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Structural ordering of trapped colloids with competing interactions
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The structure of colloids with competing interactions which are confined in a harmonic external trap potential
is analyzed numerically by energy minimization in two spatial dimensions. A wealth of different cluster structures
is found to be stable including clusters with a fringed outer rim (reminiscent to an ornamental border), clusters
perforated with voids, as well as clusters with a crystalline core and a disordered rim. All cluster structures occur
in a two-dimensional parameter space. The structural ordering can therefore be efficiently tuned by changing few
parameters only providing access to a controlled fabrication of colloidal clusters.
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I. INTRODUCTION

Suspensions of mesoscopic colloidal particles are ideal
model systems to study structural order and phase transitions
on the fundamental length scale of the individual particles
[1,2]. One key advantage of colloids is that the effective inter-
action between the particles can be tailored by changing the
particle and solvent conditions and by putting additives into the
solution. The traditional Derjaguin-Landau-Verwey-Overbeek
pair interaction [3] as composed by screened electrostatic
repulsion and van-der-Waals attraction provides a widely
tunable range of possible pair interaction potentials which can
even be augmented by adding nonadsorbing polymers leading
to depletion forces [4,5]. It has been shown over the past few
decades that systems with a peculiar pair potential including
competing length scales may exhibit various interesting phases
in the bulk including stable one-component quasicrystals [6,7],
isostructural solid transitions [8—11] (see also Ref. [12]), clus-
ter formation [ 13—15] (see also Refs. [16,17]), microcrystalline
gels [18], microphase separation [19,20], and unusual string
phases [21-23] or other exotic solid structures [24].

Colloids with competing interactions have mainly been
studied in the bulk, but there are only few studies [25] where
colloids with competing interactions have been explored
under confinement. A key example for strong confinement is
given by a parabolic external trapping potential. In fact, this
is the simplest model for traps created by optical tweezers
confining colloidal particles as well as for thermophoretic
traps in complex plasmas. Conversely, quite a number of
studies exist in the literature (see Ref. [1] for a review) for
systems with simple (e.g., purely repulsive) interactions
confined in a trap. As a general scenario, for sufficiently large
confining strength and/or the number of trapped particles,
there is a crossover to freezing within the confined cluster. For
complex plasmas, this has been demonstrated for the so-called
“Coulomb balls” [26-29], which are composed of crystalline
shells around the potential minimum. There are “magic
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numbers” for which the shell structure is optimal [30,31]. A
similar setup in two spatial dimensions can be realized for
super-paramagnetic colloidal particles [32]. In this case the
external trap can be controlled by optical tweezers leading to
interesting effects like colloidal “explosions” of dense clusters
when the confinement is released [33].

A few years ago, Liu et al. [25] studied a system with
competing interactions in a parabolic trap which have consec-
utive repulsive-attractive-repulsive parts as a function of the
interparticle distance. They find that, apart from the traditional
shell structure, a formation of subclusters in the trap is possible.
Even a void structure can be formed which is surrounded by a
connected cluster where the void spacing is much larger than
the averaged interparticle distance. The findings of Liu et al.
[25] clearly show that the cluster structure sensitively depends
on the details of the pair interaction. Therefore studies with
other competing interaction forces are clearly motivated in or-
der to get even more unexpected cluster shapes and structures.

In this paper, we consider a richer class of repulsive-
attractive-repulsive pair potentials by admitting more and
other parametrizations of the pair potential than in Ref. [25].
As a result, we find even more exotic cluster structures for
a colloidal system confined in a parabolic trap. In detail,
we predict a new cluster structure which is “fringed” at
the outer boundary reminiscent to an ornamental border.
The inner part of the fringed cluster can either be compact
and crystalline or be perforated by voids. Moreover, we
explore the crystallinity of the clusters in detail, and we find
stable cluster structures which have an inner crystalline
core and an outer disordered rim. The full cluster structure
is obtained by extensive energy minimizations in a two-
dimensional parameter space. Our theoretical predictions can
be verified in real-space experiments of confined colloids with
competing interactions. Control over different cluster shapes
and structure by tuning only a few external parameters is highly
desirable for the fabrication of optical switching elements
and microsieves and filters of controlled porosity [34]. We
therefore believe that our theoretical predictions are also
relevant for possible applications. Moreover, we note that the
finds of our work can also be relevant for hard condensed
matter systems, such as in multiband superconductors, since
the vortixe-vortixe interaction potential is also repulsive and
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attractive, respectively, at short-range and long-range distances
[35-37].

