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Asymmetric caging in soft colloidal mixtures
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The long-standing observations that different amorphous
materials exhibit a pronounced enhancement of viscosity
and eventually vitrify on compression or cooling continue to
fascinate and challenge scientists1, on the ground of their physical
origin and practical implications. Glass formation is a generic
phenomenon, observed in physically quite distinct systems that
encompass hard and soft particles. It is believed that a common
underlying scenario2,3, namely cage formation, drives dynamical
arrest, especially at high concentrations. Here, we identify a
novel, asymmetric glassy state in soft colloidal mixtures, which is
characterized by strongly anisotropically distorted cages, bearing
similarities to those of hard-sphere glasses under shear. The
anisotropy is induced by the presence of soft additives. This
phenomenon seems to be generic to soft colloids and its origins
lie in the penetrability of the constituent particles. The resulting
phase diagram for mixtures of soft particles is clearly distinct
from that of hard-sphere mixtures and brings forward a rich
variety of vitrified states that delineate an ergodic lake in the
parameter space spanned by the size ratio between the two
components and by the concentration of the additives. Thus, a
new route opens for the rational design of soft particles with
desired tunable rheological properties.

Colloidal hard spheres, a model system in which vitrification
has been intensively studied, undergo a transition to a dynamically
arrested state, that is, a glass4, when their volume fraction exceeds a
value of about 0.58. The glass formation is discussed in the context
of caging5: owing to crowding, a given particle is trapped by its
nearest neighbours in a virtual cage, schematically represented in
Fig. 1a. Its macroscopic motion is significantly hindered, whereas
fast local motions within the cage (rattling) are still possible6.
Mode coupling theory (MCT) has been particularly successful in
providing a first-principles description of this effect7,8. Another
ideal model system to investigate the general features of glass
formation is provided by star polymers, as they enable tuning of the
softness of their interaction9. They consist of f chains chemically
anchored on a common centre. The variation of the functionality
f enables the realization and control of the softness. The glass
formation of soft star polymers can also be formulated in the
context of caging10, as shown in Fig. 1a.

When dealing with two-component mixtures of hard/soft
bodies, it is already known that multiple mechanisms of
vitrification and melting scenarios are possible, leading, for
example, to the formation of attractive glasses for colloid–polymer
mixtures11,12 or double glasses for hard-sphere ones13, the existence
of the former resting on a depletion picture, whereas that of
the latter on geometry-driven caging of both components. Soft
mixtures have much more in store, as we show here. Our study
examines the variety of glassy states and the intricate vitrification
and melting scenarios present in star polymer mixtures. We
demonstrate that a novel form of arrested matter exists, which is
characterized by the formation of strongly anisotropic randomly
oriented cages with a low coordination number for the larger
component, the smaller one undertaking the role of filling up the
rest of the large-star cage that has been opened up. This asymmetric
glass has no counterpart in hard colloidal mixtures, in which cage
deformation has only been reported in the presence of shear14,15.

We consider star polymer mixtures that are asymmetric both
in functionality and in size, focusing on the addition of smaller
stars to a dense solution of larger ones, which, in the absence of
the additives, is vitrified. We recently established the existence of
two glassy states in such binary star mixtures16. The two glassy
states identified there were a single glass formed by the large
stars, in which the small ones remained ergodic, diffusing through
the voids of the vitrified matrix, and a double glass, in which
both components were arrested. The former occurs for large size
asymmetries and the latter for moderate to small ones. Both glasses
were observed to melt on increasing the concentration of additives.
Indeed, the addition of small stars strikingly leads to a restoration
of ergodicity16. Here, we establish that, on further increase in
small-star concentration, a new type of glass appears, which is
uniquely distinguished from the other ones by means of various
structural and rheological characteristics: it is a double, asymmetric
glass, in which both components are arrested but the cages are
strongly anisotropically deformed, the localization length being
significantly smaller than in the original double glass.

