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Capturing self-propelled particles in a moving microwedge
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Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or
by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile
particles moving in a solvent at low Reynolds number and study their collective trapping behavior by means of
computer simulations of a two-dimensional system of self-propelled rods. A chevron-shaped obstacle is dragged
through the active suspension with a constant speed v and acts as a trapping “net.” Three trapping states can
be identified corresponding to no trapping, partial trapping, and complete trapping and their relative stability is
studied as a function of the apex angle of the wedge, the swimmer density, and the drag speed v. When the net
is dragged along the inner wedge, complete trapping is facilitated and a partially trapped state changes into a
complete trapping state if the drag speed exceeds a certain value. Reversing the drag direction leads to a reentrant
transition from no trapping to complete trapping and then back to no trapping upon increasing the drag speed
along the outer wedge contour. The transition to complete trapping is marked by a templated self-assembly of
rods forming polar smectic structures anchored onto the inner contour of the wedge. Our predictions can be
verified in experiments of artificial or microbial swimmers confined in microfluidic trapping devices.
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I. INTRODUCTION

With an appropriate use of a fishing net, many fish can
be simultaneously caught in an efficient way. There are two
different strategies to catch fish using, e.g., a cone-shaped net;
either the net can be dragged through quiescent water or a
stationary trap (a so-called fyke) can be placed in running
water, forcing the fish to swim into the fyke. While the general
methods for trapping macroscopic swimming organisms (fish)
have been known since ancient times [1], the corresponding
problem in the microscale has been scarcely explored thus
far due to the general difficulty in controlling and designing
processes in systems of micron-sized objects. There are
many realizations of microscopic swimmers [2–5], including
autonomously navigating microbes [6–16] and human-made
artificial swimmers [17–30]. For many applications it is of key
importance to trap collections of these active particles into a
moving trap. A first application is to transport ensembles of
swimmers to a given destination like a cargo. This situation
differs from the more commonly considered case in which
the swimmer itself transports an inert cargo [31–35]. It is
obvious that, in the former situation, one, first, has to catch
the particles in an efficient and controlled way before they
can be transferred to the specific destination via a moving
trap. A second application could be to efficiently remove
“dangerous” toxic particles in order to clean the environment
[36,37]. Moreover, the motion of the trap is expected to play
a crucial role in optimizing the removal of contaminating
mesogens.

Apart from the different length scale, it is important to
note that another basic difference between macroscopic fish
and microbes is their Reynolds number Re, which charac-
terizes the ratio of inertial to viscous forces associated with
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swimming. While fish typically swim at a Reynolds number
of several hundred, microswimmers typically operate at very
low Reynolds numbers, Re � 1.

In this paper, we transfer the ideas of catching fish in a
net to micron-sized self-motile particles propagating through
a solvent at a low Reynolds number. We use computer
simulations of a two-dimensional system of self-propelled
rods and drag a chevron-shaped obstacle with a constant
speed v through the embedding active fluid. As revealed by
a simple Galilean transformation, this setup is equivalent to a
static trap in a flowing solvent. Our simulations complement
earlier studies for a static trap [38] where a wedge was
found to optimize the catching efficiency. Here we focus
on the effect of a nonzero drag speed. At fixed swimmer
density and varied drag velocity v and apex angle of the
trap, there are three emerging states corresponding to no
trapping, partial trapping, and complete trapping. While in
the no-trapping state no particles remain in the trap over time,
in the complete trapping state all swimmers are permanently
caught in the microwedge after a certain amount of time.
Finally, partial trapping refers to a state where only a fraction
of the particles are permanently trapped. Obviously, the dream
of any fishermen and the most desirable situation in many
applications is the complete-trapping state, where no freely
moving particles are left.