This article is organized as follows: in Sec. II, we discuss our
theoretical model and the computational methodology used
to lower the temperature of the system, and we define some
quantities that are used to characterize the structure of the
clusters. In Sec. III we present our results and discussions,
while the conclusions are given in Sec. IV.

II. THE MODEL

A. Interaction potential

We investigate the structural properties of a two-
dimensional system composed of N monodisperse colloids
confined together via an isotropic parabolic potential. The
interparticle interaction potential is given by

U(rij) = U™Crij) + UMV (rij) + UC (i), (1)

where r;; is the distance between the centers of the colloids
i and j, U HC(y, ;) denotes a short range soft-core potential,
UPY¥(r;;) a midrange potential well, and U%(r;;) a shifted
Gaussian-shaped potential acting at larger distances. The
explicit expressions for these three parts of the potential are

UHC(rij) — s (?) (2a)
ij
UPY(ri;) = —eexp [— <r"f ; D) } (2b)
G _ rij — B\’
U"(rij) = Reexp | — 05D s (2¢)

where D defines the colloidal diameter, ¢ gives the strength of
the potential, m and n are exponents that define, respectively,
the steepness of the left and right sides of the total potential
well, « is the inflection point of the term U PW(r, i), while R
and B are parameters used, respectively, to tune the height
of the Gaussian term U G(ri_,-) and shift its position along the
radial direction. In this work we use the value 8 = 1.5(D + «)
in order to avoid superposition between the terms UPY(r;;)
and U%(r;;). Figure 1 shows a schematic representation of
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FIG. 1. (Color online) Form of the potential for the parameters
o = 1.5 and R = 1.5. The meaning of the parameters is indicated in
the figure.
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the interparticle interaction potential given by Eq. (1) for the
particular situation of « = 1.5 and R = 5.1.

The total interaction potential used in this work, that is,
Eq. (1) with Egs. (2a)—(2c), is an extension of the potential
treated in Ref. [38]. In this reference the interaction potential
is given solely by the sum of the two first terms UM (r;;) and
UPW(r;j). Tt will be demonstrated, in the following sections,
that the Gaussian term U%(r;;) plays a crucial role in the
self-assembly process of trapped colloids and gives rise to a
wide variety of configurational orders.

The external confinement potential is given by the parabolic
expression

V(r) = ekr?, 3)

where the prefactor « defines its relative strength. Finally, we
can write the total potential energy of the system as

N N N
U =Y _ Vi +Y_ > Ul &
i=1

i=1 j>i

In order to search for stable configurations, we use a
simulated annealing scheme. First, for a set of parameters, the
colloids are placed randomly without superposition on a square
box centered at the origin and with lateral size equal to 25D,
while the temperature is set to the value 7y = 5¢/kp. In the
sequence, the temperature is slowly decreased to Ty = 0. The
evolution of the system for a given temperature 7 is tracked by
the overdamped Langevin equation, integrated using Euler’s
method, which results in the algorithm

Fi(t + At = Fi(0) + F()AL + §\2kg AL, (5)

where }7", = —%;,. Ut is the total force acting on particle i, At is
the finite time step of the integrator, and g is a two-dimensional
vector with random components, which follows a standard
normal distribution of zero mean and variance one. The viscous
drag coefficient is set to y = 1. Thereby, the time scale is
to = yD?/s.

A good convergence of the integration algorithm is achieved
for At = 107>, For each temperature 7, we iterated the
system 5 x 10* time steps before decreasing the temperature
by an amount of AT = 0.05. In order to obtain statistically
reliable results, the above procedure is repeated over different
realizations of the random Langevin force for each set
of parameters. Throughout our simulations, the following
parameter values were kept constant: m = 50,n = 10, D = 2,
e =1, and ¥ = 0.1, while the parameters R and o were
varied.

B. Classification of the structure
1. Local structural order

In order to quickly identify different symmetries of the
particle arrangements in the cluster we define the parameter
& = Nl > ) sinéy,;, where N; is the number of first neighbors
of the ith particle, > (k1) Tuns only over those first neighbors

of i that are also first neighbors of each other, and 6, are the
bond angles, that is the smallest angle formed by the distance
vectors 7 and 7;;. Anillustration of how £ is computed is given
in Fig. 2. In this example, one has & = (sin6,, + sin6,,)/2.
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FIG. 2. (Color online) Schematic representation of a hypothetical
small cluster formed by four particles, which are represented by
circles and indexed by numbers from 1 to 4. 6}, represents the smallest
angle made by the vectors 7y, and 7y;, where k,/ = 2,3, and 4 with
k # 1. Only 6}, and 63, are used in the calculation of the symmetry
parameter &; (see text).