Experimental evidence for the aforementioned re-entrant
vitrification is provided in Fig. 1b. This figure shows the
experimental kinetic phase (state) diagram for three different
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Figure 1 Experimental and MCT arrested state diagrams for star–star mixtures. a, Schematic representation of cages for hard spheres (top) and star polymers (bottom).
b–e, Kinetic state diagrams in the plane spanned by size ratio δ and the additive number density ρ2σ

3
1 . Open symbols correspond to rheological fluids, filled symbols to

rheological glasses. Dashed lines are guides to the eye to separate fluid from glassy states. b, Experimental results for different combinations of parameters: squares
(f1 = 170, f2 = 150; ρ1σ

3
1 = 0.429); circles (f1 = 128, f2 = 141; ρ1σ

3
1 = 0.477); diamonds (f1 = 128, f2 = 362; ρ1σ

3
1 = 0.477). c, MCT results for f1 = 128, f2 = 141 and

ρ1σ
3
1 = 0.388. d, MCT results for f1 = 170 and f2 = 150 for two different values of ρ1σ

3
1 (0.358, circles; 0.36 diamonds). e, MCT results for f1 = 263, f2 = 64 and

ρ1σ
3
1 = 0.345.

studied mixtures (see Supplementary Information for materials
and methods), drawn in the plane spanned by small/large star size
ratio δ and the reduced number density of small stars ρ2σ

3
1 , where

σ1 is the corona diameter of the large stars. The density of the
large stars is fixed so that, in the absence of additives, the system
is vitrified. The mixture is also characterized by the functionalities
f1 and f2 of the large and small stars, respectively. The experimental
data show a ‘lake’ of ergodic fluid nested between various arrested
states, found both for low and for high values of ρ2. As sample
availability prohibits us from making a full scan of the parameter
space for one fixed combination f1/f2, we carry out MCT (ref. 17)
and molecular dynamics simulations, which enable us to explore
the dependence of the results on the values of the parameters.
Interestingly, re-entrance is also observed in MCT calculations of
the glass line, based on the emergence of a finite non-ergodicity
parameter. Results for three different combinations of f1 and
f2, encompassing the experimentally studied cases, are shown in
Fig. 1c–e. Theory indicates that the presence of an ergodic region is
a generic feature of star–star mixtures and rather insensitive to the
precise f1/f2 values. Moreover, the extension of the ergodic region
can also be tuned by changing either the functionalities of the two
components or the density of the large stars, as shown in Fig. 1d.

Dynamic rheological data are shown in Fig. 2a for three
state points of the same mixture at a low (1), intermediate (2)
and large (3) density of additives, demonstrating the transitions
from solid to fluid, and to solid again, on increasing ρ2. The
corresponding plateau moduli G′ in the solid phase are reported
in Fig. 2b, normalized with respect to the value of the large-star
glass plateau modulus G′

0 in the absence of additives. The figure
also shows results of the corresponding MCT calculations. Both
experimental and theoretical results show that the high-ρ2 glass is
characterized by an elastic modulus that may exceed that of the

low-ρ2 glass by up to an order of magnitude. The fact that the
high-ρ2 glass has a larger modulus can be explained in terms of
its smaller localization length l0, following the proposition that
the modulus relates to maximum excursion of a caged particle of
radius R as18 G′

= kBT/(l2
0R). Our simulations (see below) confirm

this picture.
We carry out extensive molecular dynamics simulations, and

from the long-time limit of the mean-squared displacement
(MSD), we calculate the isodiffusivity curves12 for the large
stars in the (δ, ρ2) plane, reported for one specific set of
parameters in Fig. 3a. These curves, evaluated in the ergodic
region, are precursors of the glass line. Consistently with the
experimental and MCT state diagrams, the isodiffusivity lines form
an almost closed loop, confirming the existence of an ergodic
lake in soft mixtures. Note that the left upper corner (small δ,
large ρ2) cannot be investigated neither in simulation nor in MCT
owing to the presence of phase separation. Results for different
parameters, reported in Supplementary Information, further stress
the generality of this finding. The MSD also provides a way of
estimating the localization length of the nearby glassy state. Indeed,
the MSD exhibits a transient regime in between the short-time
microscopic dynamics and the long-time diffusive behaviours.
This transient regime marks the crossover between intra-cage and
inter-cage dynamics. Therefore, the inflection point of the MSD
versus time in a log–log scale provides a measure of the squared
localization length l2

0 for the stars. Figure 3b,c shows the MSD for
two states, at low and high ρ2 respectively, sufficiently close to the
nearby glass transitions. On increasing ρ2, l2

0 decreases by roughly
one order of magnitude, the same amount by which the elastic
modulus G′ increases (Fig. 2).

