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The pair-correlation functions for fluid ionic mixtures in arbi-

trary spatial dimensions are computed in hypernetted chain

(HNC) approximation. In the primitive model (PM), all ions are

approximated as nonoverlapping hyperspheres with Coulomb

interactions. Our spectral HNC solver is based on a Fourier-

Bessel transform introduced by Talman (J. Comput. Phys.

1978, 29, 35), with logarithmically spaced computational

grids. Numeric efficiency for arbitrary spatial dimensions is a

commonly exploited virtue of this transform method. Here,

we highlight another advantage of logarithmic grids, consist-

ing in efficient sampling of pair-correlation functions for

highly asymmetric ionic mixtures. For three-dimensional flu-

ids, ion size and charge-ratios larger than 1000 can be

treated, corresponding to hitherto computationally not

accessed micrometer-sized colloidal spheres in 1-1 electrolyte.

Effective colloidal charge numbers are extracted from our PM

results. For moderately large ion size and charge-

asymmetries, we present molecular dynamics simulation

results that agree well with the approximate HNC pair corre-

lations. VC 2013 Wiley Periodicals, Inc.

DOI: 10.1002/jcc.23446

Introduction

Most of the essential features of polyelectrolyte solutions can

be efficiently modeled by a combination of charges and

excluded volume, see[1–4] for reviews. In the so-called primitive

model (PM), all specific properties of the solvent are neglected

except for its dielectric constant. Research over the past deca-

des has shown that some of the basic properties of polyelec-

trolytes (like screening and Coulomb association) are

contained in the asymmetric PM of electrolytes which enables

wide applications to charged colloidal suspensions, micelles

and globular proteins. However, for high asymmetry in charge

and size between the microions and macroions, as occurring

in suspensions of charged colloidal particles, the PM is not

easy to solve numerically in general. For example, structural

correlations in the PM were obtained by numerically expensive

computer simulations only up to charge and diameter asym-

metries of about 1:100,[5–10] corresponding to the micellar

rather than the colloidal regime.

In this article, liquid structure is computed by solving inte-

gral equations based on the Ornstein-Zernike (OZ) equation.[11]

This approach requires an approximative closure for an explicit

solution. A rather simple but successful closure is the hyper-

netted chain (HNC) scheme,[12] which has been proven to be a

realistic approximation for mixtures of charged particles. The

numerical solution methods presented here can be straightfor-

wardly generalized to more sophisticated, thermodynamically

partially self-consistent OZ closure relations[13–15] like, for

example, the one proposed by Zerah and Hansen.[16] For the

sake of simplicity, and as it was shown that enforcing thermo-

dynamic self-consistency leads to a weak accuracy improve-

ment only,[17] in the present work we restrict ourselves to the

HNC approximation. A variety of liquid integral equation[17–23]

or density functional studies[24–26] of the PM have been

reported. The HNC equations have been solved for the asym-

metric PM by L�eger and Levesque,[27] in case of nonzero mac-

roion number densities for size asymmetries between

microions and macroions as high as 1:80 and charge asymme-

tries ranging up to 1:450.

The HNC scheme can be formulated in any spatial dimen-

sion d > 0. While d 5 3 is the standard three-dimensional sit-

uation, it is important to note that also two-dimensional and

one-dimensional fluids occur in experiments with strong con-

finement between glass plates or at interfaces, or in one-

dimensional channels.[28] Dimensions higher than d 5 3 have

no immediate realization. However, they play an important

role in constructing and testing theories and are also helpful

to find suitable mean-field-like approximations in lower dimen-

sions.[29–32] Hence, there is a need to study charged systems

also in d > 3. We formulate the solution method in this article

for arbitrary d > 0, with explicit data presented for spatial

dimensions d51; 2; 3; 4; 5, and 6.
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Here we pick up a strategy of solving the PM-HNC equations

that, for d 5 3, has first been used by Rossky and Friedman.[33]

