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The zero-temperature phase diagram of binary mixtures of like-charge particles interacting via a
screened Coulomb pair potential is calculated as a function of composition and charge ratio. The
potential energy obtained by a Lekner summation is minimized among a variety of candidate
two-dimensional crystals. A wealth of different stable crystal structures is identified including A, B,
AB2, A2B, and AB4 structures �A �B� particles correspond to large �small� charge.� Their elementary
cells consist of triangular, square, or rhombic lattices of the A particles with a basis comprising
various structures of A and B particles. For small charge asymmetry there are no intermediate
crystals besides the pure A and B triangular crystals. The predicted structures are detectable in
experiments on confined mixtures of like-charge colloids or dusty plasma sheets. © 2008 American
Institute of Physics. �DOI: 10.1063/1.2996515�

I. INTRODUCTION

Two-component mixtures in general exhibit much richer
crystallization phenomena and polymorphism than their one-
component counterparts1 as witnessed by a huge variety of
possible stable binary crystals, e.g., for binary hard sphere
systems.2–5 How the whole crystal phase behavior in mix-
tures depends on the interparticle interactions is far from
being understood even in equilibrium.6,7 This is true also in
two spatial dimensions where the number of Bravais lattices
is smaller than in three dimensions. Binary mixtures in two
dimensions have been studied for hard disks8 and a complex
diagram of close packing was obtained as a function of their
diameter ratio. More recently, a two-dimensional binary mix-
ture with soft interactions was considered,9 namely that for
parallel dipoles where the pair potential scales with the in-
verse cube of the interparticle separation. A variant of this
model has been considered in Ref. 10. Such systems can be
realized in granular matter11 and in magnetic colloidal sus-
pensions confined to an air-water interface.12 Again, as a
function of the ratio of dipole moments of the two species, a
complex phase diagram of stable binary crystals was ob-
tained that qualitatively differs from the hard disk case.8 In
particular for low asymmetries, the hard disk system shows a
complete separation into pure A and B triangular crystals8

while the soft dipolar systems possesses two stable mixed
crystals as well with stoichiometric ratio A2B and AB2.9

These differences show that the topology of the phase dia-
grams depends on details of the interactions and there is
certainly a need to understand this dependence in more de-
tail.

In this paper, we consider a two-dimensional binary sys-
tem of Yukawa pointlike particles, i.e., the pair interaction
potential V�r� between the particles is a screened Coulomb
interaction �exp�−�r� /r where � is the screening constant
�or the inverse screening length�. This repulsive potential

interpolates between the case of hard disks �as obtained in
the limit of high �� and the unscreened Coulomb case �as
obtained for �=0�. The latter limit, V�r��1 /r is even softer
than the dipolar case where V�r��1 /r3. The two components
are defined by two different charges, i.e., different prefactors
in front of the Yukawa interaction. In previous works, such
classical binary mixture with Yukawa interactions in three
dimensions has been used as a model to study mixing rules,13

effective forces,14 fluid-fluid phase separation,15–17 dynami-
cal correlations,18,19 and transport properties.20 Likewise the
pure �one-component� Yukawa system was also studied in
two-spatial dimensions for fluid structure,21–24 dynamics,25–28

and transport properties.29 Binary mixtures of Yukawa par-
ticles in two dimensions have also been studied for fluid
structure,30 adsorption,31 interfaces,32 and transport.33