To gain insight into the nature of the arrested states, we focus
on a constant-δ path that drives us from the low-ρ2 double glass16
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Figure 2 Rheological properties for star–star mixtures from experiments and
MCT calculations. a, Dynamic frequency sweeps showing the storage G ′ (filled
symbols) and loss G ′′ (open symbols) moduli as a function of oscillatory frequency
ω (estimated at 0.1 rad s−1) for a mixture consisting of large stars with f1 = 128 at
ρ1σ

3
1 = 0.477 and small stars with f2 = 141 at three different small-star densities

(labelled as 1,2,3): ρ2σ
3
1 = 0 (black circles—glass); ρ2σ

3
1 = 0.78 (red

squares—fluid); ρ2σ
3
1 = 5.55 (blue diamonds—glass). b, Ratio of G ′/G ′

0 , where
G ′

0 is the storage modulus of the large-star system without additives, from
experiments and MCT as a function of ρ2σ

3
1 . The vertical lines indicate the

glass–fluid–glass transitions, with the horizontal arrows showing the corresponding
fluid regions.

to the high-ρ2 novel glass through the ergodic fluid. The evolution
of the liquid structure on addition of small stars is monitored
by considering the large-star partial radial distribution functions
g11(r). As observed in Fig. 4a, g11(r) clearly shows that large stars
get pushed closer to each other as the density of small stars grows.
More importantly, extra layering of the large stars appears, set by
the length scale of the small ones. Indeed, the typical separation
between the first and second peak becomes compatible with the
size of the small stars when ρ2 increases. This is clear evidence that
the small stars are intervening between the large ones, drastically
affecting their correlations. The structural rearrangement arises
from the fact that the cross-interaction favours contacts between
dissimilar species over large–large contacts. Thus, large stars tend to
be separated by an increasing number of small stars as ρ2 increases.
We note that, oppositely to the depletion mechanism, a sufficiently
high size ratio is necessary to cause these effects. Indeed, for δ = 0.1
no significant structural changes are induced by the additives, as
can be seen in Supplementary Information. On the other hand,
for δ = 0.4, the change of structure is associated with a spectacular
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Figure 3 Dynamical properties of star–star mixtures based on numerical
simulations. a, Isodiffusivity lines from simulations for f1 = 263, f2 = 64 and fixed
ρ1σ

3
1 = 0.40. The curves refer to three values of D1/D0, where D1 is the

self-diffusion coefficient of the large stars at the investigated state points, whereas
D0 is the corresponding one in the absence of additives. The two filled symbols
denote the state points for which the dynamics are presented in b and c. b, MSDs of
large and small stars close to the double glass (for ρ1σ

3
1 = 0.40 and ρ2σ

3
1 = 0.1).

c, The same as in b but close to the asymmetric glass (for ρ1σ
3
1 = 0.40 and

ρ2σ
3
1 = 4.0). Dashed lines in b and c indicate the (squared) localization lengths for

the small and large particles.

drop in the coordination number of the large stars N11: it decreases
monotonically from about 13 to 3 as the density of additives grows.
The observed monotonic decrease of coordination is a genuine
effect, because the number density of large stars does not change.

The structural changes taking place on addition of small
stars can be quantified by studying the configurations of typical
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Figure 4 Structural properties of star–star mixtures and visualization of the
asymmetric cages, based on numerical simulations. a, Radial distribution
function of the large f1 = 263 stars (progressively shifted by one along the y axis for
clarity) at fixed ρ1σ

3
1 = 0.345 in the presence of smaller f2 = 64 stars (δ = 0.4) for

several values of ρ2σ
3
1 (A: 0.05; B: 0.5; C: 1.5; D: 3; E: 5). b, Snapshots of the

typical cages around a fixed large star (blue sphere) formed by neighbouring large
(green spheres) and small (yellow spheres) stars in the studied state points
A,B,C,D,E. Spheres are drawn with the appropriate particle size ratio. A cage
surrounding a given large particle is defined by all stars (both large and small) within
a distance corresponding to the first minimum of g11 (r ). c, Same as b but only large
stars are shown. Note the pronounced decrease in the number of nearest
neighbours for fixed large-star density: the cage volume shrinks as the peak of
g11 (r ) moves to smaller r values as small stars are added. d, Anisotropy parameter
k2 as a function of ρ2. The horizontal dotted line indicates the value corresponding
to a regular planar configuration. d also shows k2 for two hard-sphere mixtures with
δ = 0.4 and 0.5 and with ρ1σ

