium
situations (such as shear), it is tempting to test an ansatz where the shear rate is
treated as a thermodynamic variable. Surprisingly good agreement is found, see
again the parabolic fits in figure 1, when the concept of classical nucleation theory is
applied.

The anisotropy of the critical nucleus relative to the shear flow direction is shown
in figure 2. It is tilted relative to the shear gradient direction (y axis). The averaged
tilt angle scales linearly with the shear rate, which is the simplest scaling possible
compatible with inversion symmetry.

A detailed comparison with experiments is in principle possible.z Data for
crystallization rates in charged suspensions are known [12] and individual particles
can be tracked and visualized under shear flow [13-16]. Still the size of the critical
nucleus should be measured, by, e.g. confocal microscopy [3], in order to verify the
simulation predictions of [8, 9].

yA parabolic Poiseuille flow could in principle also be considered within Brownian dynamics
simulations.
zFirst experiments on nucleation under shear were reported in [11].

848 H. Löwen et al.
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3. Dynamical density functional theory

Dynamical density functional theory is the generalization of classical density
functional theory which is formulated in terms of the static one-particle density field
�ð~r Þ towards an ensemble-averaged time-dependent one-particle density field �ð~r; tÞ.
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Figure 2. The tilt angle � of the principal moment of inertia with respect to the y-axis. The
inset shows a schematic representation of the preferred orientation of the nucleus with respect
to the shear direction indicated by the arrows [8].
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Figure 1. The number of particles N* of the critical nucleus as a function of the
dimensionless shear rate _�=�2D and for different pressures P. The solid lines are parabolic
fits through the data. The stars are data from equilibrium Monte Carlo simulations without
shear [9].
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In the static case [6, 17, 18], a free-energy functional F ½�ð~r; tÞ� is uniquely defined.

The dynamical generalization can be derived from Smoluchowski’s approach [19].

The only assumption is that pair correlations in non-equilibrium are replaced by

their corresponding equilibrium expression, an assumption whose validity is amply

confirmed by extended studies [23–25]. Then the following dynamical equation for

�ð~r; tÞ is derived:

@�ð~r; tÞ

@t
¼ �D ~r � �ð~r; tÞ ~r

�F ½�ð~r; tÞ�

��ð~r; tÞ

� �
: ð1Þ

This is a deterministic equation without noise (see the comment of [20]) which is

microscopic in principle since all molecular correlations are included in the

functional F ½�ð~r; tÞ�. Note that the mobility coefficient �D is not a phenomenological

fit parameter (as typically for order parameter dynamics) but has a

precise microscopic meaning. Three remarks are in order: (i) The uniqueness proof

of the dynamical functional can be performed also for dynamical density

functional theory, see [21]. (ii) Mode coupling theory can be brought into

relation with dynamical density functional theory, see [22]. (iii) There are

alternative ways of deriving dynamical density functional theory on microscopic

grounds [4, 5].
The dynamical density functional theory has been tested against Brownian

dynamics computer simulations for strongly inhomogeneous fluids and very good

agreement has been found, see e.g. [23, 24]. Hence it is tempting to use the dynamical

density functional approach also for crystallization. The conventional static density

functional theory provides a microscopic approach to freezing. For a given particle

interaction, it is in principle possible to predict the full phase diagram of the system

including freezing and melting. The inhomogeneous density profile of the crystal

consists of periodic peaks around the solid lattice positions. For a functional

F ½�ð~r; tÞ� which predicts freezing, the full dynamics of a crystal out of a given starting

density profile can then be predicted. Since the dynamical density functional theory

works well for strongly inhomogeneous liquids it is expected that it describes the

dynamics of freezing as well.
The following problems of heterogeneous nucleation and microstructure

formation can be addressed, at least in principle:

(1) Heterogeneous nucleation at an external planar wall, e.g. by a system

boundary.
(2) Crystal growth out of an undercooled melt if a piece of crystal with a

cleaved front is offered to the fluid. If there is no mass transport necessary,

a steady-state growth velocity should be obtained [26].
(3) Heterogeneous nucleation and subsequent growth starting from a germ of

prescribed structure.

Homogeneous nucleation requires an additional careful treatment of fluctuations

(see again [20]) but is also contained in the framework of dynamical density

functional theory. Incorporating a sheared situation into DDFT has not yet been

done but is in principle possible.