The reason why we use the sine of the bond angles rather
than the angles themselves is to better distinguish between, for
instance, a perfectly triangular lattice from a rhombic lattice.
In both cases, each particle has six neighbors forming six bond
angles, so N% 2w 0}, =360°/6 = 60° irrespective of the
symmetry. However, in general, a rhombic lattice comprises
two different bond angles: 6, appearing four times, and ¢,
twice. Therefore, for a rhombic lattice with, e.g., 8 = 50°
and ¢ = 80°, & = 0.839, while & = 0.866 for the triangular
lattice. In Ref. [38] it was shown that triangular, squared, and
Archimedean tiling patterns can be distinguished successfully
by using the symmetry parameter &.

Within the investigated ranges of @ and R, i.e., 0.01 < o <
5.5and 0.01 < R < 5.3, respectively, we could identify three
different local ordered phases: the triangular, squared, and
an ordered mixture of square and triangular cells in a 3 x 2
proportion [see Fig. 5(d)], which we call mixed lattice. The
values of & for a perfect lattice of the types triangular, squared,
and mixed are, respectively, & = 0.866, 1.000, and 0.951.

2. Global structural order

The simulations performed in this work revealed that the
colloids, whose dynamics is ruled by Eq. (4), can self-assemble
in complex structures exhibiting interesting macroscopic
patterns. A few examples of such macroscopic states are those
where the cluster structures have a fringed outer boundary or
an inner region that can either be compact and crystalline or
be perforated by voids.

Figure 3(a) displays a typical configuration obtained
through a self-assembly process for the particular case of
a=4.0 and R=5.1. We can see that such a cluster is
perforated by four voids of approximately circular shape. On
the contrary, for other values of these parameters, a massive
core crystalline cluster becomes possible, as can be seen, for
instance, in Fig. 5(a) for = 2.8 and R = 0.3.

In order to distinguish between these two types of
configurations shown previously, we defined the quantity 5.
This latter is defined as the ratio between the quantities A, and
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FIG. 3. (Color online) (a) Representative cluster obtained for @ =
4.0 and R = 5.1, and its corresponding Delaunay triangulation (b),
convex hull (¢), and « shapes (d).

A, which are, respectively, the area occupied by the colloids
and the area delimited by the smallest convex polygon that
contains the entire cluster, i.e., the convex hull. In calculating
A, we first use the Delaunay triangulation to generate the set
of triangles with vertices on the colloidal centers, and, second,
we discard those edges of the triangles that are larger than two
colloidal diameters. The total area of the remaining triangles
gives the quantity A,. An example of such triangulation can
be seen in Fig. 3(b), while Fig. 3(c) shows the convex hull of
such cluster. For comparison, the cluster presented in Fig. 3
has A, =1122.83, A, = 1552.87, and n = 0.72, while the
compact one in Fig. 5(a) has A, = 1202.89, A. = 1232.36,
and n = 0.98.

Notice, however, that the quantity n does not allow one
to unambiguously distinguish perforated clusters from the
fringed ones. For instance, the fringed cluster shown in
Fig. 7(a4) gives n = 0.67, which value is close to that obtained,
previously, for the perforated cluster of Fig. 3, that is, n =
0.72. Yet the two clusters have rather different structures. To
resolve such an issue, we can further modify the Delaunay
triangulation by removing all edges that are shared between
two triangles. In doing so, we obtain the cluster’s « shape [39],
i.e., a set of graphs representing the borders of the clusters
and where each node corresponds to one particle. Figure 3(d)
shows the o shape of Fig. 3(a), which comprises five different
borders, that is, one external border and four internal ones.

Now, using the o shape we will define two finer-grained
parameters, Q and o2. The parameter Q is the number of
particles in the second-largest border of the cluster. This
definition usually matches with the largest internal border
of the cluster, as the external one is often the largest. The
second parameter, arz, is the variance of the position vectors’
magnitude of the particles present in the largest border, i.e.,
in the external concave hull. It is easy to see that the fringed
clusters will have a larger value of o> than those clusters that
does not present fringes. Armed with these definitions, we are
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now able to distinguish clusters with fringes from that with
voids.