The key idea lies in using computational grids with logarithmic

spacing in coordinate- and wavenumber space. For even number

of dimensions d, in particular for d 5 2, the use of logarithmic

grids in a spectral OZ equation solver emerges as a necessary con-

sequence of mapping the occurring Fourier-Bessel transforms to

numerically efficient fast Fourier transform (FFT) methods.[34–38]

Hence, logarithmic grids appear quite naturally in d 5 2 liquid

integral equation studies like, for example, Refs. 39,40. For odd

number of dimensions, where FFT methods can be applied

directly on uniformly spaced grids, using logarithmic grids is a less

obvious approach which has nevertheless been used in some d 5

3 studies.[41–43] In none of these studies, however, extensive use

has been made of an important virtue of the logarithmic grids,

which is highlighted in our present article. The simultaneous

dense distribution of grid points at very different length scales

renders logarithmic grids ideal for the discretization of pair-

correlation functions in a highly asymmetric PM, at moderate

numerical expense. Here we are presenting results for ion size and

charge-asymmetries as high as 1:1000 (both asymmetries simulta-

neously reached, for nondilute suspensions), which represents

well the colloidal regime. To our knowledge, no liquid integral

equation or computer simulation studies have been published so

far, where asymmetries of this magnitude have been reached.

We investigate the accuracy of the HNC pair-correlation

functions by comparing to results of numerically expensive

molecular dynamics (MD) simulations, for ion charge- and

diameter asymmetries up to 1:500 and 1:250, respectively. The

HNC results are found to be in overall good agreement with

the MD results, except for a somewhat underestimated princi-

pal peak in the macroion radial distribution function at high

macroion charge numbers.

Our results can be used to extract colloidal effective interac-

tion potentials, including nonsaturated effective charge num-

bers, at high-numerical efficiency. As opposed to other

approximate theories for colloidal effective charge numbers

like the cell model (CM)[44,45] or the renormalized jellium

model (RJM),[9,10,46–51] pair correlations among all ionic species

are treated on equal footing in our method, with the HNC

entering as the only approximation. The virtue of the CM and

RJM, conversely, is their applicability in larger ranges of salt

concentrations and macroion charge numbers.

In a future study, the method described here could be aug-

mented to include colloidal surface chemistry, described by a

mass action balance that takes into account the local variations

in the pH value near the colloidal surfaces. This would allow for

parameter free ab initio calculation of pair correlations in colloi-

dal suspensions with reactive electrolyte like, for example, sus-

pensions of silica spheres in NaOH with a re-entrant fluid-

crystal-fluid phase diagram, reported in Refs. 52,53.

Methodology

The d-dimensional PM

Let ni, with 1 � i � m, denote the number density of ions of

species i in an m-component fluid mixture of hyperspherical

particles in an arbitrary positive number d of spatial dimen-

sions. Then, n5
P

i ni is the total particle number density and

vi5ni=n is the mole fraction of species i. Let Zie denote the

electric charge of a particle of species i, where e is the elemen-

tary charge. In order to prevent singular attractions between

oppositely charged particles, ions of species i possess a hard-

core diameter ri. Hence, the particles of species i occupy a

fraction

ui5VðdÞðri=2Þd ni (1)

of the system hypervolume, where VðdÞ5pd=2=Cðd=211Þ is

the d-dimensional unit hypersphere volume, CðxÞ denoting

the Gamma function. All ions are assumed neutrally buoyant

in an infinite structureless solvent, which is fully described by

the solvent dielectric constant E in the PM applied here. We

express all real-space functions in units of the dimensionless

particle-center to particle-center distance x5rn1=d .