The Yukawa potential is a good description for an effec-
tive pair interaction in charged colloidal suspensions34 and in
dusty plasmas,35 both for one component systems and mix-
tures. Here the microions establish a responding neutralizing
background and they only enter via a Debye screening length
and any microscopic details �as manifested, e.g., in the
Hofmeister series� are neglected. In fact, highly charged col-
loidal suspensions can be confined between highly charged
parallel glass plates,36–38 which restricts their motion practi-
cally to two dimensions. As in three dimensions, the Debye–
Hückel screened Coulomb interaction is a reasonable model
for confined charged colloids.39,40 Crystallization of binary
charged colloids has been studied experimentally in the bulk.
For instance, the phase diagram for oppositely charged col-
loids can be found in Refs. 41 and 42. A crystalline mono-
layer has also been realized experimentally for a confined
binary mixture of like-charged colloids �see Fig. 1 in Ref.
43�.44 Similar studies exist also for sterically stabilized45 and
magnetic colloids.46 On the other hand, sheets of highly
charged dust particles in plasmas �so-called complex plas-
mas� can also be confined to two dimensions, e.g., by levi-
tating electric fields. The interaction between the dust par-
ticles is again screened such that a Yukawa model isa�Electronic mail: messina@thphy.uni-duesseldorf.de.
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appropriate.35,47,48 Highly charged microspheres suspended
in a plasma settled in a horizontal monolayer were studied
experimentally and compared to a two-dimensional Yukawa
model.49–51 There is no principle problem in studying binary
mixtures of dust particles but a concrete realization in experi-
ments still has to be performed as well. Finally, another pos-
sible realization of the binary charged Yukawa system might
be in two-component Langmuir–Blodgett films.52–54

Apart from its important realizations, the major motiva-
tion for our studies is to understand the interplay between the
interparticle interaction and the stability of different two-
dimensional crystal lattices. A control of colloidal composite
lattices may lead to new photonic crystals55 to molecular
sieves56 and to micro- and nanofilters with desired porosity.57

The electric properties of a nanocrystal depend on its super-
lattice structure.58 For these type of applications, it is crucial
to understand the various stable lattice types in binary mix-
tures.

For the two-component two-dimensional Yukawa mix-
ture, we obtain the full phase diagram at zero-temperature as
a function of the charge asymmetry using lattice sums. As a
result, we find a variety of different stable composite lattices.
They include A, B, AB2, A2B, and AB4 structures. Their el-
ementary cells consist of �equilateral� triangular, square, and
rhombic lattices of the big particles. These are highly deco-
rated by a basis involving either A particles alone or both B
and A particles. The topology of the resulting phase diagram
differs qualitatively from that of hard disk mixtures8 and
dipoles.9

The paper is organized as follows: In Sec. II the model is
described and possible candidate structures for crystal lat-
tices in two dimensions are proposed. Results for the ther-
modynamics and for the phase diagrams are presented in
Sec. III. We conclude finally in Sec. IV.

II. MODEL

The model used in our study is a binary mixture of �re-
pulsive� charged particles made up of two species denoted as
A and B. Each component A and B is characterized by its
charge valency ZA and ZB, respectively. These point particles
are confined to a two-dimensional plane and interact via a
Yukawa pair potential. Introducing the charge ratio Z
=ZB /ZA,59 the pair interaction potentials between two
A-particles, an A- and a B-particle, and two B-particles at
distance r are

VAA�r� = �V0��r�, VAB�r� = �V0Z��r� ,

�1�
VBB�r� = �V0Z2��r� ,

respectively. The dimensionless function ��r� is given by

��r� =
exp�− �r�

�r
, �2�

where the energy amplitude V0� sets the energy scale. In
Debye–Hückel theory, the prefactor reads as V0=ZA

2 /� where
� is the dielectric permittivity of the solvent ��=1 for the
dusty plasma�. Typically,60,61 ZA is on the order of
100–100 000 elementary charges e such that V�r� /kBT at

typical interparticle distances r=1 /� equals ZA
2��B /e2. Typi-

cally, the Bjerrum length �B=e2 /�kBT is a few angstroms at
room temperature and the Debye screening length 1 /� is
1 �m, such that V�r� /kBT is much larger than unity for high
charges ZA. This justifies formally zero-temperature calcula-
tions for the Yukawa particles. On the other hand, the screen-
ing microions possess a finite temperature, which enters in
the inverse Debye screening length �.