III. RESULTS

As expected, due to the presence of the external confine-
ment, the self-assembled structures are constituted by only one
cluster containing all particles. We found that these particles
can form lattices with a well-defined microscopic ordering,
such as square, mixed, and triangular lattices. Besides such a
local order the self-assembled structures also possess different
global patterns. For example, we found that the stable clusters
can have a massive core or a core pierced by voids, while their
edge can be compact, fringed, or disordered. Given this wide
variety of ordering types, we made use of the quantities &, €2,
and o, which were defined in the previous section, in order
to obtain a more complete and quantitative description. In the
next two subsections, we will investigate how the microscopic
and macroscopic orderings, respectively, are influenced by the
parameters R and o of the interaction potential. Note that
we have divided this section into two parts only for didactic
purposes; however, it is worth remembering that the same
cluster has a global and local order simultaneously.

A. Local structure

In order to identify the type of local ordering present in
a given cluster, the value of & is computed for each of the
particles making up the system. With this we can know whether
a given particle helps to compose some kind of lattice. For
example, if the value of & for a given particle is within the range
0.85 < & < 0.89, then we consider that it composes a triangu-
lar lattice. We define the quantity @yiangutar as the ratio between
the number of particles belonging to a triangular lattice and
the total number of particles. Although a particle belonging to
a perfect triangular lattice has an exactly value of &, that is,
& = 0.866, the above interval, which is used to tell whether or
not a given particle belongs to a triangular lattice, shows that
our results are more realistic. This last statement is based on
the fact that, in experimental realizations, the self-assembled
structures are usually not free of small deformations or defects.

The red region of the R x o diagram [Fig. 4(a)] shows
the clusters in which @yiangutar = 0.35. In other words, such
a colored area indicates the regions where at least 35% of
the particles are organized in a triangular lattice. The unfilled
regions of Fig. 4(a) represent the area in the phase diagram
where the presence of the triangular lattice is less than 35%
of the cluster or even nonexistent. Nevertheless, note that for
small values of R, i.e., R < 1.5, the triangular lattice is always
present. The latter is consistent with the fact that for small
R the repulsion between the particles is not large, and hence
the repulsive force cannot counterbalance the external force
generated by the confinement. When the external pressure
prevails, the particles organize themselves in a triangular
lattice, since this type of arrangement is more compact.

We consider that a given particle belongs to a square lattice
if the value of & for such a particle is within the range
0.98 < & < 1.00. The quantity @gquare is defined as the ratio
between the number of particles belonging to a triangular
lattice and the total number of particles. The regions of the

PHYSICAL REVIEW E 88, 042313 (2013)

5
1
3
ot
2

1

o 1 2 3 4 5
o
(b)
4
3,
= -4
2-
°
1,
o 1 2 3 4 5
«
[*) ! v
5, .
°
(c)
4
3.
3
2-
1_
¢ 1 2 3 4 5
(8}

FIG. 4. (Color online) The colored regions in (a) red, (b) green,
and (c) yellow indicate the areas in the phase diagram in which
Ouiangular> Psquare> AN Prixeq, TESPECtively, are all greater than or equal
to 0.35. ¢, is the ratio between the number of particles belonging
to a lattice of the type L and the total number of particles. We have
defined that a given particle belongs to a lattice of the types triangular,
square, and mixed if the value of £ to the given particle is within the
ranges 0.85 < & < 0.89, 0.98 < & < 1.00, and 0.89 < & < 0.96,
respectively.

phase diagram R x « wherein at least 35% of the particles
have ¢square > 0.35 are highlighted in green in Fig. 4(b). Notice
that the unfilled region of Fig. 4(a) approximately coincides
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FIG. 5. (Color online) Configurations for various values of R and
¢.(aR=03,0=28.(b)R=13,a=32.(c)R=15,a=1.6.
@WR=15a0a=32.(e)R=250a=18. ) R=2.5a =33.

with the region of the square lattice shown in Fig. 4(b).
Anyway, it is important to note that these regions are not
exactly complementarys; i.e., there are regions of intersections
between the red area of Fig. 4(a) and the green area of Fig. 4(b).
In such intersections occur a significant presence of the square
and triangular lattices, where each of these lattices has at least
35% of the total particles in the cluster.

For a perfect mixed lattice, the value of & for a given particle
is 0.951. We consider that a given particle belongs to a mixed
lattice if the value of & for such a particle is within the range
0.89 < & < 0.96. The ratio between the number of particles
belonging to a mixed lattice and the total number of particles
is defined as @mixea- The mixed lattice is the one that appears
less in the phase diagram, as we can see in Fig. 4(c), where
the regions shaded in yellow indicate its presence. Notice that,
from a simple comparison between Figs. 4(c) and 4(a), we
can see that there are few regions of intersections between the
triangular and mixed lattices. Nevertheless, we did not find
clusters where both square and mixed lattices are present.