The functions uijðxÞ5VijðxÞ=ðkBTÞ are the pair-potentials of

direct interaction, VijðxÞ, between ions of species i and j,

divided by the Boltzmann constant kB and the absolute tem-

perature T. The dimensionless pair-potentials can be decom-

posed as

uijðxÞ5u
ðsÞ
ij ðxÞ1u

ðlÞ
ij ðxÞ (2)

into short-ranged (hard-core) parts

u
ðsÞ
ij ðxÞ5

1 for x < rijn
1=d;

0 otherwise;

(
(3)

with pairwise additive hard core diameters rij5ðri1rjÞ=2,

and long-ranged (Coulomb) parts

u
ðlÞ
ij ðxÞ5

2Cij ln ðxÞ for d52;

Cij

ðd22Þxd22
for d 6¼ 2;

8>>><
>>>:

(4)

with coupling constants Cij / ZiZj . In d 5 3 dimensions,

connection to experimentally accessible systems can be made

by choosing the coupling constant Cij in eq. (4) as

Cij5LBn1=3ZiZj , involving the solvent-specific Bjerrum length

LB5e2=ðEkBTÞ in Gaussian units. In this article, we investigate

only such systems that obey the Berthelot mixing rule

C2
ij5CiiCjj .

[54]

One-component systems, m 5 1, with pair-potential accord-

ing to eqs. (2)–(4), are commonly referred to as (d-dimensional)

one component plasmas (OCPs). Global electroneutrality of an

OCP implies the presence of a homogeneous background

charge density that does not couple to the distribution of the

correlated ions (like, for example, an electron plasma at suffi-

ciently high temperature). For systems with m > 1 components,

global electroneutrality without a neutralizing charge back-

ground is enforced in all cases studied here, by requiring thatP
iniZi50.
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HNC scheme

We compute the ion pair-correlations in the PM described in

the previous section, by numerically solving the OZ equa-

tions[11] in combination with the approximate HNC closure.[12–

14] In an isotropic, homogeneous fluid mixture, the coupled

OZ equations may be written as

gijðxÞ5vk

ð
ddx0cikðx0Þ½ckjðx2x0Þ1gkjðx2x0Þ�: (5)

In eq. (5) and the rest of this article, we adhere to the Ein-

stein summation convention. Equation (5) can be regarded as

the definitions of the partial direct correlation functions cijðxÞ in

terms of the continuous partial indirect correlation functions

cijðxÞ5hijðxÞ2cijðxÞ5gijðxÞ212cijðxÞ. The latter identity com-

prises the total correlation functions hijðxÞ and the partial radial

distribution functions (rdf’s), gijðxÞ, which are the conditional

probabilities of finding a particle of species j at a dimensionless

center-to-center distance x from a particle of species i.[11] Note

here that various labels have been attributed to the indirect

correlation functions in the literature. Apart from the symbol

cðxÞ used here, common notations are t(x)[55] and b(x).[11]

An isotropic function f can be Fourier-transformed in d

dimensions as

~f ðyÞ5 ð2pÞd=2

yd=221

ð1
0

dx xd=2f ðxÞJd=221ðxyÞ; (6)

f ðxÞ5 x12d=2

ð2pÞd=2

ð1
0

dy yd=2~f ðyÞJd=221ðxyÞ; (7)

with JnðxÞ denoting the Bessel function of the first kind and

order n. Using the convolution theorem, the OZ equations are

Fourier-transformed into the space of dimensionless wavenum-

bers y, where they read

~g ijðyÞ5vk~cikðyÞ~ckjðyÞ1vk~cikðyÞ~gkjðyÞ: (8)

The OZ equations need to be supplemented by an appropri-

ate closure relation. The HNC closure, which is known to be a

good approximation for the PM,[17] reads

cijðxÞ5exp fgijðxÞ2uijðxÞg2gijðxÞ21: (9)

Numerical solution of the set of eqs. (5) and (9) in combina-

tion with the long-ranged potentials in eqs. (2)–(4) requires

splitting the analytically known long-ranged asymptotic parts

7u
ðlÞ
ij ðxÞ off the direct and indirect correlation functions

as[11,27,56]

cijðxÞ5c
ðsÞ
ij ðxÞ2u

ðlÞ
ij ðxÞ (10)

and

gijðxÞ5g
ðsÞ
ij ðxÞ1u

ðlÞ
ij ðxÞ: (11)

The so-defined functions c
ðsÞ
ij ðxÞ and cðsÞij ðxÞ are considerably

shorter in range than cijðxÞ and cijðxÞ. We note here that

eq. (11) is a simple but suboptimal choice of defining a short-

ranged part of the indirect correlation function. The so-defined

functions cðsÞij ðxÞ decay exponentially, but less steeply than the

functions c
ðsÞ
ij ðxÞ. An indirect correlation function part that is

short-ranged in a stricter sense than cðsÞij ðxÞ used here, is

obtained in a renormalized formulation based on the diagram-

matic expansion[11] of the correlation functions,[55,57–59] where

a chain sum of u
ðlÞ
ij ðxÞ, instead of u

ðlÞ
ij ðxÞ itself is subtracted off

the function cijðxÞ. However, the decay of cðsÞij ðxÞ defined in eq.

(11) is steep enough for our purposes, which is largely owed

to our use of logarithmic grids that extend to very large values

of the coordinate x.

In terms of the short-ranged correlation functions and long-

ranged potential parts, the OZ equations in wavenumber

space can be written as the set of coupled algebraic equations

½dik2vk~c
ðsÞ
ik 1vk ~u

ðlÞ
ik �~g

ðsÞ
kj 52~u

ðlÞ
ij 2vk ~u

ðlÞ
ik

~c
ðsÞ
kj 1vk~c

ðsÞ
ik

~c
ðsÞ
kj (12)

with Kronecker-delta dij . The HNC closure in terms of the

short-ranged correlation functions and the hard-core diameters is

c
ðsÞ
ij ðxÞ5Hðx2rijn

1=dÞexp fgðsÞij ðxÞg2g
ðsÞ
ij ðxÞ21; (13)

with unit step function HðxÞ.
The Fourier transform of the Coulombic part u

ðlÞ
ij ðxÞ of the

potential is[60]

~u
ðlÞ
ij ðyÞ5

CijAðdÞ
y2

; (14)

where AðdÞ52pd=2=Cðd=2Þ denotes the surface of the d-

dimensional unit hypersphere.

We solve the closed set of eqs. (12)–(14) by the numeric

methods described in the following two sections. Our results

are presented in form of the partial rdf’s gijðxÞ, and partial

static structure factors, SijðyÞ5dij1
ffiffiffiffiffiffiffiffivivj
p ~hijðyÞ[11,14]

Numerical algorithm

In order to solve the set of eqs. (12)–(14), we use a generalized

version of the numerically robust, quickly convergent solution

method introduced by Ng in the appendix of Ref. 56. The

method shares great similarities with the direct inversion of

iterative subspace (DIIS) method developed by Pulay,[61,62]

which is commonly used in the solution of quantum mechani-

cal (Hartree-Fock) density functional problems (see Ref. 63 for

a detailed analysis of the DIIS method). The DIIS method has

been applied also to density functional theory of hard

spheres,[64] and reference interaction site model HNC equa-

tions of liquid water.[65]

In conformity with Ng’s notation, we formulate a fixed point

problem

A � cðsÞðxÞ5!
cðsÞðxÞ; (15)

to be fulfilled by the exact solutions cðsÞðxÞ of eqs. (12)–(14),

for arbitrary values of the coordinate x. Equation (15) contains
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the m3m function array cðsÞðxÞ with elements c
ðsÞ
ij ðxÞ, and the

nonlinear fourth-rank operator A, that depends on all pair

potentials uijðxÞ.
We solve eq. (15) numerically by executing two nested

instruction loops with iteration indices n1 2 fN \ ½0; nmax
1 �g

and n2 2 N, such that lim n2!1 c
ðsÞ
fnmax

1 ;n2gðxÞ5cðsÞðxÞ, provided

that the iteration with respect to index n2 converges. To avoid

confusion with other kinds of indices or with particle number

densities in the following, n1 and n2 are exclusively used to

label entire operators, matrices or vectors, and are never used

in indexing scalars. Both n1 and n2 are always enclosed in curly

brackets when used as an index, whereas other lower indices,

like the species indices i; j;… stand always without brackets.

For instance, c
ðsÞ
fn1;n2gðxÞ is the m3m array of intermediate solu-

tions for the short-ranged parts of partial direct correlation

functions at iteration stage characterized by n1 and n2, and

the element of that array with particle-species indices i and j is

the function ðcðsÞfn1 ;n2gÞijðxÞ.
In the outer loop with index n1, the elements of an m3m

matrix Cfn1g of coupling parameters and an m-dimensional

vector /fn1g of hypervolume fractions are both ramped up

from initial values ðCf0gÞij and ð/f0gÞi of small magnitude, to

their final values ðCfnmax
1 gÞij5Cij and ð/fnmax

1 gÞi5ui, characteriz-

ing the pair-potentials to be solved for through eqs. (1–4). We

use the rules

Cfn1g5Eðn1ÞCfnmax
1 g (16)

and

/fn1g5½Eðn1Þ�1=10/fnmax
1 g (17)

for potential ramp-up, where a near-optimal convergence

rate, combined with good numerical stability of the outer

loop iteration is achieved by a convergence-adaptive scaling

parameter 0 < E � 1, which increases monotonically as a

function of n1. After each outer iteration, the growth rate of

Eðn1Þ is increased if the previous inner loop took less than a

certain threshold of iterations to converge, and decreased in

the opposite case.

Our experience shows that numerical stability of the algo-

rithm benefits considerably from the superlinear form of eq.

(17), characterized by the (empirically chosen) exponent 1/10.

This can be rationalized by considering the contact value

uijðrijn
1=d1Þ of the pair potential in eqs. (1–4), that is, the

right-hand limit of u(x) as x approaches the separation of par-

ticles with touching surfaces: The contact value decreases for

increasing values of ui and uj, and increases for increasing Cij.

The potential at particle contact has great influence on the

strength of the undulations in the pair-structure functions,

which, in turn, influence numerical stability. Therefore, it is

favorable to choose potential ramp-up rules like eqs. (16) and

(17), where the ui are increased quicker than the Cij .

That a potential ramp-up is necessary at all, is owed to crit-

ical dependence of the inner loop convergence on the qual-

ity of the inner loop seed c
ðsÞ
fn1;0g. A good analytical estimate

of c
ðsÞ
fn1;0g exists only for low magnitudes of all ðCfn1gÞij and

ð/fn1gÞi . The inner iteration seeds used in our algorithm are

given in eqs. (33–35), and rationalized in the surrounding

text.

We proceed now with the discussion of the inner iteration

loop, where n1 is kept fixed. Operator Afn1g is defined by

Afn1g � c
ðsÞ
fn1;n2gðxÞ5g

ðsÞ
fn1;n2gðxÞ; (18)

as the operator that transforms the input functions arrays,

c
ðsÞ
fn1;n2gðxÞ, for fixed indices n1 and n2, into the corresponding

output functions arrays, gfn1;n2gðxÞ, the latter being defined fur-

ther down the text of this subsection. Hence, Afnmax
1 g5A, and

eq. (15) is equivalent to

lim
n2!1

dfnmax
1 ;n2gðxÞ5

!
0; (19)

with function arrays dfn1;n2gðxÞ defined by

dfn1 ;n2gðxÞ5gfn1 ;n2gðxÞ2c
ðsÞ
fn1;n2gðxÞ

5ðAfn1g21Þ � c
ðsÞ
fn1;n2gðxÞ:

(20)

In our implementation, iteration in the inner loop is stopped

at a finite, n1-dependent value, nmax
2 ðn1Þ > 1, of the index n2,

once the convergence criterion

jjdfn1 ;n
max
2 ðn1ÞgðxÞjj

jjgfn1;n
max
2 ðn1ÞgðxÞjj

< TOLðn1Þ; (21)

with a small tolerance TOLðn1Þ, as specified below, has been

fulfilled. In eq. (21), the norm, jjfðxÞjj, of an m3m function

array fðxÞ, is defined as

jjfðxÞjj5
�

fðxÞ; fðxÞ
�1=2

; (22)

and the bracket ðf ; gÞ denotes the inner product

ðf ; gÞ5
ðx2

x1

fðxÞ : gðxÞdx; (23)

of two m3m function arrays fðxÞ and gðxÞ with elements

f ijðxÞ and gijðxÞ, double dots indicating the contraction with

respect to both particle species indices i and j. The interval

½x1; x2� should be chosen to contain the major structural fea-

tures of the partial direct correlation functions. To obtain the

results presented in this paper, we have used x15min

f0:5rin
1=d; i51…mg; x2530, and values of TOL that decrease

as a function of n1, with TOLð0Þ < 1024 and

TOLðnmax
1 Þ < 10212.

In our algorithm, gfn1;n2gðxÞ is obtained from c
ðsÞ
fn1;n2gðxÞ at

fixed values of n1 and n2 by applying the following four steps:

Step 1. The function arrays c
ðsÞ
fn1 ;n2gðxÞ are Fourier-transformed

into ~c
ðsÞ
fn1;n2gðyÞ by the fast transform method described in the

following subsection, requiring logarithmically spaced grids in

x- and y-space.
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Step 2. The coupled OZ eq. (12) is solved to obtain ~cðsÞfn1;n2gðyÞ
from ~c

ðsÞ
fn1;n2gðyÞ.

Step 3. The fast inverse transform method on logarithmic

grids is applied to compute the inverse Fourier transform,

cðsÞfn1;n2gðxÞ, of the function array ~cðsÞfn1 ;n2gðyÞ.

Step 4. The elements of the function arrays gfn1 ;n2gðxÞ are cal-

culated as the left-hand-sides of eq. (13) (the HNC closure),

where the elements of the function arrays cðsÞfn1;n2gðxÞ from step

3 are entered to the right-hand-sides of eq. (13).

A straightforward way of selecting the input functions,

c
ðsÞ
fn1 ;n211gðxÞ, for the next step of the inner loop, is the Picard-

iteration scheme

c
ðsÞ
fn1;n211gðxÞ5gfn1;n2gðxÞ: (24)

This simple scheme, however, converges only for weak pair-

potentials (small values of jCijj and ui, in our case).

Numerical stability of the Picard-iteration scheme can be

somewhat improved, at the cost of increasing computational

effort, if a fixed mixing parameter 0 < a < 1 is introduced in

eq. (24), which gives the alternative iteration rule

c
ðsÞ
fn1;n211gðxÞ5agfn1;n2gðxÞ1ð12aÞcðsÞfn1;n2gðxÞ: (25)

Fixed point iterations on basis of eqs. (24) or (25) have been

applied in a number of integral equation

studies,[23,27,33,39,40,66,67] where different strategies have been

applied in computing the Fourier transforms, and various clo-

sure relations for the OZ-equations have been used, including

the HNC closure. The mixing parameter a in eq. (25) has been

empirically determined in most cases.

Despite being numerically more robust than the Picard itera-

tion in eq. (24), the iteration scheme according to eq. (25) still

fails to converge for large values of jCijj or ui, especially if the

number of components, m, is larger than one. We therefore

use a generalized version of the fixed point iteration scheme

proposed by Ng,[56] which has proven to be numerically much

more stable and efficient. Ng’s iteration scheme, generalized to

m-component mixtures and arbitrary number, M � 0, of mix-

ing coefficients, reads

c
ðsÞ
fn1;n211gðxÞ5

�
12
XM

l51

ðafn1 ;n2gