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When a fluid with a bulk liquid-vapor critical point is placed inside a static external field with spatial
periodic oscillations in one direction, a new phase arises. This new phase—the so-called “zebra”
phase—is characterized by an average density roughly between that of the liquid and vapor phases.
The presence of the zebra phase gives rise to two new phase transitions: one from the vapor to the
zebra phase, and one from the zebra to the liquid phase. At appropriate values of the temperature
and chemical potential, the latter two transitions become critical. This phenomenon is called laser-
induced condensation [I. O. Gétze, J. M. Brader, M. Schmidt, and H. Léwen, Mol. Phys. 101, 1651
(2003)]. The purpose of this paper is to elucidate the nature of the critical points, using density
functional theory and computer simulation of a colloid-polymer mixture. The main finding is that
critical correlations develop in two-dimensional sheets perpendicular to the field direction, but not
in the direction along the field: the critical correlations are thus effectively two-dimensional. Hence,
static periodic fields provide a means to confine a fluid to effectively two dimensions. Away from
criticality, the vapor-zebra and liquid-zebra transitions become first-order, but the associated surface
tensions are extremely small. The consequences of the extremely small surface tensions on the nature
of the two-phase coexistence regions are analyzed in detail. © 2011 American Institute of Physics.

[doi:10.1063/1.3582903]

I. INTRODUCTION

Binary mixtures of sterically-stabilized colloids and non-
adsorbing globular polymers are valuable model systems. In
particular, the addition of polymers causes an effective deple-
tion attraction between the colloids. This can induce liquid-
vapor type transitions in these systems, in much the same
way as in an atomic fluid. Indeed, liquid-vapor demixing
in colloid-polymer mixtures is routinely studied, using the-
ory, computer simulation, and experiment.'~® More phenom-
ena for which colloid-polymer mixtures are ideal model sys-
tems include equilibrium clustering,” “attractive” glasses,®’
gelation,'” numerous interfacial phenomena''"'* including
capillary waves,'> !¢ and wetting.'”-%"

Presumably the simplest model of a colloid-polymer
mixture is the one proposed by Asakura and Oosawa
(AO).21"23 Despite its simplicity, this model captures the
essential physics,»> yet remains simple enough to allow
for theoretical investigations (based, for instance, on lig-
uid state and density functional theory®*?°), and computer
simulations.”®?” In agreement with experiments, the AO
model features a bulk liquid-vapor critical point,> a freez-
ing transition,”® and also confinement effects at a single
wall,?®3% or between two parallel walls’'¢ can be studied
using this model. The AO model has also been used to study
wetting,>’ as well as phase separation in porous media.***
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Also of interest is the phase behavior of the AO model inside
external fields, such as gravity,**4’ or a spatially-varying pe-
riodic field.*

In Ref. 48, a colloid-polymer mixture described by the
AO model was subjected to a standing-wave external field,
wavelength A, propagating in one direction (the z-direction in
what follows). The field is thus effectively one-dimensional.
This can be realized in experiments using a laser field.*’
While the influence of such a field on the freezing transi-
tion has been extensively studied, and is known to induce
laser-induced freezing,’*>! relatively little is known regard-
ing its effect on the liquid-vapor transition. Regarding the lat-
ter, Ref. 48 proposes the following scenario: for sufficiently
large A, the bulk liquid-vapor critical point splits into two
critical points and a triple point with an intermediate new
phase which is partially condensed in slabs perpendicular
to the z-direction. We call this phase the “zebra” phase in
what follows. The results of Ref. 48 were obtained by using
fundamental measure density functional theory for a colloid-
polymer mixture described by the AO model.

In this work, we use the same model and technique to
calculate the surface tensions between all three coexisting
phases. We find that the vapor-zebra and liquid-zebra surface
tensions are extremely small. Moreover, to our surprise, upon
approach of the critical points, the latter tensions do not yield
the expected critical power law behavior. To clarify the nature
of the critical points, we use Monte Carlo simulations and
finite-size scaling. The simulations confirm all the trends pre-
dicted by the theory and also explain why the vapor-zebra and
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liquid-zebra surface tensions do not become critical. The key
observation is that the standing-wave external field “cuts-off”
the correlations in the field direction. Consequently, critical
correlations can only develop in the (two) remaining lateral
directions, and hence the critical behavior is effectively
two-dimensional. The singular part of the interface free
energy is thus due to line tension and not to the vapor-zebra
and liquid-zebra surface tensions. Upon careful inspection
of simulation snapshots, the corresponding line interfaces
become strikingly visible. Away from the critical points, the
vapor-zebra and liquid-zebra transitions are first-order. In the
thermodynamic limit, the division of space by the external
field into lateral and parallel directions maps onto the (zero
temperature) one-dimensional Ising model. In finite systems,
the tendency of the system to macroscopically phase separate
into vapor-zebra or liquid-zebra domains is weak.

Il. MODEL AND UNIT CONVENTIONS

To describe the interactions between colloids (c) and
polymers (p) we use the Asakura-Oosawa model.>'~>3 The
colloids and the polymer coils are both assumed to be spher-
ical objects with respective diameters o and o},. In what fol-
lows, the colloid diameter o = 1 will be the unit of length,
and the colloid-to-polymer size ratio is denoted g = op,/0.
The interaction between colloid-colloid and colloid-polymer
pairs is hard-core, while the polymer-polymer interaction is
ideal, leading to the following pair potentials

00 r<o
Uee(r) = {O otherwise, @)
_Joo r<(o+0p)/2
Uep(r) = {O otherwise, @
Upp(r) =0, (3)

with r the center-to-center distance. As the interactions are
either hard-core or ideal, the temperature T can be scaled out
(it only sets the energy scale kg T, where kp is the Boltzmann
constant). We mostly use a grand canonical ensemble, i.e., the
system volume V, the colloid chemical potential ., and the
polymer chemical potential w, are fixed, but the number of
colloids N and polymers N, inside V fluctuates. The parti-
cle densities are defined as p; = N;/V, with i € (c, p). We
also introduce the colloid packing fraction 1. = pcv., with v,
=n03/6 the volume of a single colloid. Following
convention,” we do not use the polymer chemical potential
itself, but rather the polymer reservoir packing fraction . It
is defined as the packing fraction 7, = ppvp, vp = Jras /6, of
a pure polymer system at given u, (for the AO model, such a
system is simply an ideal gas, and hence 7, eto/ksT) n or-
der to compare u. between theory and simulation, the thermal
wavelength A = o/2 in what follows.

In the AO model, there is an effective attraction between
the colloids. This can be shown formally by “integrating out”
the polymers,”>% which leads to an effective colloid-colloid
pair potential with an attractive well; the well-depth is propor-
tional to 1. Hence, the bulk AO model undergoes a liquid-
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vapor type transition, with n;, playing the role of inverse tem-
perature (by bulk we explicitly mean a three-dimensional sys-
tem in the absence of any surfaces or fields).