Typical examples of clusters found in our simulations for
different values of R and « are shown in Fig. 5. Clusters formed
solely by one type of lattice are shown in Figs. 5(a), 5(d),
and 5(f), respectively, for the triangular, square, and mixed
lattices. Heterogeneous clusters, that is, clusters formed
concomitantly by two distinct types of lattices can be seen
in Figs. 5(b) and 5(c). These last two configurations possess
a triangular kernel surrounded, respectively, by mixed and
square arrangements. As we can see, Fig. 5(e) is topologically
similar to Fig. 5(c), although their triangular kernel have
different geometrical shapes.

References [40,41] demonstrate that the self-assembly of
colloidal particles on a quasiperiodic substrate can generate a
square-triangle Archimedean tiling of the type 33.42, that is, a
tiling formed by stripes of triangles and squares with a ratio
of 3 to 2. For the formation of such structures, the interaction
strength between the substrate and colloids was of paramount
importance. Indeed, as demonstrated by the latter two works,
as the interaction between the substrate and colloids decreases,
the only possible arrangement becomes the triangular one. It
is worth noting that, in our model system, the formation of the
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square-triangle Archimedean tiling, which we named a mixed
lattice, is simply due to the interaction potential between the
colloidal particles. Notice that, as revealed by our previous
work [38], such square-triangle Archimedean tiling can also
be generated in the absence of any external confinement.

(a)

(b)

FIG. 6. (Color online) Graphic of macroscopic states. In (a) one
can see the binary diagram of the results for which n < 0.90, in
purple. In (b) in brown is denoted the binary diagram of perfurated
clusters, i.e., the clusters on which Q > 15. In (¢) O'rz is shown.
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B. Global cluster structure

We now turn to the global structure and focus in particular
to noncompact clusters. As stated before, by definition n =
Ap/A., where A, is the area actually occupied by the particles
while A. is the area of the convex hull. In the case where the
cluster is massive we have n >~ 1.00, since in this situation
A, >~ A,. On the other hand, perforated and fringed clusters
have values of A, significantly lower than those of A., then
the value of n decreases from unity. In Fig. 6(a), where the
vertical and horizontal axes correspond to the magnitudes R
and «, respectively, we highlight in blue the regions in which
the clusters have a value of n < 0.90. We can clearly see that
this occurs for high values of R; more precisely, this always
occurs for R > 4.90.

Figure 7 shows some representative configurations of the
system for several values of R and «. Note that configurations
belonging to the same column have the same value o, which
is given in the bottom of the figure, while the values of R,
which are indicated beside each of the configurations, grow
upwards. We can clearly see from Fig. 7 that in fact the
configurations located near the top of the figure have decorative
edges, while those for small values of R correspond to massive
clusters. This result is in agreement with that obtained in
Fig. 6(a).
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Following from left to right the first row of Fig. 7, i.e.,
the row having the configurations with the highest values
of R for each «, we can clearly see that the perforated
clusters tend to occur for high values of «. In particular the
configuration of Fig. 7(a7) exhibit three internal voids and a
smooth particle radial distribution at the edge of the cluster.
Furthermore, it can be seen, also from the first row of Fig. 7,
that the thickness of the fringes tend to enlarge with increasing
o. Notice that, for « = 0.1 and R =5 [see Fig. 7(al)],
the fringes are almost one-dimensional chains, while for
o =2.2 and R = 5.2 [see Fig. 7(a4)] the thickness fringes
have, approximately, three colloidal diameters. Eventually the
widening of the fringes becomes sufficiently large that two
neighboring fringes become able to join and form a void [see,
for example, Fig. 7(a6)]. Previously, Ref. [42] has predicted
the formation of a regular triangular lattice perforated by voids
for two-dimensional systems of classical particles interacting
via a long-range repulsive and short-range attractive potential.

The second and fourth columns of Fig. 7 demonstrate that
as R grows the triangular lattice is gradually replaced by the
square lattice. Moreover, such a lattice change begins by the
edge of the cluster, as we can see in Figs. 7(d2) and 7(e3).
At the lower limit of R, i.e., for R = 0.0, the total energy of
the system is due only to the confinement. In such a situation,

(b1) .