850 H. Löwen et al.
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4. Application of DDFT to gradual versus sudden solid heating

An example for how dynamical density functional theory works for freezing and

melting is shown for a two-dimensional system interacting via an inverse power

potential u(x) ¼ �/x3.y Here x ¼ �1/2r denotes particle distance, where � is the

average density. In this case reliable equilibrium functionals F ½�ð~r; tÞ� are known

[27, 28] which describe freezing in quantitative accordance with experiments [29].
Here, we use the approximation of Ramakrishnan and Yussouf [28] to the

equilibrium density functional. Starting from an initial density profile �0ð~r; t ¼ 0Þ,

equation (1) is numerically solved for times (t/�B)9100, where �B ¼ (�D)�1 is the

Brownian time scale. In this case the rectangular periodic box with Lx=Ly ¼
ffiffiffi
3
p

comprises two solid particles. Due to lattice symmetry, it suffices to solve the

problem in a single elementary cell.
As a first application, we study melting of a highly ordered two-dimensional,

infinite triangular crystal which is in equilibrium for a low temperature T0 ¼ 0.016�/
kB < Tm, where Tm’ 0.028 �/kB is the melting temperature, at higher temperatures.

In a first Gedanken experiment we adiabatically increase the temperature T,

i.e. we increase the temperature by a small step, let the system equilibrate, increase

the temperature again, etc. and we proceed like that until the crystal melts to the fluid

state. In figure 3 we plot the amplitude of the so obtained equilibrium density peaks

��aðT Þ ¼ �að~r ¼
~R;T Þ, where ~R denotes a lattice vector and the subscript a refers to

the adiabatic situation, and the difference in Helmholz free energy density

�FðT Þ=N ¼ F ½�að~r;T Þ;T�=N� FlðT Þ=N, where FlðT Þ ¼ F ½�ð~rÞ ¼ �;T� is the free

energy of the fluid, and N is the number of particles, as a function of T. We find that

for temperatures T�To’ 0.033 �/kB the system remains crystalline but only for

T�Tm’ 0.028 �/kB is the free energy difference negative and thus the crystal in

thermodynamic equilibrium. For Tm<T<To the free energy difference is positive

implying the crystal is metastable and therefore overheated as can be seen in figure 3.

The system is not able to overcome the free energy barrier which would lead to a

favourable liquid state. For T>To the crystal immediately melts into the fluid state.
In order to see whether the system upon increasing the temperature is able to

circumvent the free energy barrier by choosing a different pathway through the free

energy landscape we perform a second Gedanken experiment: starting from the same

initial density profile �0ð~r; t ¼ 0Þ as above we heat the system instantaneously to a

temperature Tq>To and monitor the time evolution of the density profile �qð~r; tÞ
where the subscript q refers to the quenched situation. In figure 4 we plot the

amplitude of the density peaks ��qðt;TqÞ ¼ �qð~r ¼ ~R; t;TqÞ for different quench

temperatures Tq as a function of time. We find that the system reaches the same

density profiles as above, i.e. �qð~r; t!1;TqÞ ¼ �að~r;TqÞ. Therefore we conclude

that upon heating the system, the heating rate does not affect the final density profile

�ð~r; t!1;T Þ. Practically the same melting temperature is obtained for rapid or

slow heating and thus overheating is retained.

y In three dimensions a similar study can be performed including solids and crystalline defects.

Critical nuclei and crystallization in colloidal suspensions 851
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5. Relation to phase-field models

Phase-field models are derived on a more phenomenological (coarse-grained) level
for order-parameter dynamics [30]. The resulting equations for the dynamics of the
order parameter are similar to equation (1) if the corresponding functional is
replaced by a square-gradient functional of the order parameter in the spirit of
Ginzburg–Landau theory. These dynamical equations of the phase-field model are
then solved numerically. There are numerous applications of phase-field dynamics to
various circumstances of crystal growth and nucleation [31, 32].
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Figure 3. Height of the peak ��aðT Þ=� ¼ �að~r ¼
~R;T Þ=� and difference in free energy
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Phase-field models have been refined to incorporate more microscopic
information from the solid phase. One important development in this direction
is the description of the so-called phase-field crystal by suitable order parameters
[33]. The phase-field crystal approach can also be generalized to include elastic
distortions in the growing solid phase [34–37]. Dynamical density functional theory,
on the other hand, operates on the full microscopic level without any phenomen-
ological parameters. It is a challenge to derive the phase-field model from dynamical
density functional theory. Then one should get insight into the levels of
different approximations which are included in the phase-field approach (including
the phase-field crystal). For the static density functional theory this has been
performed [38, 39], but the extension towards dynamical situations is still missing.

6. Conclusions

In conclusion, computer simulations and dynamical density functional theory are
ideal tools to study nucleation on a microscopic level, i.e. on molecular length and
time scales. In particular, dynamical density function theory which is still in its
infancy as far as applications of crystallization is concerned is expected to play a
major role as a microscopic theory for any crystallization and nucleation event. One
major effort will be to include properly the hydrodynamic interactions. At the same
time real-space experiments on colloidal suspensions will give direct insight into the
birth and growth of crystals such that mutual cross-fertilization of experiment,
simulation and theory is expected in this research area [40].
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