The extension of this work is to consider the AO model
inside an external field propagating along the z-direction

Vexi(z) = Vo cos 2mz/A), “)

with Vj the field amplitude and X the wavelength. We empha-
size that the field is static: it oscillates in space, not in time.
Physically, Eq. (4) resembles a one-dimensional standing op-
tical wave, which could easily be realized experimentally us-
ing a laser beam. In this work, we assume that Eq. (4) acts on
the colloidal particles only, but that the polymers do not “feel”
the field. The Hamiltonian of the system is thus defined by the
AO pair potentials, Egs. (1)-(3), plus an external field contri-
bution Z;N:C | Vext(zi), where the sum is over all colloids, and
with z; the z-coordinate of the ith colloidal particle.

lll. DENSITY FUNCTIONAL THEORY

In density functional theory (DFT), the equilibrium den-
sity profiles are the ones that minimize the grand canonical
free energy functional

Q[T, e, nfs pe(2), pp(2)], Q)

where p.(z) is the average colloid density at position z along
the field direction, and pp(z) that of the polymers (we thus
use an effectively one-dimensional set-up in our DFT calcu-
lations). In what follows, we also use the colloid packing frac-
tion profile n.(z), which is simply p.(z) multiplied by v.. The
system is symmetric around z = 0, and we include periodic
boundary conditions. Based on the proof that a free energy
functional Q indeed exists,’ we use the fundamental measure
approach of Ref. 24 to approximate Eq. (5); see Appendix
for full details. We numerically solve the resulting stationar-
ity equation using a Picard iteration scheme.’*

A. Phase diagram

First, we revisit Ref. 48 and hence choose the size ra-
tio ¢ = 0.6, the wavelength of the external field A = 8.192
and its amplitude Vo = 0.5kzT. Fig. 1 shows the phase di-
agram obtained from our DFT calculation. Here, we use the
grand canonical representation, i.e., we plot the binodals in
the (iic, ) plane. Clearly visible is the characteristic “in-
verted letter Y” or “pitchfork” topology (solid lines). For
comparison, the dashed line shows the bulk binodal, i.e., ob-
tained without the external potential of Eq. (4). We first note
that the bulk critical point occurs at a value of 7, below that
of the vapor-zebra and liquid-zebra critical points. This is to
be expected as confinement generally lowers transition tem-
peratures. The more striking feature of Fig. 1 is that n;, of
the liquid-zebra critical point exceeds that of the vapor-zebra
one: we find 7t ~ 0.526 and n}r;_lczr ~ 0.540. In contrast, in
Ref. 48, no difference could be detected, which demonstrates
the improved accuracy of the present work. The fact that
the critical “inverse temperatures” differ is a genuine fea-
ture, since our simulations reveal the same trend. As n; in-
creases, the binodals approach each other, and at the triple
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0.5

u/kgT

FIG. 1. Phase diagram of the AO model with ¢ = 0.6 in (uc, n{)) represen-
tation as obtained using DFT. The dashed curve shows the bulk binodal, the
solid curves the binodals inside the external field of Eq. (4) using A = 8.192,
and Vp = 0.5kpT. The lower three dots indicate critical points, the upper dot
the triple point. The open squares denote the state points at which the colloid
density profiles of Fig. 3 were measured.

point, 7, . & 0.755, they meet. In order to facilitate the com-
parison to computer simulation later on, we also present the
phase diagram for ¢ = 1, using field parameters A = 10, and
Vo = 0.4kpT (Fig. 2). We obtain the same overall topology,
but the region where the zebra phase occurs has broadened. In
addition, the binodals are shifted to significantly lower colloid
chemical potential.

Next, we consider the structural properties of the phases.
The key difference with the bulk AO model is that, in addition
to a vapor and liquid phase, we now also have the zebra
phase. The latter phase arises when 7, is chosen between
the critical and triple points and with the colloid chemical
potential chosen appropriately. To characterize the phases,
we have measured colloid density profiles n.(z) along the
direction of the laser field at three points in the phase diagram
of Fig. 1, indicated by open squares. The latter correspond,
from left to right, to a vapor state, a zebra state, and a liquid
state. The density profiles are shown in Fig. 3. The salient
feature is that all three phases display density modulations in

) 0.5 1 1.5 2 25
n/kgT

FIG. 2. Same as Fig. 1, but using ¢ = 1.0, with external field parameters
A=10and V) = 0.4kpT.
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FIG. 3. Equilibrium colloid density profiles n.(z) measured along the direc-
tion of the laser field for the three state points indicated by open squares in the
phase diagram of Fig. 1, corresponding to the vapor phase (u./kpT = 6.72),
the zebra phase (u./kpT = 7.12), and the liquid phase (u./kpT = 7.52).
The profiles were obtained at fixed n; = 0.65.

the z-direction, but the average density and amplitude differ.
The average colloid density is low in the vapor phase, high
in the liquid phase, with only a modest density amplitude
in both phases. The most striking feature of the zebra phase
is the unusually large density amplitude, which oscillates
between the average density of the vapor and liquid phase.

B. Interfaces and interfacial free energies

We now consider the interfaces between the coexisting
phases and the corresponding surface tensions. Above the
triple point, 1, > n; ., liquid and vapor coexist, with a
corresponding liquid-vapor surface tension y;,. To calculate
v, we first compute the equilibrium colloid density profiles
ne(z) of the pure vapor and liquid phase; the latter yield
the Gibbs free energies 2y pue and £2; pure, respectively (at
coexistence: 2y pure = 21, pure = pure)- The density profiles
of the pure phases schematically resemble those of Fig. 3.
Next, we consider 7.(z) of a system containing a liquid-vapor
interface, from which we obtain €y, jr. An example is shown
in Fig. 4(a), using two values of nl’). For sufficiently large n;,
we observe small oscillations at high densities close to the
interface. Since the surface tension is the excess free energy
per unit of area, it follows that

qure - le,int
2A ’

where A is the area of the interface (the factor 1/2 results
from the fact that two interfaces are present in our DFT
set-up). The calculation of the vapor-zebra surface tension
vz, and of the liquid-zebra surface tension y;,, which become
defined below the triple point, is performed analogously. To
this end, one needs to compute 7.(z) for a system containing a
vapor-zebra and liquid-zebra interface. Some typical density
profiles are shown in Fig. 4(b) and 4(c). It is striking that
the interfaces are extremely sharp: even very close to the
interface position, the density profiles of the coexisting
phases are almost identical to those obtained without the

Niv = (6)
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FIG. 4. Equilibrium colloid density profiles 7.(z) showing the various inter-
faces for the AO model with ¢ = 1, inside the external field of Eq. (4), using
field parameters A = 10 and Vp = 0.4 kpT. Shown is the liquid-vapor inter-
face (a), the vapor-zebra interface (b), and the liquid-zebra interface (c), each
time for two values of TI{; as indicated.

interface. From this observation, and comparing to Eq. (6),
one can already deduce that yy,, 11, must be very small.

In Fig. 5, we summarize the results of the DFT surface
tension calculations, where the various tensions are plotted as
function of n;,. Starting above the triple point, yy is finite; by
decreasing 77;, v vanishes at the triple point. At the triple
point, ¥, and y, are finite; by decreasing r;{) further, y,, van-
ishes at n, = n;;; of the vapor-zebra critical point, while y,
vanishes at 7, = ﬁ;’,lczr of the liquid-zebra critical point. Note
the extremely small values of y4, and y;, over the entire range
between the critical and triple points. In fact, it always holds
that y1y > wy, + Y1z, which implies there is no complete wet-
ting of the “zebra” phase for 7, > n, .

J. Chem. Phys. 134, 204907 (2011)
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FIG. 5. Variation of the surface tensions yy, yvz, and y1, with 77;. Note in
particular the extremely small values of yy, and yj,. These data were obtained
using our DFT for the AO model with ¢ = 1, and external field parameters
A =10,Vy =04kpT.

C. Critical behavior

We now discuss the critical behavior of our equilibrium
density profiles close to the vapor-zebra and liquid-zebra crit-
ical points. Since our DFT is a mean-field theory, we should
recover mean-field critical exponents. This is not to suggest
that the universality class of the AO model is the mean-field
one—it is not?*—but rather that we wish to test the internal
consistency of our theory. To this end, we introduce the vapor-
zebra order parameter

A
Ay, = l / nc,z(Z) - nc,v(Z) dz, (7
A Jo

where 7, (1c.v) denotes the equilibrium colloid density pro-
file of the zebra (vapor) phase. Note that A, above is just the
difference between the average colloid density of the vapor
and zebra phase. The liquid-zebra order parameter is defined
analogously

1 A
A, = X/ Ne,1(2) — ne,2(2) dz. (8)
0

Near the critical points, we expect power law decay of the
order parameter

Acoxt?, 1= M — Mper > 0, X €(vz,12), 9)

with critical exponent 8 = 1/2 for mean-field theory. We
compute these order parameters as function of 7, and plot
them on double logarithmic scales in Fig. 6, where on the
horizontal axes the distance from the critical point ¢ is shown.
The power law of Eq. (9) with mean-field exponent 8 = 1/2
is strikingly confirmed.

Next, we consider the critical behavior of the vapor-zebra
and liquid-zebra surface tension

Y X tH, X € (vz,lz), (10)

with ¢ > 0 defined as above, and where the critical exponent
w = 3/2 for mean-field theory. In Fig. 7, we plot both sur-
face tensions as function of ¢, again using double logarithmic
scales (this plot is simply a rescaling of the data of Fig. 5).
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FIG. 6. Order parameters Ay, and Ay, as function of the distance ¢ from their
respective critical points, where np¢r ~ 0.6817 and n{,‘,]czr ~ 0.717 were used.
Note the double logarithmic scales. The straight line corresponds to a power
law with critical exponent 8 = 1/2 of mean-field theory. For clarity, the data
for A, have been shifted upward by half a decade.

For completeness, we also show the liquid-vapor surface ten-
sion of the bulk AO model, i.e., in the absence of the laser
field. The puzzling result is that, while the bulk tension con-
forms to u = 3/2 as expected, we do not recover the expected
mean-field critical exponent for the vapor-zebra and liquid-
zebra surface tensions. From this we conclude that y,, and y,
do not become critical. We postulate there must be a “hidden”
surface tension y;, which instead conforms to Eq. (10) at the
vapor-zebra and liquid-zebra critical points; finding the corre-
sponding “hidden” surface is one of the challenges facing the
simulations.

IV. MONTE CARLO RESULTS

We now use computer simulations to corroborate the
DFT findings and to shed light on the peculiar nature of the

100

102 |

104}

YkgT/o”

108 | --7 7]

1078 [

N zebra - liquid
MR | " P

1078 1072 107" 10°
t

FIG. 7. Surface tensions yyz, iz, and the bulk liquid-vapor surface tension,
as function of the distance 7 from the respective critical points, where for n{;}%

and n{,‘,lczr the values of Fig. 6 were used, and n]';,'é'ilk ~ 0.6385. Note again the
double logarithmic scales. The straight line corresponds to a power law with
critical exponent 1 = 3/2 of mean-field theory. The key message is that y,
and yj, do not conform to the mean-field critical exponent (we instead find
an exponent i =~ 0.9).
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vapor-zebra and liquid-zebra critical points. We simulate the
AO model (defined in Sec. II) inside the external potential of
Eq. (4) using grand canonical Monte Carlo.”> In the grand
canonical ensemble, the colloid chemical potential p. and the
polymer “reservoir packing fraction” ), are fixed, while the
number of colloids N and polymers N, in the system fluc-
tuate. We remind the reader that 7, plays the role of inverse
temperature. To simulate efficiently, a grand canonical cluster
move is used,”® combined with a biased sampling scheme.>®
The simulations are performed ina V = L, x L, x L, box
with periodic boundaries. The laser field, Eq. (4), propagates
along the edge L, of the box, and hence we choose L, = nA,
with integer n > 0, and A the wavelength of the field. In what
follows, the colloid-to-polymer size ratio ¢ = 1, A = 10, and
the laser field amplitude V/ kg T = 0.4. The key output of the
simulations is the order parameter distribution P(1n.) (OPD)
defined as the probability to observe the system in a state with
colloid packing fraction 7. From the (normalized) OPD, one
readily computes the average colloid packing fraction

(ne) =/ncP(nc)dnc, an
as well as the colloidal compressibility

Xe =V ((n5) = (1)°), (12)
and the Binder cumulant®’

0= (m»?*/(m*), m=nc—(nc). (13)

We emphasize that the above quantities, as well as the OPD,
depend on all the model parameters, in particular the sys-
tem size, the imposed colloid chemical potential ., and the
“inverse temperature” 1;,.

A. Phase diagram

To obtain the phase diagram, we vary the colloid chemi-
cal potential u. at fixed “inverse temperature” 7,,; phase tran-
sitions correspond to peaks in the colloidal compressibility.
An example is shown in Fig. 8(a), where . versus u is plot-
ted. We observe two sharp peaks indicating two transitions.
The left (right) peak corresponds to the vapor-zebra (liquid-
zebra) transition and from the peak position u” (,u‘cz) can
be “read-off.” Note that above the triple point (17, > 1, ),
Xc versus . reveals only one peak, then corresponding to
a liquid-vapor transition. For a range of n,, we record the
value(s) of the colloid chemical potential where x. is maxi-
mal, and plot these as points in the (i, n;) plane. The result-
ing phase diagram is shown in Fig. 9(a), and the “inverted let-
ter Y topology predicted by the DFT is strikingly confirmed.