Our goal is to determine the stable crystalline structures
adopted by the system at zero temperature. We consider a
parallelogram as a primitive cell, which contains nA

A-particles and nB B-particles. This cell can be described
geometrically by the two lattice vectors a=a�1,0� and b
=a��cos � , sin ��, where � is the angle between a and b and
� is the aspect ratio ��= �b� / �a��. The position of a particle i
�of species A� and that of a particle j �of species B� in the
parallelogram is specified by the vectors ri

A= �xi
A ,yi

A� and
r j

B= �xj
B ,yj

B�, respectively. The total internal energy �per
primitive cell� U has the form

U =
1

2 �
J=A,B

�
i,j=1

nJ

�
R

�VJJ��ri
J − r j

J + R��

+ �
i=1

nA

�
j=1

nB

�
R

VAB��ri
A − r j

B + R�� , �3�

where R=ka+ lb with k and l being integers. The sums over
R in Eq. �3� run over all lattice cells where the prime indi-
cates that for R=0 the terms with i= j are to be omitted. In
order to handle efficiently the long-range nature of the
Yukawa interaction at moderate screening strength, we em-
ployed a Lekner summation �see Appendix�.

We choose to work at prescribed pressure62 p and zero
temperature �T=0�. Hence, the corresponding thermody-
namic potential is the Gibbs free energy G. Additionally, we
consider interacting particles at composition XªnB / �nA

+nB�, so that the �intensive� Gibbs free energy g per particle
reads: g=g�p ,Z ,X�=G / �nA+nB�. At vanishing temperature,
g is related to the internal energy per particle u=U / �nA

+nB� through g=u+ p /	, where the pressure p is given by
p=	2��u /�	� �nA,nB

, and 	= �nA+nB� / �a
b� is the total par-
ticle density. The Gibbs free energy per particle g has been
minimized with respect to �, �, and the position of particles
of species A and B within the primitive cell. In order to
decrease the complexity of the energy landscape, we have
limited the number of variables and considered the following
candidates for our binary mixtures: A4B, A3B, A2B, A4B2,
A3B2, AB, A2B2, A3B3, A2B3, AB2, A2B4, AB3, AB4, and AB6.
Note that crystalline alloys with chemical disorder which are
stable due to mixing entropy are not considered here since
our study is limited to zero temperature. For the AB6 and
A3B3 case we have only considered a triangular lattice
formed by the A particles. An overview of the resulting
stable crystalline phases can be found in Fig. 1. The corre-
sponding nomenclature of the phase labeling is summarized
and explained in Table I. The crystalline structures are get-
ting increasingly complex from top to bottom in Fig. 1 and
Table I. Pure triangular lattices �T�A� or T�B�� and checker-
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board structures with equal molarities �S�AB�� are the sim-
pler structures while more complex basic unit cells with a
complicated basis are included as well.

III. RESULTS

A. Thermodynamical properties

1. Gibbs free energy

We first would like to address the behavior of the re-
duced Gibbs free energy per particle g��g / �V0�� at pre-
scribed charge ratio Z. The �discrete� profiles of g� for dif-
ferent values of Z as a function of the composition X are
depicted in Fig. 2. The different data points shown in Fig. 2
correspond to the phase �see Table II� with the lowest energy
at given composition and charge ratio. This does not neces-

sarily imply that this particular phase is globally stable, see
our discussion below. The qualitative trends of g� are not
affected upon varying the pressure. In the following we in-
troduce a reduced pressure p�= p / �V0�3�.

At a given composition X, Fig. 2 shows that g� decreases
with decreasing charge ratio Z. Recalling that g�=u�+ p� /	�

�with u��u / �V0���, this feature can be discussed in terms of
u� and 	�. More precisely, at a prescribed value for X, the
system has to lower its density such as to keep the pressure
constant when Z is enlarged. This clearly explains why the
term in p� /	� increases here with growing Z at fixed X. What
is less straightforward to clarify is the resulting behavior of
u� �with respect to Z and 	��, which can only be specified
after the explicit numerical calculations.