We solve the single-rod case analytically and present the
trapping state diagram in the plane spanned by the opening
angle α of the microwedge (0 < α � π ) and the trap velocity v

(normalized by the swimmer velocity v0). The drag direction is
along the symmetry axis of the wedge and we define a positive
drag speed if its drag is along the inner part of the wedge. As a
result, if the net is dragged into the positive direction, trapping
is facilitated. Counterintuitively, however, for a negative drag
velocity, a situation of no trapping can change into a trapped
one, which we attribute to polar ordering of the swimmer along
the wedge symmetry axis. Clearly, when the (negative) trap
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velocity exceeds the swimmer velocity (v/v0 < −1), trapping
is no longer possible as the trap overtakes the swimmer, which
leads to a reentrant effect for increasing negative velocity: for
intermediate opening angles α, we observe the state sequence
of no trapping, complete trapping, and no trapping. For finite
trap density we employ computer simulations [38–40] and
confirm the trends of single-particle trapping. For high-enough
positive drag speed, a partial trapped situation will change
into a complete trapped situation. In the converse case of
a negative trap velocity, the reentrance effect is amplified
by a collective polar ordering in the trap. This is a typical
example of self-assembly of self-propelled colloidal rods
[41] directed by the moving microwedge. Previous studies
analyzing the rectification effect of a wall of funnels by
experiments [42,43], theory [44], and simulation [45–48] have
utilized similar chevron-shaped boundaries but have never
focused on trapping.

Apart from their relevance for applications, our predictions
can be verified in experiments on rodlike microbes and
self-propelled colloids and granulates [42,49–52]. Typically,
the system is moving on a two-dimensional substrate or can
be subject to a strong two-dimensional confinement [53]. A
chevronlike trap can be prepared by lithographic techniques
[22,23,54,55] and it can be dragged at will using optical
tweezers [56,57]. Therefore, an experimental realization of
our model is conceivable. We further anticipate that the same
effects occur also in three dimensions where the corresponding
generalization of the wedgelike trap is a hollow cone, similar
in spirit to a real fishing net.

This paper is organized as follows: in Sec. II we introduce
the model and explain the simulation method. Section III is
devoted to the case of a single self-propelled rod. We will give
a theoretical prediction of the trapping state diagram along
with numerical results. In Sec. IV, we investigate the trapping
states for many particles and all three main control parameters.
In particular, we fix each time one of these, vary the others,
and obtain a full trapping state diagram which can be explained
by the effects already showing up for the single-particle case.
Finally, we conclude in Sec. V.

II. MODEL

The aim is to formulate a minimal collision-based model
for self-propagating rod-shaped particles that is capable of
capturing the generic features of interacting swimmers at
intermediate to high particle density and their collective
response to mobile confining boundaries. Following earlier
studies [38,58], our system consists of N rigid rods of length
�, each moving in the overdamped limit with a propagation
velocity v0 arising from a formal force F0 fixed along the
longitudinal rod axis û [39,58]. This does not contradict
the basic fact that a swimmer is force free. The actual
position of the αth rod (α = 1, . . . ,N) is described by a
center-of-mass position vector rα and a unit orientational
vector ûα = (cos ϕα, sin ϕα).

Due to solvent friction, the particles move in the over-
damped low-Reynolds-number regime, while interacting with
the other particles and the boundary by steric forces only [39].
The latter are implemented by discretizing each rod into a
linear array of n equidistant spherical segments and imposing

a repulsive Yukawa potential between the segments of each
pair [59,60]. The total pair potential between rods {α,β} with
orientational unit vectors {ûα,ûβ} and center-of-mass distance
�rαβ = rα − rβ is then given by

Uαβ = U0

n∑
i=1

n∑
j=1

exp
[− r

αβ

ij /λ
]

r
αβ

ij

, (1)

where U0 > 0 defines the amplitude, λ the screening length,
and r

αβ

ij = |�rαβ + (li ûα − lj ûβ)| the distance between seg-
ment i of rod α and j of rod β (α �= β) with li = d(i − 1),
i ∈ [1,n] denoting the segment position along the main rod
axis. The number of rod segments n is chosen such that
the intrarod segment distance d = �/[(n + 1)(n − 1)]1/2 � λ

and rod overlaps are prevented. A trap is introduced as a
boundary with a prescribed shape and contour length �T and
is dragged with a velocity v through the system. Particle-trap
interactions are implemented by discretizing the trap boundary
into nT = ��T /d� equidistant segments each interacting with
the rod segments via the same Yukawa potential, resulting in
the pair potential