The dots in Fig. 9 mark the vapor-zebra and liquid-zebra
critical points, which we obtained using finite size scaling. For
a given value of 7, and system size, we vary the colloid chem-
ical potential ., and record the average colloid packing frac-
tion (n.), the colloidal compressibility x., and the Binder cu-
mulant Q. A typical result is shown in Fig. 8(b), where Q and
Xc versus (n.) are plotted (these curves are thus parametrized
by w.). The key message of Fig. 8(b) is that the compress-
ibility maxima of the vapor-zebra and liquid-zebra transitions
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FIG. 8. This figure illustrates how the vapor-zebra (VZ) and liquid-zebra
(LZ) transitions are located in grand canonical simulations; nf = 1.0, Ly
= Ly =12,and L; = 2 = 20 are used in both plots. (a) The colloidal com-
pressibility x. versus the colloid chemical potential ; the chemical poten-
tial of the left (right) peak yields uy” (ulcz). (b) The cumulant Q as function
of (nc) (solid curve). The dashed curve shows the compressibility x. on an
arbitrary vertical scale. The compressibility maxima coincide with maxima
in Q, the adjacent minima of which are labeled A, B, C, D. The horizontal
double-arrows mark the vapor-zebra and liquid-zebra order parameters.

coincide with maxima in the cuamulant. Adjacent to the cumu-
lant maximum of the vapor-zebra transition, we observe two
minima, indicated by the points

A=)y Ou) B =), OF), (14)

and, similarly, for the liquid-zebra transition

C=ne)y,s ), D =((ne)y, Q) (15)

In the thermodynamic limit, it holds that>8-9

13 <

Ly,Ly,L—>00 0 0t > i,
with Qy, = (0, + 01,)/2, and Npe the value of 7, at the

vapor-zebra critical point. Hence, by plotting Qy, versus 7,
for a number of different system sizes, curves for different
system sizes intersect at i, = 1 f, which can be used to lo-
cate the critical point. Of course, to locate the liquid-zebra
critical point, one analogously analyzes Qy, = (Qy, + 0;))/2.

To perform the finite-size scaling analysis, we vary the
lateral box extensions L, = L, = L, but keep the elongated
extension fixed at L, = 24 = 20. We assume that the diver-
gence of the correlation length is “cut-off” in the z-direction
by the laser field, and so we do not need to scale in this

J. Chem. Phys. 134, 204907 (2011)
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FIG. 9. Phase diagram of the AO model inside the laser field of Eq. (4)
in grand canonical representation (a) and reservoir representation (b); dots
mark the critical points obtained via finite-size scaling. No scaling analysis
was performed to locate the triple point, but based on the merging of the
curves in (a), and also on the shape of the OPD (Fig. 17), we expect that
nlrm ~ 1.21 — 1.22 (horizontal lines). The dashed curves in (b) are power
laws corresponding to the critical exponent B obtained in Fig. 10(b). As the
system size is increased, the binodals obtained in the finite system (solid
curves) smoothly approach these power laws. Also labeled in (b) are the var-
ious coexistence regions.

direction (this assumption will be justified in Sec. IV B where
the static structure factor is discussed). Since the correlations
diverge only in the two lateral directions, the critical behavior
is effectively two-dimensional. In Fig. 10(a), we plot O,
versus 7, for three values of L. In agreement with Eq. (16), an
intersection point is observed, from which we conclude that
Nper ~ 0.975. A similar analysis of the liquid-zebra transition
yields n;’,lé ~ 1.043 (not shown). It is striking that the scaling
analysis confirms the DFT prediction n{;’lczr > Ny To esti-
mate the colloid chemical potential w.” of the vapor-zebra
critical point in the thermodynamic limit, we measured p}”
of the compressibility maximum at n, = 5 ¢ for finite L and
extrapolated to L — oo assuming g’ — . o< 1/L. In this
extrapolation, we ignore all subtleties concerning field and
pressure mixing,’’ but emphasize that such effects are tiny
on the scale of the phase diagram in Fig. 9(a). The resulting
estimate reads as pg%. ~ 1.29, while for the liquid-zebra
transition ;Llcfcr ~ 1.75 is obtained.

Next, we consider the scaling of the order parameter.
The cumulant minima A and B of Fig. 8(b) readily yield

Ay, = (ne)d, — (ne)y, as order parameter for the vapor-zebra
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FIG. 10. Finite-size scaling analysis of the vapor-zebra critical point. In both
plots, L, = L, = L is varied, while L, = 2 is fixed. (a) The cumulant Qy,
versus 7, for different L; the intersection yields Np.cr- Note that, to the left
(right) of the intersection, the cumulants approach 1/3 (0), in agreement
with Eq. (16). (b) Scaling plot of the vapor-zebra order parameter. Plotted
is Ay, LP/V versus tL'/”, where v and 8 were tuned until a good collapse of
the data was observed.

transition. In the vicinity of the critical point A, o t#, with
1=y — M5/ Mp.er» t > 0, and critical exponent B. The re-
sult is shown in Fig. 10(b), where we used the standard finite-
size scaling practice®! of plotting A,,L?/" versus tL'/", with
v the correlation length critical exponent. Provided suitable
values of T){;,ch, B, and v are used, the data for different L
collapse. Reasonable collapses can indeed be realized, us-
ing for 7y the cumulant intersection estimate of Fig. 10(a),
B/v ~0.25-0.35, and v ~ 0.85—1.10. An analysis of Ay,
which one obtains from the minima C and D of Fig. 8(b),
yields similar results (not shown).

Finally, with the critical point parameters known, it
becomes possible to construct the phase diagram in reservoir
representation, as is commonly done for the AO model. To
this end, we record the colloid packing fraction of each of the
cumulant minima A, B, C, D in Fig. 8(b) as function of n;;
the latter “trace-out” a curve (binodal) in the (1, n;) plane.
The result is shown in Fig. 9(b), where dots again mark the
critical points. To estimate the colloid packing fraction of
the vapor-zebra critical point, we measured the finite-size
“diameter” 81y, = ((nc)y, + (nc)d,)/2, using n; = n;g and
the colloid chemical potential p?* of the compressibility
maximum; the diameter was then extrapolated to L — oo
assuming 8o vz — 81,z & 1/L, which again ignores field
and pressure mixing effects.®’ In this way sy, ~ 0.055 is
obtained, while an analogous procedure for the liquid-zebra
critical point yields §o 1, &~ 0.203.

J. Chem. Phys. 134, 204907 (2011)

B. Nature of the critical point

A key assumption in the finite-size scaling analysis
of Sec. IV A is that the critical correlations are “cut-off”
in the z-direction, i.e., the direction along which the laser
field of Eq. (4) propagates. To justify this assumption,
we consider the colloid-colloid static structure factor S(q)
= (nlcl Z’]’.;l exp(iq - 7;)*), with (-) a thermal average,
the sum over all j =1,...,n. colloidal particles whose
centers are inside a test volume v, and ?j the position
of the jth colloid. As usual, wavevectors are given by
g =2n(k/Ly,l/Ly,,m/L;), integers k,I,m >0, with
the constraint that k +/7+m # 0. We also introduce the
wavevector magnitude g> = g - q.

To probe the correlations in the z-direction, we use as
test volume v a narrow cylinder, with a diameter equal to the
colloid diameter, placed parallel to the z-axis; due to the sym-
metry of the system, the location where the cylinder intersects
the xy-plane is irrelevant. We then calculate the structure
factor §)(g), which is obtained using only the wavevectors
Gy = 27(0,0,m/L;). In Fig. 11(a), we plot S;(¢) measured
at the vapor-zebra critical point. These data were obtained in
a semi-grand canonical ensemble: the colloid packing frac-

(a)

S)(a)

S, 2(a)

qo

FIG. 11. The colloid-colloid static structure factors obtained at the vapor-
zebra critical point. (a) The structure factor S (g) measured in the direction
of the laser field for several values of L, and fixed Ly = L, = 10. There is
no divergence as ¢ — 0, indicating that critical fluctuations in the direction
of the field are “cut-off”. (b) The structure factor S, .(g) measured in direc-
tions perpendicular to the laser field for several values of z; the system size
used equals L, = Ly =20, and L; = 4). The key message is that S) ;(q)
diverges as ¢ — 0, but only for selected values of z.

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



204907-8 Vink, Neuhaus, and Léwen

tion and ’7{, are fixed to their critical values (1. = 6oo.vz, n{)
= 1ye)> While the number of polymers fluctuates. The
important message to take from Fig. 11(a) is that, in the limit
q — 0, there is no sign of a divergence S;(¢) — oc. Hence,
there are no critical fluctuations in the z-direction. Note that
the peak at g ~ 0.63 corresponds precisely to 2w /A of the
laser field. The analysis of Sj(g) at the liquid-zebra critical
point leads to similar conclusions (not shown). To probe for
correlations in the z-direction, one could define different
order parameters also. To this end, one writes the colloid
density profile as a Fourier series 1¢(z) = Y, Ax €*™%/* In
modulated phases of polymer blends,®® spatial correlations
in the Fourier amplitudes become long ranged at criticality.
However, for the AO model inside the static field, we were
unable to detect such correlations (numerical checks were
performed for k =0 and 1, at both the vapor-zebra and
liquid-zebra critical points).

Next, we consider the static structure factor S, .(q)
measured in the lateral xy-directions, i.e., perpendicular to
the laser field. In this case, wavevectors take the form ¢,
=2n(k/Ly,1/L,,0), and as test volume v we use a nar-
row L, x L, x Az slab, placed parallel to the xy-plane at
“height” z (the slab thickness Az equals one colloid diam-
eter). Since the system is not translation invariant in the z-
direction, it matters at which z-coordinate the slab is located,
and so S ;(g) depends on z. In Fig. 11(b), we plot S, .(q)
at the vapor-zebra critical point for several z, again obtained
using the semi-grand canonical ensemble. The key message
to take from Fig. 11(b) is that S, .(g) does diverge as g — O,
but only for certain values of z. The analysis of S, .(g) at
the liquid-zebra critical point leads to similar conclusions (not
shown).

To summarize: From the static structure factor S§y(q),
we conclude that critical fluctuations in the z-direction are
absent. This justifies our previous assumption that the critical
behavior is effectively two-dimensional, such that finite-size
scaling may be performed by varying only the lateral box ex-
tensions L, = L, = L, while keeping L fixed. The analysis
of S, .(q) reveals that critical fluctuations indeed develop in
the lateral directions, but only at certain z values. The critical
behavior is thus localized in effectively two-dimensional
slabs perpendicular to the laser field, “sandwiched” between
slabs, where the system is non-critical. To make this explicit,
we show in Fig. 12(a) the variation of S, . (gmin) With z for
the vapor-zebra critical point, where gni, = 27 /L denotes the
magnitude of the smallest accessible lateral wavevector. The
figure strikingly shows that S, .(gmin) diverges with L only at
selected z values, i.e., the critical behavior is indeed spatially
localized in slabs. Note that the critical slabs correspond to
regions of enhanced colloid density: S| .(gmin) iS “in-phase”
with the colloid density profile n.(z) [Fig. 12(b)]. Interest-
ingly, at the liquid-zebra critical point, this trend is reversed
[Fig. 13]. Since S| ,(gmin) X ¥ with x. the colloidal
compressibility, we expect S| .(gmin) X LYV in the critical
slabs.®! Here, y is the compressibility critical exponent; by
fitting the peak values in Fig. 12(a) to this scaling law, y /v
~ 1.3 — 1.4 is obtained. For the liquid-zebra critical point, a
similar ratio is found [see Fig. 13(a)] where S L,z(qmin)L”’/ v
versus z is shown (in this scaled representation, the peak val-
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L=25 -~ (&) |

SJ_,z(qmin)

Nc(2)

0.00 T T T T T T T
-15 -10 -5 0 5 10 15 20 25

FIG. 12. Profiled quantities obtained at the vapor-zebra critical point. (a) The
variation of S ;(gmin) With z for several L. (b) The average colloid packing
fraction n¢(z) measured along the z-direction (solid curve). The dashed curve
shows the external laser potential of Eq. (4) on an arbitrary vertical scale;
regions dense in colloids coincide with minima of the potential.

ues for different L collapse). It is reassuring that the critical
exponent ratios obtained in our scaling analysis conform to
hyperscaling, 28/v + y /v = d = 2, as the reader can verify.
Interestingly, our critical exponent ratios are rather different
from 2D Ising values (8/v = 1/8, y/v =7/4), which we
would naively have come to expect (only our v estimate is
somewhat consistent with v = 1 of the 2D Ising model).

C. The coexistence region

We now consider the vapor-zebra and liquid-zebra two-
phase coexistence regions [see Fig. 9(b)] where the corre-
sponding transitions are first-order. We choose 7, above the
critical values, but still below the triple point, and measure
the OPD P(7.). In Fig. 14, we show P(1.) using p. = py*
of the vapor-zebra transition (left) and using u. = u!? of the
liquid-zebra transition (right). We emphasize that the distri-
butions shown were obtained in finite systems: their shape in
the thermodynamic limit will be different. The striking fea-
ture of Fig. 14 is that the distributions reveal a number of
peaks. We first discuss the OPD of the vapor-zebra transi-
tion. Here, the left peak (1) reflects the vapor phase, i.e., low
colloid density, and high polymer density (see corresponding
snapshot 1). Although not visible in the snapshot, the colloid
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FIG. 13. The analogue of Fig. 12 for the liquid-zebra critical point. In (a),
y/v = 1.4is used.

density profile n.(z) of the pure vapor phase resembles that
of Fig. 3, i.e., there are (small) density modulations along the
z-direction. The center peak (2) corresponds to a coexistence
state, where a slab of vapor coexists with a slab of zebra phase
(snapshot 2). Hence, a vapor-zebra interface is present, and

J. Chem. Phys. 134, 204907 (2011)

the corresponding density profile n.(z) will schematically re-
semble Fig. 4(b). Note that, due to periodic boundaries, the
number of vapor-zebra interfaces is at least two. The right
peak (3) corresponds to a pure zebra phase (snapshot 3), with
a density profile resembling the one shown in Fig. 3, i.e., fea-
turing large density oscillations. The meaning of the peaks in
the OPD of the liquid-zebra transition follows analogously. In
this case, peak 4 reflects liquid-zebra coexistence, to be com-
pared to the profile of Fig. 4(c). Note that the density of the
zebra phase at the vapor-zebra transition (peak 3) differs from
that of the liquid-zebra transition (peak 3').

Also of extreme interest are state points “between the
peaks” in the OPD (Fig. 15). Here, we keep n; = 1.16, but
choose larger lateral box extensions, L, = 30 and L, = 10,
while L, = 21 = 20. In Fig. 15(a), the logarithm of the OPD
is shown, using wu. = ug” of the vapor-zebra transition; note
that In P(n.) may be regarded as minus the free energy of the
system. As in Fig. 14, three peaks are visible: their meaning
is the same as before. The snapshot of Fig. 15(b) was taken
at n. = 0.1, which is between the center and right peak of
the OPD. Again, vapor-zebra coexistence is observed, but
the key difference with the coexistence state points of Fig. 14
is that one of the periods of the field is only partially filled.
Hence, in addition to a vapor-zebra interface perpendicular
to the field, there is a smaller interface parallel to the field,
indicated by the shaded area A. This is the “hidden” interface,
whose presence was already implied by the DFT calculation.
Note that In P (1) around 1. = 0.1 is essentially flat. Hence,
once a partially filled slab has formed, it can be filled without
any cost in free energy. This can be understood from the
schematic snapshots of Fig. 15(c), which show top-down
views (i.e., looking along the z-direction) of the partially
filled slab; the lateral area of the slab equals L, x L, while
the slab thickness equals A/2. The snapshots 1,2,3 in (c)
correspond to state points at the minimum between two peaks
in the OPD, but with 7, increasing from left to right [schemat-
ically resembling the “path” 1 — 2 — 3 in Fig. 15(a)]. In the
first snapshot, a droplet of colloidal liquid has condensed. The

0.00 0.05 0.0 0.15 020 025 0.30

FIG. 14. Analysis of the OPD P(1.) obtained at r]{j = 1.16, which is above the critical points, but still below the triple point. The system size used is L, =
2A =20, and Ly = Ly = 12. Shown on the left is P(7.) at the vapor-zebra transition, while on the right P(#.) of the liquid-zebra transition is shown. The
salient features are a number of peaks, whose meanings become clear upon inspection of snapshots. In the snapshots, the laser field is along the longest edge of

the box; colloids are shown as black, polymers as white.
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FIG. 15. (a) The OPD obtained for n[r, = 1.16 at the vapor-zebra transition; shown is In P () versus 7.. The barrier AF reflects the interfacial free energy of
the “hidden” interface (see details in text). (b) Snapshot taken at . = 0.1, which is between the center and right peak of the OPD; the laser field propagates
along L. Clearly visible is one completely filled slab, and one partially filled slab. The lateral area A of the “hidden” interface is also indicated, where A is
the wavelength of the field (colloids are shown as black, polymers as white). The schematic snapshots in (c) show the partially filled slab along the “path”
1 — 2 — 3 of (a), where the z-direction is perpendicular to the plane of the paper (dark regions correspond to colloid-rich domains).

droplet is cylindrical in shape; note that the area of the “hid-
den” interface in this configuration equals the circumference
of the circle times the slab thickness. In the second snapshot,
the droplet has grown so large that it interacts with itself
through the periodic boundaries, yielding two slab domains
with two interfaces (the snapshot of Fig. 15(b) resembles this
situation). Since L, > L, the “hidden” interfaces form per-
pendicular to L, ; the shaded region A marks the area of one of
them. Since the free energy around the minimum of the OPD
is flat, it follows that the interfaces do not interact,®* and so
we obtain for the surface tension of the “hidden” interface’’

W = AF/2A, (17

with A = AL, /2 (the factor 1/2 in Eq. (17) is a consequence
of periodic boundaries, which lead to the formation of two
interfaces). For nlr) =1.16, we obtain y, ~ 0.1kgT/c?,
which significantly exceeds the vapor-zebra surface tension.
Finally, by increasing 1. even further, one obtains the third
snapshot, featuring a droplet of colloidal vapor. Note that
Fig. 15(c) is just the “standard” droplet condensation transi-
tion in a two-dimensional system with periodic boundaries.®

Having understood the arrangement of the phases in the
coexistence region, we show in Fig. 16 the expected shape
of the OPD at the vapor-zebra transition in the thermody-
namic limit. We assume a L x L x L, periodic box, L, = nA,
with L large. The two dominating peaks correspond to the
pure vapor (V) and zebra (Z) phase, while the region “in-
between” reflects two-phase coexistence. The intermediate
peaks 1,2, ..., n — 1 correspond to vapor-zebra coexistence
whereby each period of the field is completely filled with ei-
ther one of the phases. The states a, @/, . .. at the minima cor-
respond to vapor-zebra coexistence, where one period of the

field is only partially filled, implying the presence of “hidden”
interfaces [Fig. 15(b)]. For each additional period of the field,
one extra peak arises (since the OPD of Fig. 15 was obtained
for L, = 2, only one intermediate peak is visible there). In
the limit L, — oo, one obtains an infinite sequence of inter-
mediate peaks, separated by “distances” d o 1/L,. The bar-
rier AF in Fig. 16 reflects the free energy cost of the “hidden”
interface; AG that of the vapor-zebra interface. As L becomes

In P(Uc) vapor-zebra coexistence

AV

N

AG

1 2

won-1
A

d AF
; a" - R \

>,

ol
%

p L
»