The other general trend revealed in Fig. 2 is that g�

decreases with growing composition X at prescribed charge
ratio Z. This feature is fully consistent with the idea that
upon enlarging X, the proportion of weakly charged
B-particles increases accordingly, so that to keep the pressure
constant the system has to increase its density and therefore
the term 1 /	� in g� decreases. Again, the behavior of u� is
not trivial a priori.

2. Phase coexistence

In this part, we explain how a phase coexistence sets in.
The onset of phase coexistence is based on the common tan-
gent construction also called Maxwell construction. At coex-
istence, two conditions must be fulfilled: �i� the pressure p�

needs to be equal for each phase �in our situation this is
always guaranteed since we are working at prescribed pres-
sure� and �ii� the chemical potential for any component must
be the same for the two coexisting phases. If we denote by
�i

�j, with i=A ,B and j=1,2 the chemical potential associ-
ated to particles of i-species for phase � j, then the thermo-
dynamical condition �ii� can be mathematically expressed as:
�A

�1 =�A
�2 and �B

�1 =�B
�2.

The geometrical interpretation of this latter thermody-
namical condition combined with that of the minimization of

T(A) T(B)

T(A)B
4 Rh(A)B

4
S(A)B

4

Rh(A)B
2

Rh(A)AB
4 S(AB)

T(A)A
2
B

3
Rh(A)AB

2
Rh(A)AB

FIG. 1. �Color online� The stable binary crystal structures and their primi-
tive cells. The disks �open circles� correspond to A �B� particles.

TABLE I. The stable phases with their Bravais lattice and their basis.

Phase Bravais lattice �basis�

T�A� Triangular for A �one A particle�
T�B� Triangular for B �one B particle�
S�AB� Square for A and B together �one A and one B particles�
S�A�Bn Square for A �one A and n B particles�
Rh�A�AmBn Rhombic for A ��m+1� A and n B particles�
T�A�AmBn Triangular for A ��m+1� A and n B particles�

0 1/51/4 1/3 2/5 1/2 3/5 2/3 3/4 6/7 14/5
X

0

10

20

30

g*

Z=0.2
Z=0.3
Z=0.4
Z=0.5
Z=0.7
Z=1.0

FIG. 2. Reduced Gibbs free energy g� as a function of the composition X for
various charge ratios Z at prescribed reduced pressure p�=100. The different
data points shown correspond to the phase with the lowest energy at given
composition and charge ratio. The case Z=1 corresponds to the pure phase
T�A� �or equivalently T�B��. All the other phases are gathered in Table II.
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g� is exemplified in Fig. 3. Thereby, we have plotted
�g��X�=g��X�− ��1−X�gA

� +XgB
��, where gA

� =g��X=0� and
gB

� =g��X=1�. The common tangent construction for crystal-
line phases consists merely of excluding all metastable
phases in the discrete profile of �g��X�. For the examples
chosen in Fig. 3 it turns out that for Z=0.7 all mixtures are
unstable so that the resulting equilibrium system will always
split into a pure A and pure B triangular crystals. On the
other hand, when Z=0.3, three stable mixtures for X=1 /2,
2/3, and 4/5 set in, which are explicitly mentioned in Fig. 3.
They are all hit by the two double tangents. In total, there are
four pieces of common tangents shown in Fig. 3 �lower part�
for Z=0.3 as a dashed line.