UαT = U0

n∑
i=1

nT∑
k=1

exp
[ − rαT

ik /λ
]

rαT
ik

. (2)

Here rαT
ik denotes the distance between segment i of rod α and

segment k of the trap. The net is dragged with imposed velocity
v = vx along the symmetry axis of the wedge according to

rk = vt, (3)

where rk denotes the position of the kth segment of the
trap. Mutual self-propelled rod collisions generate apolar
nematic alignment which stimulates swarm formation at finite
concentrations [52]. The wedge boundary mimics a hard wall
and imparts 2D planar order with rods pointing favorably
perpendicular to the local wall normal.

The microscopic equations of motion for the center-of-mass
position rα(t) and orientation ûα(t) = (cos ϕα(t), sin ϕα(t)) of
the self-propelled particles emerge from a balance of the forces
and torques acting on each rod α and are similar as described
in Ref. [58],

fT · ∂trα = −∇rα
U + F0ûα, (4)

fR · ∂t ûα = −∇ûα
U, (5)

in terms of the total potential energy U =
(1/2)

∑
α,β(α �=β) Uαβ + ∑

α,T UαT with UαT the potential
energy of rod α with the trap and ∇ûα

denotes the gradient
on a unit circle. The one-body translational and rotational
friction tensors fT and fR can be decomposed into parallel f‖,
perpendicular f⊥, and rotational fR contributions,

fT = f0 [f‖ûαûα + f⊥(I − ûαûα)], (6)

fR = f0 fRI. (7)

Hereby I is the 2D unit tensor and f0 is a Stokesian friction
coefficient. The dimensionless geometric factors {f‖,f⊥,fR}
depend solely on the aspect ratio a = �/λ, and we adopt the
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standard expressions for rodlike macromolecules, as given in
Ref. [61],

f|| = 2π (ln a − 0.207 + 0.980a−1 − 0.133a−2)−1,

f⊥ = 4π (ln a + 0.839 + 0.185a−1 + 0.233a−2)−1, (8)

fR = πa2

3
(ln a − 0.662 + 0.917a−1 − 0.050a−2)−1.

Equation (5) neglects thermal or intrinsic Brownian noise [62],
which is acceptable at intermediate to high concentrations
when particle collision dominate the dynamics [53]. Despite
its minimal nature, the self-propelled rod model provides a
remarkably accurate description of the velocity statistics and
microstructure of dense active matter [53].

It is important to note that our system is strictly equivalent
to a quiescent net where the swimmers all experience their
propagation velocity v0 together with an added velocity −v.
This can easily be demonstated by transforming the equation
of translational motion Eq. (4) in terms of reduced difference
coordinates r̃α = rα − vt , i.e., by applying a Galilean trans-
formation [63] so

∂t̃rα = (v0ûα − v) − f−1
T · ∇r̃α

U. (9)

The typical self-propulsion speed of a free single self-propelled
rod

v0 = F0

f0f||
(10)

defines the time interval

τ = �

v0
(11)

a rod needs to swim a distance comparable to its size. In the
following, distances are measured in units of � and energy in
units of F0�.

We simulate self-propelled rods with aspect ratio a = 10,
using n = 11 segments, in a square simulation box with
area A and periodic boundary conditions in both Cartesian
directions. A particle packing fraction is defined as φ = Nσ/A

with σ = λ(� − λ) + λ2π/4 the effective area of a single
rod. In the bulk density range φ < 0.2 the self-propelled
rods spontaneously form flocks with strong spatial density
fluctuations [64]. We subject the self-propelled rods to a
mobile chevron boundary with contour length �T = 20� and
variable apex angle 0◦ < α < 180◦, leading to an occupied
trap area A0 = (�2

T /8) sin α/2, which is dragged with velocity
v (see Fig. 1). In the macroscopic limit, the system can
be interpreted as a reservoir of microswimmers exposed
to an equidistant array of mutually independent wedges. A
reduced trap density is defined by φT = (�2

T /8A) which fixes
the number of rods via N = (�2

T /8σ )(φ/φT ). We constrain
φT = 0.031 < 0.1 in order to guarantee the microwedges to
be completely independent of each other within the typical
range of bulk rod packing fractions 0 < φ < 0.1 considered
here. The latter density is one of our main steering parameters.
There are also the drag velocity which is in the range of
−1.2v0 < v < 8v0 and the apex angle α of the microwedge.

Initial configurations are generated from a rectangular
lattice of aligned rods with û pointing randomly up or down.
The rods are randomly displaced from the initial lattice such
that the starting configuration bears already some randomness.

FIG. 1. (Color online) Sketch of the system of self-propelled rods
with aspect ratio a = �/λ and a self-motile velocity v0 directed along
the main axis û [red (light gray) arrows] of each rod at bulk density
φ. The single Yukawa segments are shown as red spheres. A mobile
wedge [indicated by blue (dark) spheres] with contour length �T

and an apex angle α is dragged with a constant velocity v [green
(filled gray) arrow]. Periodic boundary conditions in both Cartesian
directions are indicated by dotted lines.

The segments of the microwedge are successively placed in
the system to avoid overlapping rods. We simulate the whole
system for a time of at least ts = 15 000τ .

III. TRAPPING A SINGLE SWIMMER
IN A MOBILE MICROWEDGE

We first focus on a single swimmer for which analytical
results can be obtained which we test against our computer
simulations. In Fig. 2(a), simulation results and analytical
formulas for the trapping state diagram are combined. The
main control parameters we vary are the reduced trap drag
velocity v/v0 and the apex angle α. The trapping scenario of
a single swimmer is generic and is independent of the contour
length of the net, as long as �T � �, and the aspect ratio
of the rod-shaped swimmer. In the simulation, a particle is
considered to be trapped if it remains inside the wedge for at
least t∗ = 103τ .

Let us, first, discuss some limiting cases which are all
intuitive: For strongly negative drag velocities, v/v0 < −1,
the swimmer is slower than the microwedge and therefore
can never get trapped for any opening angle α. Conversely,
for v/v0 > −1 and very small opening angles, once a rod
enters the moving net it is faster than the net and therefore
will approach to the kink of the wedge, where it remains
because it cannot escape by turning around. Hence, there is
a trapping state for v/v0 > −1 and small opening angles.
Complementarily, for v/v0 > −1 and very large opening
angles (α ≈ π ), if the rod enters the microwedge, it will just
slide along the wall of the wedge and will then pass over
the slight kink of the wedge such that the rod leaves the trap
again. Consequently, the rod does not permanently reside in
the wedge and, thus, attains a no-trapping state.
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FIG. 2. (Color online) (a) Trapping state diagram for a single
self-propelled rod in the plane of reduced drag velocities v/v0 and
net apex angles α. The shaded region marks the trapping regime.
The dots represent simulation results for the trapping-no trapping
boundary while the solid line contains the analytical predictions.
Different trapping mechanisms are sketched in (b)–(d). For more
details, see text. Points of contact of the swimmer and the microwedge
are highlighted by light green (light gray) circles.

As shown in Fig. 2(a), the intermediate transition opening
angle which separates the trapping from the no-trapping
regime is a marked function of the reduced trap velocity which
exhibits some cusps. The cusps occur at v/v0 = −1, v/v0 = 0,
and v/v0 = √

3 and clearly distinguish four different situations
which we now discuss quantitatively step by step. We use
the frame of the resting net for this discussion and introduce
forces instead of velocities. Clearly forces are proportional
to velocities. In the microwedge system, the rod center
experiences a force F0 ∝ v0 governing its self-propulsion plus
another force −F ∝ −v arising from the resting rod frame.
Third, the wall possibly exerts at contact a force FN onto the
rod which is always normal to the wall.

As already stated above, for strongly negative drag ve-
locities, v/v0 < −1, a swimmer moves slower than the
microwedge and therefore can never get trapped. For −1 <

v/v0 < 0, it is expected that single rods are still spilled out
by the net, but the opposite behavior is true: trapping becomes
more efficient if the drag speed approaches the swimmer speed
v/v0 → −1+ from above. This counterintuitive behavior can
be understood as sketched in Fig. 2(b). If a rod enters the trap
and hits a wall (see upper sketch of Fig. 2(b) and Ref. [65]),
it will orient at an angle γ . This angle is determined by the
condition that the projection of F0 − F onto the wall normal
has to vanish, (F0 − F) · en = 0, with the wall normal vector
en = (sin α/2, − cos α/2). This leads to γ = arcsin(v/v0).
With this orientation, the rod will slide along the wall inside
the corner until it touches the lower wedge wall [see lower
sketch of Fig. 2(b)]. The threshold condition whether the
rod slides further outside the wedge along the lower wall is
finally given by requiring that the normal projection along
the lower wall normal e′

n = (sin α/2, cos α/2) vanishes, i.e.,

(F0 − F) · e′
n = 0. This all leads to the threshold condition

α = π

2
− 2

[
arcsin

(
v√
2v0

)
− arcsin

(
v

v0

)]
, (12)

which is plotted as a solid line in Fig. 2(a). This implies that a
trap moving into the negative direction orients the rods along
the wedge symmetry axis and, thus, keeps them inside, thereby
enhancing the trapping efficiency.

In the case of positive drag velocities, two different trapping
mechanisms can occur. The first mechanism is shown in
Fig. 2(c) and Ref. [65]. Here the swimmer enters into the
wedge and is stuck close to the wedge cusp with two contact
points, one at the higher and another at the lower wall.
This hinders the rod in rotating further such that it gets
immobilized. The contact points are indicated in Fig. 2(c).
In this situation, the rod experiences four different forces, two
arising simultaneously from the wall normals plus F0 − F.
The normal wall forces are unknown but determined by the
joint conditions of the vanishing total force and the torque
acting on the rod center which characterize the transition from
no trapping to trapping. Hence, these conditions are F0 − F +
Fn + F′

n = 0 and Fneh × e′
n + F ′

neh × en = 0. Eliminating the
unknown normal forces, we obtain the threshold criterion

v

v0
= − cos

(α

2

)
+ sin4 (α/2)

cos3 (α/2)
. (13)

The second mechanism is shown in Fig. 2(d) (see also
Ref. [65]) and refers to a situation where an aligned rod intends
to leave the trap, for example, when it was able to turn in the
kink. If the projection of −F tangential to the wall exceeds the
self-propulsion, the moving microwedge surpasses the rod and
keeps it caught. The condition for the threshold for this second
mechanism is, therefore F · eh = F0 for eh = (− cos α/2, −
sin α/2), which yields

cos
(α

2

)
= 1

v/v0
. (14)

As can be shown easily, this second mechanism surpasses the
former mechanism for dragging velocities v/v0 >

√
3.

Summarizing, a single self-propelled particle can always
be trapped for v > −v0 and α < 90◦. For apex angles larger
than 90◦ and increasing trap velocities, the following sequence
of states is found: no trapping, trapping, no trapping, and
trapping. This clearly demonstrates the nontrivial interplay
between wedge geometry and orientational coupling to the
rod. Moreover, we find for positive drag velocities two different
mechanisms which hold the particles inside the microwedge.
Finally, the good agreement of the threshold lines between
analytical theory and simulations shows that the segment
model used in this paper reproduces well the purely geometric
conditions of steeply repulsive interactions.

IV. COLLECTIVE TRAPPING

A. Static microwedge

Let us, first, briefly recapitulate previous results [38] for
a static trap (v = 0). The trapping state diagram now drawn
in the parameter space spanned by the net apex angle α and
reduced rod packing fraction φR at fixed net densities is shown
in Fig. 3, including characteristic snapshots.
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FIG. 3. (Color online) Trapping state diagram in the case of a
static trap v = 0 denoting three different states for varying apex angles
and a reduced self-propelled rod packing fraction. All occurring
trapping states are visualized by use of characteristic snapshots using
central sections of the simulation box.

Following earlier work [38], we consider a rod α trapped if
its velocity vα = |vα| < 0.1v0 for a time interval t∗ = 25τ . In
contrast to the single-particle case we now have to distinguish
between two different kinds of trapped states. These are
characterized by the fraction of trapped particles xT which
acts as some kind of order parameter for the different states.
Either no particle is trapped, xT = 0 (no trapping), or all
particles are trapped, xT = 1 (complete trapping), or just a
fraction of all particles in the system can be captured by the
wedge, 0 < xT < 1. This new state will be referred to as partial
trapping.

All trapping states can be found in the state diagram for a
static microwedge; see Fig. 3. Evidently, in the case of small
apex angles there is only partial trapping since the area of the
wedge is too small to accommodate all particles.

Larger apex angles enable complete trapping up to a certain
reduced rod density. The resulting triple point is independent of
the trap density and attains a value φ∗

R ≈ 1.3. Higher densities
will show only two different trapping states. While for a single
particle and a static microwedge a capture is only possible for
an apex angle α < 90◦, an increase of the rod density leads to
an increase of the maximum apex angle which allows trapping.
Self-propelled rods coherently self-trap at the kink of the trap
and jam. Hereby a small immobile cluster can be formed which
grows and leads to a filling of the wedge. Therefore, in the
studied density regime, a trapping state is possible for apex
angles up to α ≈ 120◦. The influence of rotational noise, which
may arise from fluctuations in the swimming direction as
manifested by run-and-tumble motion of swimming bacteria,
has been accounted for by adding Gaussian white noise to the
equation of rotational motion Eq. (5). No significant effect on
the trapping state diagram was found for typical values of the
effective rotational diffusivity of bacterial swimmers [38].

B. Mobile microwedge

We now consider a moving trap. Simulation results for the
trapping state diagram in the plane spanned by reduced trap
velocity v/v0 and apex angle α are shown in Fig. 4 combined
with appropriate simulation snapshots characterizing the final
state. As a first general finding, the state diagram has the
same topology as that for a single rod if one does not

FIG. 4. (Color online) Trapping state diagram and simulation snapshots of the final state at finite rod density φR = 1.09. [(a)–(e)] Simulation
snapshots for an apex angle α = 110◦. The respective dragging velocity of the trap is given in each figure and indicated by a scaled arrow.
(f) State diagram showing the three different trapping states in the plane spanned by the reduced net velocity and the trap apex angle α. Circles
correspond to no trapping, triangles to partial trapping, and squares to complete trapping.
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discriminate between partial trapping and complete trapping.
Of course, the actual numbers for the trapping to no trapping
transition are significantly shifted. In particular, the worst case
of trapping which occurs at an opening angle of 90◦ for a static
microwedge [see Fig. 2(a) and Ref. [38]] is now significantly
shifted towards an opening angle of about 110◦ at a negative re-
duced drag velocity of about −0.7. A corresponding snapshot
of the empty microwedge is shown in Fig. 4(c).

If the trap velocity is varied at a fixed opening angle of 110◦,
as indicated by the different snapshots in Figs. 4(a)–4(e), there
is an intermediate trapping effect at reduced negative drags
close to −1, as indicated in Fig. 4(b). In this case, rods can catch
up with the moving net to accumulate inside the wedge. This
is opposed to strongly negative dragging velocities v � −v0,
where the wedge is faster than the rods on average, which leads
to an accumulation of particles outside the net [see Fig. 4(a)].

Let us focus on the partial trapping situation of rods which
are only slightly faster than the net as shown in Fig. 4(b). We
observe a large swarm following the movement of the net. The
structure of the swarm is characterized by a significant degree
of nematic (or polar) order which stems from the repulsive
rod interactions. The big swarm therefore is a result of rod
self-assembly templated by the moving net. The net plays the
role of a leader which guides the swarm. This is an interesting
collective effect which can be, in principle, exploited to control
and guide assemblies of active particles at will [66] or to
align them dynamically in an efficient way. Qualitatively, the
tendency of alignment can be seen from only a single rod [see
Fig. 2(b)] which tries to orient along the drag direction. The
rod interaction, however, dramatically increases the alignment,
leading to a large orientated swarm.

Further increasing positive drag speed will compress the
trapped particles, leading to a larger number density of the
captured particles inside the net. Therefore, at higher speeds,
the threshold to a no-trapping state is shifted towards larger
opening angles.

We now focus on the transition line between partial trapping
and complete trapping; see the squares and triangles in
Fig. 4(f). At fixed opening angle (say at about 80◦), this
line also shows an interesting reentrance effect for increasing
drag velocities as embodied in the highly nontrivial state se-
quence of partial trapping-complete trapping-partial trapping-
complete trapping. The first transition from partial trapping
to complete trapping has to do with the efficient nematization
which then becomes less efficient at almost zero drag veloci-
ties. The ultimative transition to complete trapping is then an
effect of rod compression inside the net for increasing drag ve-
locities. Interestingly, starting with a resting net with opening
angles slightly below 90◦, the trapping efficiency increases no
matter in which direction the microwedge is dragged.

We now characterize the directed self-assembled state more
carefully by monitoring the area covered by the trapped
particles and the actual nematic order. First, we draw a convex
hull around all trapped particles which defines an area Ac. We
normalize this area to the inside area A0 = (�T /8) sin α/2 of
the wedge. Results for Ac/A0 as a function of the drag speed
are presented in Fig. 5(a) at fixed opening angle α. In line
with the huge nematic wake discussed earlier, the ratio Ac/A0

vastly exceeds unity for negative drags close to −v0. In fact,
Ac/A0 has a maximum as a function of v/v0, which points
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FIG. 5. (Color online) (a) Relative area occupied by captured
swimmers Ac/A0 and resulting packing fraction φc for φR = 1.09
and varying drag velocities for four apex angles. (b) Dependence of
the nematic order parameter S on the apex angle for various drag
velocities (dashed lines). The reference value Sr for a perfect cone
orientation of the captured rods is given by the solid line.

to a very efficient wake area that contains particles which are
dragged through the liquid by the moving wedge.

Second, we analyze the degree of nematic ordering in the
trapped particles by calculating the average

S = 〈2 cos2 θi − 1〉, (15)

where θi is the angle between the rod orientation of the ith
rod and the drag velocity. The average 〈. . .〉 refers to an
average over all captured rods for a variety of different initial
configurations. The nematic order parameter S is defined
as usual in two spatial dimensions. For a perfect alignment
of all trapped rods, S = 1, while S vanishes if there is no
orientational ordering at all. We relate this quantity S to a
perfect cone filling of the rods where the orientational direction
is antiradially towards the origin of the wedge. In this reference
situation, the nematic order parameter Sr is given by

Sr = 1

α

∫ α/2

−α/2
(2 cos2 θ − 1)dθ = sin α/α. (16)

In Fig. 5(b), S is shown versus the opening angle for fixed
drag speeds. The cone normalization Sr is also given. For the
nematic swarm at v/v0 = −0.9, S clearly exceeds Sr . This is
inverted for very high positive drags v > v0, where S < Sr

022311-6



CAPTURING SELF-PROPELLED PARTICLES IN A . . . PHYSICAL REVIEW E 88, 022311 (2013)

FIG. 6. (Color online) Trapping states for a fixed apex angle
α = 110◦.

holds over the full range of opening angles. This finding can
be attributed mainly to particle misorientations at the wedge
boundary close to the end of the wedge; see again the snapshot
of Fig. 4(e).

In addition, we consider a system with a fixed apex angle
α = 110◦ and vary the reduced rod packing fraction φR and
the dragging velocity. The data contained in Fig. 6 show that
the dependence on the rod density is weak, providing the
same state sequence as for the special rod density selected
previously for Fig. 4(f). Only in the case of extreme rod
densities φR > φ∗

R = 1.3 is the area of the net not large enough
to accommodate all particles. This leads to a partial trapping
state instead of complete trapping, as indicated in Fig. 6 for a
static microwedge at high rod densities.

We expect our results to be robust against hydrodynamic
far-field interactions, which are expected to be less important
for the particle dynamics at high local particle densities, as
found inside the trap, due to mutual hydrodynamic screening
[67] and the small magnitude of the flows fields generated by
the microswimmers [62] and the moving wedge. Moreover,
the presence of no-slip trap boundaries in microfluidic devices
are expected to strongly suppress hydrodynamic long-range
interactions between swimmers due to cancellation effects
from the hydrodynamic images [53].

V. CONCLUSIONS

While there is a considerable amount of detailed knowledge
about how to trap macroscopic particles and passive particles
in static traps such as colloids using optical tweezers or atoms
in a Paul trap, is it much less clear how large numbers of active
microscopic particles can be captured in an efficient way. Us-
ing computer simulations, we have studied a dragged chevron-
shaped trap which allows us to capture several self-propelled
rods in an irreversible manner. A microwedge with variable
apex angle α enforces active particles to rectify their swimming
direction and stimulates the formation of microscopic cluster
which may subsequently act as a nucleus for a fast-growing

mesoscopic aggregate of captured rods. We have demonstrated
the crucial role of the apex angle and the drag velocity of the
trap. A nonzero drag velocity imposes dynamic nematization
and layerlike ordering of the clustered rods provided the drag
velocity is slightly above −v0 (v � −v0). We have highlighted
the influence of collective self-trapping by comparing results
for many self-propelled rods with the single-particle case. The
dramatical collective response of self-propelled rods to a minor
change in the boundary shape or drag velocity is remarkable
and remains unseen for passive systems exposed to external
boundaries or electromagnetic traps.

Collective trapping of ensembles of active particles in
moving traps can be verified by experiments using rod-shaped
bacteria [68] or driven polar granular rods [69] exposed to
geometrically structured boundaries [23,54,55]. While the
presented results are valid for linearly propagating swimmers,
it would be interesting to study a trapping device for sev-
eral swimmers moving on circlelike pathways [28,70–72].
Furthermore, it would be interesting to exploit the trapping
scenarios proposed here to design a trapping device which
is capable of extracting swimmers with a specific velocity
bandwidth from a mixture of active particles with a strong
spread in motility. According to the results in Fig. 4, such
velocity-selective trapping could be envisaged by dragging the
net at a judiciously chosen negative drag velocity such as to
facilitate templated clustering of a subset of swimmers whose
individual motility closely resembles that of the moving net.

An interesting open question is in regard to what extent the
details of the propulsion mechanism affect the self-trapping
behavior of the rods. In particular, it would be interesting
to study whether puller- and pusher-type swimmers exhibit
different trapping behaviors. These problems will necessitate
the use of more sophisticated simulation schemes [73–75]
and bring us also to the question regarding the importance of
hydrodynamic near-field interactions [76], which are ignored
in our model. Real bacteria are usually propelled by flagella
attached to the bacterial body whose internal configuration
will presumably change at high bacterial density, under strong
confinement or at an obstacle [77]. These flagellar interactions
may lead to more specific effects which are neglected in our
model but could be included on a coarse-grained level in future
studies. In particular, one could introduce a density-dependent
microscopic mobility which is known to have a considerable
effect on the collective behavior in bulk [78]. Finally, it would
be interesting to model the properties of the trapped polar state
of rods using continuum elasticity theory following recent
efforts in this direction for the wetting behavior of (passive)
liquid crystals confined in wedges [79–81].
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[59] T. Kirchhoff, H. Löwen, and R. Klein, Phys. Rev. E 53, 5011
(1996).
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