FIG. 16. Sketch of the logarithm of the OPD at the vapor-zebra transition,
i.e.,using e = p% ina L x L x L periodic box, L, = nA, and for L large
(solid curve). The two dominating peaks correspond to the pure vapor (V) and

zebra phase (Z). The intermediate peaks 1,2, ..., n — 1 correspond to states
where vapor and zebra coexist, with each period of the field completely filled
with either one of the phases. The states a, @/, ... at the minima also corre-

spond to vapor-zebra coexistence, but where one period of the field is only
partially filled, as in Fig. 15(b). The barrier AG reflects the free energy cost
of the vapor-zebra interface, A F that of the “hidden” interface; the respective
scaling is given by Eq. (18).
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large, we thus expect®’

AF = AL, AG =2y,L% (18)
In the thermodynamic limit L — 0o, AG dominates: the in-
termediate peaks then become suppressed, and the pure phase
peaks (V,Z) dominate. The OPD thus becomes bimodal, as it
should since the transition is first-order between two phases.®
This is not to say that the intermediate peaks disappear, but
rather that their contribution to the OPD becomes exponen-
tially small compared to the pure phase peaks. The behavior
of the OPD at the liquid-zebra transition follows analogously,
although the precise values of y4, will differ.

It now becomes clear why y,, and y;, cannot reveal criti-
cal behavior. The critical behavior was shown to be effectively
two-dimensional, implying that the singular part of the inter-
facial free energy is due to line tension, i.e., proportional to
L. As Eq. (18) shows, only the “hidden” interface reveals this
required scaling. Consequently, y, becomes critical, while
Wz, Y1z do not. Note that the OPDs for finite L do not conform
to Fig. 16. For instance, in Fig. 14, the coexistence peaks (2,4)
exceed those of the pure phases (1, 3, 3/, 5). This is due to the
extremely small values of yy,, yi,. For the system sizes L ac-
cessible in our simulations, AG is essentially zero, meaning
that the intermediate peaks are not yet suppressed. From the
finite-size OPD, we thus obtain indirect confirmation of the
DFT prediction that yy,, y|, are extremely small. We empha-
size that the intermediate peaks (2,4) cannot be regarded as
pure phases. For a pure phase, there should be a unique iden-
tifiable peak in the corresponding OPD; this identification is
not possible since the number of intermediate peaks increases
with L.

A further consequence of the low surface tensions is
that the tendency of the system to macroscopically phase
separate along the field direction is weak. To test this
assertion, we performed a semi-grand canonical simulation
at . = 0.07 and n, = 1.16, using an extremely elongated
box with L, = L, =5, L, = 50A. The reader can verify in
Fig. 9(b) that this state point is deep inside the vapor-zebra
coexistence region. Consequently, we expect macroscopic
phase separation, implying the formation of I =2 vapor-
zebra interfaces (since the system is periodic). In Fig. 18, we
have collected a histogram of observed [ values obtained in
a long simulation run. The key message is that the number
of interfaces far exceeds two, providing further confirmation
that yy, is small. In some sense, a L x L x (L, = ni)
system resembles a set of i = 1,...,n slabs; to each slab
we may assign a spin variable, say, s; = —1 when the slab
is filled with vapor, and s; = +1 when filled with zebra
(further justification of assigning spin variables £1 to slabs
follows from the DFT profiles of Fig. 4(b), which show that
the vapor-zebra interface is extremely sharp). When two
neighboring slabs have different spin values, a vapor-zebra
interface exists between them, which raises the free energy
by an amount y,,L>. This is just the 1D Ising model,%’
with Hamiltonian Higing 10 = —J Y i, Si—18i, So = s,, and
coupling constant J = y,,L?/2. In the limit L — oo, one
thus recovers the zero-temperature 1D Ising model and
only here the system will macroscopically phase separate.

J. Chem. Phys. 134, 204907 (2011)
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FIG. 17. The OPD P(5.) at 77{, = 1.22 which is close to the triple point; sys-
tem sizes Ly = Ly =8, L; = 2 = 20 are used. The peaks corresponding to
the pure vapor, zebra, and liquid phase are marked (V, Z, L), respectively.
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However, due to the small value of y,, and the finite system
size L, it is clear that our simulations are far removed from
this limit, which also explains the result of Fig. 18. In fact,
the solid curve in Fig. 18 shows the distribution H(I) for
the 1D Ising model with n = 50 spins and J = 0 (with the
constraint that the total magnetization Y\ _, s; is zero).
Finally, we discuss the OPD at the triple point, where va-
por, liquid, and zebra coexist. In the thermodynamic limit, the
OPD becomes triple-peaked, each peak corresponding to one
phase. In Fig. 17, we show the OPD near the triple point for
a finite system. We indeed observe all three phases (V, Z, L)
simultaneously, but the coexistence peaks are still profoundly
present. This once more confirms the extremely low values of
vz, Yiz» €ven near the triple point, where they are maximal. To
describe the coexistence in terms of spin variables, as done
above, now requires three-state spins, which might induce
1D three-state Potts behavior at the triple point (this could
be an interesting topic for further study). Above the triple
point, only vapor and liquid can coexist, and here the OPD is
bimodal again.?® In the liquid-vapor coexistence region, we
could again map the system onto the 1D Ising model, but
with coupling constant J = y;,L2/2. We have verified that,

H(l) (arb. units)

12 14 16 18 20 22 24 26 28 30 32 34 36 38
|

FIG. 18. Histogram H(I) of the observed number of vapor-zebra interfaces
1, obtained during a semi-grand canonical simulation inside the vapor-zebra
coexistence region. The key message is that / far exceeds two, showing that
the tendency for macroscopic phase separation is weak. This is consistent
with the DFT prediction that yy, is extremely small. The dashed curve shows
the corresponding histogram for the (exactly known) 1D Ising model at infi-
nite temperature.
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due to the substantially larger value of yj,, the tendency of the
system to phase separate is now much stronger. Of course,
for the bulk AO model, the mapping onto the 1D Ising model
does not apply (in this case, the external field, Eq. (4), which
ultimately supplies the underlying 1D lattice structure, is
absent).

V. CONCLUSIONS

In conclusion, we have studied fluid phase separation in-
side a static one-dimensional oscillatory external field. The
actual DFT calculations and simulations were performed
for the Asakura-Oosawa model of colloid-polymer mixtures,
but we expect that our findings will apply to any three-
dimensional fluid with a bulk liquid-vapor critical point. As
was already established in a previous work,*® the external
field “splits” the bulk critical point into two new critical
points, and one triple point. This leads to a phase diagram
with three coexistence regions, featuring (1) vapor-zebra co-
existence, (2) liquid-zebra coexistence, and (3) liquid-vapor
coexistence. All three phases (vapor, liquid, zebra) are char-
acterized by density modulations along the field direction, but
the modulations are most pronounced in the zebra phase. The
improved DFT calculation of the present work shows that the
temperatures of the two critical points differ slightly from
each other. In addition, we calculated the surface tensions
associated with all three coexistence regions and found the
vapor-zebra and liquid-zebra tensions to be extremely small.
The DFT calculation also reveals that the latter surface ten-
sions do not yield the expected mean-field critical exponents
(even though our DFT is a mean-field theory).

Computer simulations and finite-size scaling confirm all
the trends predicted by the DFT. The reason that the vapor-
zebra and liquid-zebra tensions do not show critical behavior
is due to the fact that the external field divides the system into
a series of effectively two-dimensional slabs, stacked on top
of each other along the field direction. The critical correla-
tions diverge only in directions perpendicular to the field, and
the corresponding surface tension is one arising from phase
coexistence inside single slabs. A surprising finding is that the
critical behavior is confined to certain slabs only; depending
on the critical point, either the low or high density slabs be-
come critical. Along the field direction, and above the critical
points, the arrangement of slabs can be conceived as a one-
dimensional Ising chain, at effectively zero temperature in the
thermodynamic limit, whereby each slab represents one Ising
spin variable. Hence, there will be macroscopic phase sep-
aration in all the three coexistence regions, but only in the
limit where the lateral extensions L of the system become
large. Regarding the vapor-zebra and liquid-zebra coexistence
regions, the tendency to phase separate is particularly weak,
due to the extremely low vapor-zebra and liquid-zebra surface
tensions. According to our DFT calculations, the latter ten-
sions are of the order 107% k3T /o 2. This value is too low to
be quantitatively measured in simulations. However, the weak
tendency of the system to macroscopically phase separate, as
observed in our simulations, does confirm that the latter sur-
face tensions must be extremely small.

J. Chem. Phys. 134, 204907 (2011)

Our results could be verified in real-space experiments
of colloid-polymer mixtures using, for instance, confocal
microscopy.®® In fact, bulk criticality in these systems has
already been analyzed in this manner. The inclusion of a
standing optical field appears to be a feasible extension.*""
In the presence of such a field, the much weaker tendency of
the system to macroscopically phase separate should be easily
detectable.

A remaining puzzle is why our finite-size scaling analy-
sis does not reveal two-dimensional Ising critical exponents.
Of course, the division of the system into slabs is not absolute:
particles can still diffuse between slabs. Perhaps this modifies
the universality class, but the underlying theoretical mecha-
nism remains yet to be elucidated.”’ We are currently plan-
ning simulations of the lattice Ising model to address these
issues (the simplicity of the latter model probably allows for
a more accurate scaling analysis using larger system sizes).
It would also be interesting to extent the analysis to external
potentials more complicated than the one of Eq. (4). Exam-
ples include a superposition of several waves resulting in two-
dimensional periodic®"7>7¢ or quasi-crystalline patterns.””-’
The phase diagram of a system close to its bulk critical point
inside these confining potentials still needs to be explored.
Again, the question is whether new critical points arise and to
what extent the emerging critical behavior is affected by the
details of the confining potential.

ACKNOWLEDGMENTS

We thank H. W. Diehl and Kurt Binder for helpful com-
ments and suggestions. This work is financially supported by
the SPP 1296 program, the SFB TR6, and the Emmy Noether
program (VI 483/1-1) of the Deutsche Forschungsgemein-
schafft.

APPENDIX: DENSITY FUNCTIONAL THEORY
BACKGROUND

The main variables in our density functional theory are
the one-body densities p;(r) of colloids (i = c¢) and polymers
(i = p), which describe the microscopic behavior of the sys-
tem for a given set of parameters (temperature 7 and chemi-
cal potential y;). Based on the existence proof™? that there is a
grand canonical free energy functional Q(7, pic, tp, [0oc, ppl),
which gets minimal for the equilibrium density, we use the
fundamental measure approach®* to approximate this func-
tional. The grand canonical free energy functional of a
colloid-polymer mixture in a three-dimensional system can
be split as

QLpe(r), pp()] = Y Falpi(r)]

i=c,p

+ Z /dl’,Oi(r)[Vext,i(r) — Wil
i=c,p

+Fexclpe(r), Pp(0)],

with the external potential Ve ;(r) acting on component i,
keeping in mind a general description where both colloids and
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polymers are inside an external field. We use Eq. (4) for the
external potential Ve . acting on the colloids, and set the ex-
ternal potential acting on the polymers to zero: Vex,p = 0. In
the above, Fiq[p;(r)] is the free energy of an ideal gas

Falpi@) = kaT [ drpi@) [in (500A7) - 1].

including the (irrelevant) thermal wavelength A; of the par-
ticles of species i, an external energy part and the nontriv-
ial excess free energy Fexc[oc(r), pp(r)], which results from
the interactions of the particles. We approximate this excess
free energy functional as the integral of a free energy density

O({n§ ()}, {ny (0)}) as
Fexclpe(r), pp(r)] = kpT / dro({ns 0}, {nb ™)),

depending on weighted densities n’ (x) given by the convolu-
tion of the actual density profiles with weight functions

ni(x) = / drp;(r)w' (x — ).

The set of weight functions (which are independent of the
density profiles) is given by

wg(r)ze(%—r), wé(r)zé(%—r),

M®=—L%2—0v%®: UWQ‘O’

2w o; 2 2mo; 2
I.() 8(0‘[ >r i() 1 8(0,- >r
Ww5(r) = ——r)-, w(r)=— — —r) -,
2 2 r ! 2w o; 2 r

~

o; r 1

wo=s(%-0)[5-]

with r = |r|, the step function 6(r), the Dirac function §(r),
and the identity matrix 1. The weight functions are of differ-
ent tensorial rank, i.e., scalars wé, wé, w’i , wf), vectors Wé, Wil,
and a second rank tensor W5. The excess free-energy density
D = P + O, + ;3 is written as

d, = Z n6<pi (ng, ng),

i=c,p
_ i) i I\ ij (¢ P

b, = E (niny —ni -nl)e" (n§, ),

i,j=c,p

1 nindnk .
d3 = — E 222 _pinj-nb

81 | 3

i,j,k=c,p

+ 3 ndidnd — Te(atadad)]) o 15 ).

where @K, nP) = ﬂﬁFgD(nc, nP) denotes the
derivatives of the 0D free energy BFop(n¢, nf) = (1 —n°
—n?)In(1 —n®) +n°. We obtain the equilibrium den-
sity profiles pi(o)(r) by minimizing the Gibbs free energy
functional,

882[pc(r), pp(r)]
8pi(r)

=0.

pi®)=p2(r)
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This yields the Euler-Lagrange or stationarity equations

/dx 0P +1n (A pi(r)) + BVexti(¥) — Bui = 0
8,0,~(r) i Mi ext,i 1 .

By inserting the equilibrium profiles into the functional, we
obtain the grand canonical free energy and can thus calculate
phase diagrams and interfacial properties.
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