3. Particle density

The reduced density 	� as a function of the charge ratio
Z at different compositions X is sketched in Fig. 4. At given
composition X, the density decreases monotonically with Z,
see Fig. 4. This effect can be simply explained as follows:
Upon increasing Z the repulsive A-B and B-B pair interac-
tions increase accordingly, so that to keep the pressure fixed
the system has to decrease its density. Moreover, at pre-
scribed charge ratio, Fig. 4 indicates that the density in-
creases with the composition. This feature can also be ex-

plained with simple physics: Upon enlarging the composition
X, the proportion of weakly charged B-particles increases
accordingly, so that to keep the pressure constant the system
has to increase its density. This particle density behavior is
important to better understand later the phase diagram which
is shown for prescribed pressure.

B. Phase diagram

The ultimate phase diagrams in the �Z ,X� plane has been
obtained by employing the Maxwell construction. To allow
an easier comparison with earlier works,8,9 we have chosen
the same y-axis, namely here the composition X. We recall
here that both dimensionless quantities, namely the charge
ratio Z as well as the composition X, can vary between zero
and unity. A low charge ratio �i.e., Z is close to zero� indi-
cates a strong charge asymmetry, whereas a high charge ratio
�i.e., Z is close to unity� represents a large charge symmetry
or equivalently a weak charge asymmetry. Given the fact that
the phase behavior is getting increasingly complicated upon
lowering Z, involving a huge basket of candidates, we only
present results starting from Z=0.2. Furthermore, in contrast
to situations where the pair potential can be described as a
power law of the separation distance �as it was the case in

TABLE II. The phases with the lowest Gibbs free energy g� appearing in Fig. 2. The labels Re and Pa
correspond to rectangular and parallelogram shaped primitive cells.

X Z 0.2 0.3 0.4 0.5 0.7

0 T�A� T�A� T�A� T�A� T�A�
1/5 Rh�A�A3B Rh�A�A3B Rh�A�A3B Rh�A�A3B Rh�A�A3B
1/4 Re�A�A2B Re�A�A2B Re�A�A2B Re�A�A2B Re�A�A2B
1/3 Rh�A�AB Re�A�A3B2 Pa�A�A3B2 Pa�A�A3B2 T�A2B�
2/5 Rh�A�A2B2 Re�A�A2B2 Pa�A�A2B2 Pa�A�A2B2 Rh�A�A2B2

1/2 S�AB� Rh�A�AB2 Rh�A�AB2 Rh�A�AB2 Re�A�AB2

3/5 Re�A�AB3 Re�A�AB3 Pa�A�AB3 Pa�A�AB3 Rh�A�AB3

2/3 Rh�A�AB2 Rh�A�AB2 Rh�A�AB4 Rh�A�AB4 T�AB2�
3/4 Pa�A�B3 Re�A�B3 Re�A�B3 Re�A�B3 Re�A�B3

4/5 T�A�B4 Rh�A�B4 S�A�B4 S�A�B4 Rh�A�B4

6/7 T�A�B6 T�A�B6 T�A�B6 T�A�B6 T�A�B6

1 T�B� T�B� T�B� T�B� T�B�

0 1/5 1/4 1/3 2/5 1/2 3/5 2/3 3/4 4/5 6/7 1
X

-0.008

-0.006

-0.004

-0.002

0

0.002

∆g
*

T(A) T(B)

Rh(A)B
2

Rh(A)B
4

Rh(A)AB
2

FIG. 3. �Color online� Common tangent construction for crystalline phases
at prescribed reduced pressure p�=100. The filled �open� circles correspond
to Z=0.7 �Z=0.3�. The stable phases are indicated explicitly.
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ρ*

X

X=0
X=1/5
X=1/4
X=1/3
X=2/5
X=1/2
X=3/5
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X=3/4
X=4/5
X=6/7
X=1

p
*
=100

FIG. 4. �Color online� Reduced density 	� �prior the Maxwell construction�
as a function of the charge ratio Z for various compositions X at prescribed
reduced pressure p�=100. The arrow indicates growing X.
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our previous work on dipolar mixtures9�, the phase diagram
becomes pressure dependent for Yukawa systems. To capture
this feature, we present results at three well distinct pres-
sures, namely p�� p / �V0�3�=0.01, 1, and 100.

The phase diagrams in the �Z ,X� plane for the three
reduced pressures p�=0.01, 1, and 100 are depicted in Figs.
5�a�–5�c�, respectively.

1. Weak charge asymmetry

Let us first focus our discussion on the apparently simple
phase behavior reported at weak charge asymmetry �here
roughly Z
0.5, see Fig. 5�. Thereby, the system phase sepa-
rates into a pure A and a pure B triangular crystalline phase
�see also Fig. 1�. This triangular structure obviously corre-
sponds to the single-component ground state.

What is now less obvious, still in the regime of weak
charge asymmetry, is the phase separation reported in Fig.
5�c� for p�=100. Recently, we have shown for dipolar binary
mixtures,9 whose pair potential is governed by 1 /r3, that, at
weak dipolar asymmetry �the analogous quantity to the
charge ratio in our present study�, the stable mixtures A2B
and AB2 �who are globally triangular� set in. This phase be-
havior contrasts therefore strongly with that reported here for
Yukawa mixtures, see Fig. 5�c�. Given the fact that at weak
screening the Yukawa pair potential is well approximated by
a 1 /r dependence, which is even softer than 1 /r3, it is legiti-
mate to expect stable mixtures in the regime of weak screen-
ing and charge asymmetry. In order to check this idea we
have performed additional calculations at p�=1010 with Z
=0.99 leading to reduced screening strengths of the order of
10−2. Those values for �� turn out to be still too large to
recover the phase behavior found at 1 /r3-pair interactions.9

The consideration of even much smaller screening strengths
�say roughly of the order of 10−7� are numerically not trac-
table within reasonable CPU time. Unfortunately, the imple-
mentation of a direct Lekner and/or Ewald sum for the
1 /r-pair interactions is delicate at prescribed pressure, since
the lack of electroneutrality involves the presence of an arti-
ficial homogeneous neutralizing background which is ther-
modynamically only consistent at prescribed density.63 Con-
sequently, although we have a strong intuition about the
stability of mixtures at weak charge asymmetry and screen-
ing, we cannot prove it here on computational basis.

2. Large charge asymmetry

We now address the more complicated phase behavior
reported at strong charge asymmetry, see Fig. 5 with Z
�0.5. As a clear general trend, it is found that the number of
stable phases increases with growing pressure. This feature is
in agreement with the idea that mixing is favored upon soft-
ening the pair potential.

A common and remarkable feature in this regime of
strong charge asymmetry �see Fig. 5� is the imposing stabil-
ity of equal composition X=1 /2. This feature was also re-
ported for dipolar mixtures.9 Let us discuss the behavior at
X=1 /2 in more detail. In fact, the following cascade
S�AB�→T�A�A2B3→Rh�A�AB2 is found upon increasing Z,
see Fig. 5 and Fig. 1 for the corresponding structures.
Thereby, the transitions S�AB�→T�A�A2B3 and T�A�A2B3

→Rh�A�AB2 are discontinuous, see Fig. 5. These discontinu-
ous transitions stem merely from the lattice-geometry incom-
patibility among the phases, see Fig. 1. Note that, for p�

=0.01 shown in Fig. 5�a�, the stability of the square phase
S�AB� occurs for values of Z smaller than 0.2 that are not
shown here.
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FIG. 5. �Color online� The phase diagram in the �Z ,X� plane of charge
asymmetry and composition at T=0 for an effective pressure �a� p�=0.01,
�b� p�=1, �c� p�=100. The symbol # denotes a discontinuous transition. The
y-axis is represented by two equivalent scales: The left side indicates the
phase symbols whereas the right one shows the corresponding value of the
composition.
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In order to compare the phase behavior with that of hard
disk mixtures, we have considered the following dimension-
less geometrical order parameter:

r� �
2dmin

AB − dmin
AA

dmin
AA �r � 1� , �4�

where dmin
AB corresponds to the shortest distance between

A-and B-particles whereas dmin
AA stands for that between

A-particles within the Wigner–Seitz cell �see Fig. 6�. Physi-
cally, this quantity r� is the size ratio between big and small
particles in a �packed� binary hard disk crystal,8 i.e., for
touching configurations. The profile of r� along the cascade
S�AB�→T�A�A2B3→Rh�A�AB2 depicted in Fig. 5�c� is
sketched in Fig. 6 as a function of Z. As expected, r� under-
goes two jumps at Z=0.255 and Z=0.285, which are the
signatures of discontinuous transitions. Figure 6 reveals that
r� is growing with Z except for the tiny interval where the
T�A�A2B3 phase is stable. This demonstrates an interesting
analogy between the charge ratio Z in like-charged binary
mixtures and the size ratio r� in hard disk binary mixtures
consistent with earlier investigations where size polydisper-
sity was mapped onto charge polydispersity64 and a strong
correlation between size and charge polydispersity was
found. In fact, for hard-disk mixtures there is also a first-
order transition from the S�AB� directly to the Rh�A�AB2

phase at a size asymmetry between 0.4 and 0.5.8 This is the
analogy of the start and end of the cascade S�AB�
→T�A�A2B3→Rh�A�AB2. It is interesting that the hard-disk
transition occurs at similar size asymmetries as indicated on
the y axis of Fig. 6. However, in our case, the additional
structure T�A�A2B3 �with a decreasing r�� intervenes.

IV. CONCLUDING REMARKS

In conclusion we have determined the ground-state �i.e.,
zero-temperature� phase diagram for a two-component
Yukawa monolayer at various pressures for arbitrary compo-
sitions and a broad range of charge asymmetries. Among a
big number of candidate phases, a wealth of different com-

posite lattices has been found to be stable. The larger the
charge asymmetry, the more complex is the phase diagram.
At low asymmetry the system shows demixing into pure A
and B crystals similar to hard disks but different from the
soft inverse cube interaction valid for dipoles. At higher
asymmetries and same composition of high-charge and low-
charge particles, there are two first-order transitions between
three different crystalline structures with incompatible sym-
metry. The latter transitions were compared with the corre-
sponding hard-disk behavior. The results are in principle de-
tectable in binary mixtures of charged colloids confined
between two charged plates43 or levitated dusty plasma
sheets.65

It would be interesting to study the effect of finite tem-
perature. We expect that the topology of the phase diagram
does not change upon gently increasing the temperature
though this could change close to melting. In this respect,
colloid-polymer mixtures are useful model systems where
the concentration of nonadsorbing polymers plays the role of
inverse temperature, see e.g., Refs. 66 and 67.

When cooling a two-component fluid down, glass forma-
tion in the binary systems at finite temperature may be a
fascinating topic as well68 to be studied in the future. In fact,
it has been speculated that the underlying crystallization into
the stable crystal lattices may control vitrification69 and
therefore our findings are directly relevant for the structure
of glasses.
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APPENDIX: LEKNER SUMS FOR YUKAWA
INTERACTIONS IN TWO DIMENSIONAL SYSTEMS

We consider a primitive cell in the shape of a parallelo-
gram, which contains a set of n=nA+nB particles interacting
via Yukawa potentials. The parallelogram repeated in the xy
plane gives a two-dimensional lattice and can be described
by two lattice vectors a= �ax ,0� and b= �bx ,by�. In the paral-
lelogram, the position of a charge valency Zi is defined by
ri= �xi ,yi�.

The total interaction energy per cell is given by

U

V0
=

1

2�
i=1

n

�
j�1

n

ZiZj��rij� +
1

2�
i=1

n

Zi
2�0 �A1�

with

��r� = �
R

exp�− ��r + R��
�r + R�

�A2�

and

�0 = �
R�0

exp�− ��R��
�R�

,

where

0.2 0.3 0.4 0.5 0.6
Z

0.4

0.45
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0.65

0.7
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S(AB)

d
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min
AB

AA

Rh(A)AB
2

T(A)A
2
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FIG. 6. �Color online� Geometrical order parameter r�= �2dmin
AB −dmin

AA � /dmin
AA

as a function of the charge ratio Z for the given composition X=1 /2 at
prescribed reduced pressure p�=100. The equivalent stable hard disk sys-
tems are sketched as well as the distances dmin

AB and dmin
AA for the Rh�A�AB2

phase.
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�r + R� = ��x + axl + bxm�2 + �y + bym�2

and

�R� = ��axl + bxm�2 + �bym�2.

Here R= la+mb with l and m being integers. The slowly
convergent sums over lattice sites �Eq. �A2�� cannot be effi-
ciently used in a numerical calculation, so that we will trans-
form them into rapidly convergent forms using a Lekner
method.70,71 With the help of the following integral represen-
tation

exp�− ��r + R��
�r + R�

=
1

��
	

0

� dt
�t

exp
−
�2

4t
− �r + R�2t� ,

�A3�

we obtain

��r� =
1

��
	

0

� dt
�t
�exp
−

�2

4t
� �

m=−�

�

�
l=−�

�

exp�− �y + mby�2t�


exp
− 
 x

ax
+ l + m

bx

ax
�2

ax
2t�� . �A4�

Now, to get further, we apply a one-dimensional Poisson
summation

�
l=−�

�

exp�− �� + �l�2t�

=
��

��t
�

k=−�

�

exp
i2�k
�

�
�exp
−

�2k2

�2

1

t
� , �A5�

which provides

�
l=−�

+�

exp
− 
 x

ax
+ l + m

bx

ax
�2

ax
2t�

=
1

�ax�
��

t 
1 + 2�
k=1

+�

cos
2�k
 x

ax
+ m

bx

ax
��


exp�− �2k2/ax
2t�� . �A6�

Inserting Eq. �A6� into Eq. �A4� yields:

��r� =
1

�ax�
�

m=−�

� 	
0

� dt

t
exp
−

�2

4t
− �y + mby�2t�

+
2

�ax�
�
k=1

+�

�
m=−�

+�

cos
2�k
 x

ax
+ m

bx

ax
��


 	
0

� dt

t
exp
− 
�2 +

4�2k2

ax
2 � 1

4t
− �y + mby�2t� .

�A7�

Now, taking into account the following relation

	
0

� dt

t
exp
−

B2

4t
− C2t� = 2K0�BC� , �A8�

where K0 is the zeroth order modified Bessel function of the
second kind. The final expression for ��r� reads:

��r� =
2

�ax�
�

m=−�

+�

K0���y + mby��

+
4

�ax�
�
k=1

�

�
m=−�

+�

cos
2�
 x

ax
+ m

bx

ax
��


K0
�y + mby���2 +
4�2k2

ax
2 �

for y � 0 �A9�

and the “self” contribution �0

�0 =
4

�ax�
�
m=1

�

K0��mby� +
8

�ax�
�
k=1

�

�
m=1

�

cos
2�km
bx

ax
�


K0
mby��2 +
4�2k2

ax
2 �

−
2

�ax�
ln�1 − exp�− �ax�� . �A10�

In the limit of a rectangular based cell, i.e., setting bx=0, one
obtains the formulas for the cross and self-energies that are
identical to those derived in Ref. 71 with z=0.

The sums in Eqs. �A9� and �A10� are truncated �i.e., the
criterion of convergence is realized� when the Bessel func-
tion values are smaller than 10−12. This typically leads to a
relative error in the energy that is smaller than 10−11. In the
case of double sums the cutoffs are identical, i.e., kc=mc,
such that all terms with k�kc and �m��mc are included in
the sums.
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