(b7)

R=4.1

(c1)
R=3.1

(d5)

R=29

(d7)

R=2.6

(el) (e2) (e3) (e4)

R=17

(e5) (e7)

R=0.1

FIG. 7. (Color online) Representative configurations presented for several values of R and «. Clusters within the same column have the
same value of o while the values of R grow upwards and are indicated beside each cluster. The values of R were chosen to show the greatest
number of representative configurations for a given « value. From the first to the seventh column, the values of o are 0.1, 0.7, 1.4, 1.8,2.2, 3.2,

and 4.3.
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the triangular lattice is the one that best minimizes the total
energy, since it has the most efficient packing. On the other
hand, the increase of R leads to an increase of the particles’
distance, since this lowers the interaction energy. Notice that
the appearance of the square lattice conforms to this latter fact,
since it has larger particle spacing than that of the triangular
lattice.

For increasing values of R, we also verified a delay in the
formation of the fringes for clusters that can display the square
or mixed lattices. This fact can be seen directly from the second
and fourth columns of Fig. 7. A more quantitative result of such
delay in the appearance of the fringes can be obtained from
Figs. 4(a) and 6(a). Note that the first three grooves in Fig. 6(a)
and the three empty regions of Fig. 4(a) occur, approximately,
for the same values of «. We recall that the blanks in Fig. 4(a)
correspond to regions where the square or mixed lattices can
occur, as indicated by Figs. 4(b) and 4(c).

Note that a large value of €2 can indicate (1) a loop of parti-
cles near the edge of the cluster, as we see in Figs. 7(al), 7(a5),
and 7(b3) or (2) the presence of a void located closer to the
center of the cluster. In the first case the system also features
a large value of 0,2; however, for the second case, the value of

o2 is not high, because as noted earlier, in such a situation the

radial distribution of particles belonging to the cluster’s edge
is smooth, as can be seen, for instance, in Figs. 7(al) and 7(a7).
Such correspondence between the quantities o> and €2 can be
seen in Figs. 6(b) and 6(c).

Finally, we observe that, for increasing values of R, clusters
with @ = 1.4 (third column of Fig. 7) evolve directly from a
compact triangular structure towards a fringed cluster having
a triangular core. On the other hand, in the case o« = 2.2 (fifth
column of Fig. 7), we can see that as R grows the triangular
lattice gives rise to a disordered arrangement near the edge of
the cluster. For high values of R, i.e., R = 5.5 [see Fig. 7(a5)],
the system achieves a fringed pattern but with a disordered
core. For the case « = 3.2 and large values of R, e.g., R =
5.2, the cluster can exhibit fringes and voids [see Fig. 7(a6)],
whereas for small values of R, e.g., R = 0.1, the order of
the cluster is predominantly triangular [see Fig. 7(e6)]. As we
can see from Fig. 7(d6), the system can be organized into a
combination of square and mixed lattices, or in a pure square
lattice, as seen in Fig. 7(c6). Ultimately, for & = 4.3 (seventh
column), we can see that the triangular ordering is maintained
independently from the value of R, while the macroscopic state
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can change from a compact [see Fig. 7(e7)] to a perforated
pattern [see Fig. 7(a7)].

IV. CONCLUSION

In conclusion, we have studied confined colloids with
competing pair interactions and obtained the ground state
structure numerically. A wealth of stable structures is found
including clusters with a fringed outer rim (reminiscent to an
ornamental border), clusters perforated with voids, as well as
clusters with a crystalline core and a disordered rim. Since all
cluster structures occur in a two-dimensional parameter space,
the structural ordering can be efficiently tuned by changing
few parameters only.

For future studies it would be interesting to consider
the dynamical modes (“phonons”) at finite temperature [43]
and the dynamical response of colloids in a time-dependent
external trap [44]. The nature of the breathing mode is expected
to be very different for the fringed cluster as compared to the
ordinary shell structure. Moreover other types of confinement
including a slit geometry [45—47] (or a cylindrical tube [48])
would be interesting to study, leading to periodic layered (or
helical) structures in two (or one) dimensions.

Our results were obtained on pure energetic grounds,
i.e., the temperature or any external agitation vanish. Finite
temperature and agitation will melt some of the structures,
but the structures are expected to stay stable for weak
perturbations. For confined solids, temperature effects have
been studied recently [47,49], and the influence of agitation
on structure generated by competing interactions has also
recently been explored [36]. The actual melting process in
a finite-size cluster may depend sensitively on the details of
the structures. One can surmise that the perforation voids and
outermost fringes will act as natural locations where melting
sets in first as temperature is increased in analogy to surface
melting of solids [50,51]. All these aspects are interesting
topics for further work.
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