3
1 = 0.993 for several values of ρ2σ

3
1 , encompassing

the region where the thermodynamically stable crystal is AB2 (ref. 23). For hard
spheres, it is difficult to increase the density of small spheres beyond two, as the
total packing fraction is already quite high.

cages of nearest neighbours of a large star as a function of the
amount of additives. The cage geometry closely follows that of
the first coordination shell of the underlying (supercooled) fluid.
The geometry and composition of the caging particles around the
reference central particle are found to change drastically as a result
of increasing ρ2. This is shown in Fig. 4b, where typical cages
obtained from simulation snapshots for some studied values of
ρ2 are shown. The visualization of only the large stars, shown in
Fig. 4c, facilitates the identification of the progressive development
of asymmetric caging. For low additive concentrations, cages have
a very high, spherical symmetry, typical of dense solutions of
repulsive, spherosymmetric particles. However, for higher values
of ρ2, the cages open up (see, for example, configuration C) and
become increasingly and strongly aspherical. As the number of
large nearest neighbours also drops, it becomes impossible to form
cages with spherical symmetry. The cage structure tends to become
almost planar (∼3 neighbours). The small stars fill up the empty
space opened up by the expulsion of large stars from the first
coordination shell, so that they actually deform the spherical cages,
introducing a local anisotropy in the large-star configurations.
Such anisotropy is uniquely random, as opposed to correlated
anisotropy, which is induced by shearing of, for example, colloidal,
hard-sphere systems14,15.

A quantitative measure of the anisotropy and cage asymmetry
in the mixture is provided by the moment of inertia tensor I of
the large nearest neighbours of a selected large star. In particular,
here we report the behaviour of the anisotropy parameter k2, which
depends only on rotational invariants of the inertia tensor (see
Supplementary Information for materials and methods). Indeed,
a configuration with spherical symmetry leads to k2 = 0 whereas a
linear arrangement approaches k2 = 1. Between these two values,
any regular planar arrangement yields k2 = 5/32 ∼ 0.16. The
evolution of k2 with increasing ρ2 is shown in Fig. 4d. The
anisotropy parameter grows by a factor 20, yielding further strong
evidence of the deformation and anisotropic nature of the cages.
The value k2 = 0.26, reached for the highest ρ2 investigated,
indicates a very high anisotropy on a local scale and points
to structures that lack regularity (random, anisotropic caging).
Clearly, such low-coordinated cages are not capable of sustaining
local stresses; the small stars act as agents that both create the
anisotropy and at the same time fill up the opened-up space
and eventually lead to re-entrant structural arrest. We have
repeated the same calculations for different system parameters
observing that the anisotropy is enhanced by large asymmetries
(f2 � f1) and by values of ρ1 close to the one-component
glass transition value, because this facilitates the deformability
of the cages. We have also evaluated the anisotropy parameter
for binary hard-sphere mixtures for size ratio δ = 0.4 and 0.5
(see Fig. 4d) to provide evidence that asymmetric cages are not
found in hard-sphere systems (for a detailed discussion, see
Supplementary Information).

Soft colloidal particles are frequently encountered in large-scale
and microfluidic processing applications in the industrial
environment19,20, but also in a variety of products such as cosmetics
and pharmaceuticals21,22, where the stability of particles is crucial.
Control of the flow of such formulations is hence of foremost
importance. Colloidal star polymers have emerged as an ideal
tunable model system for implementing some of these ideas. Here,
we have demonstrated the unique ability of obtaining different
types of glass by taking advantage of the softness of the interaction
potential in mixtures. In particular, we have identified a novel
arrested state of matter, which originates from a pronounced
rearrangement of the cage-forming nearest neighbours, and brings
about low coordination and high anisotropy on the local scale. It
emerges out of a double glass of large and small stars on increasing
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the concentration of the small component and it is re-entrant,
following an intervening ergodic fluid. The width of the fluid
lake directly influences the rheological properties of the ergodic
fluid, which range from those of a normal Newtonian liquid
when the fluid lake is broad to highly viscoelastic ones, when it
is narrow. At the same time, the soft mixtures at hand provide
a means to tune the properties of the glass, as the asymmetric
arrested state has elastic moduli exceeding those of one-component
star-polymer glasses by one order of magnitude. Our results,
which are generic to systems with soft repulsive interactions of
entropic nature, underline the various possibilities for designing
and controlling such hybrid soft composite materials and the
related ample opportunities for tuning their rheology.
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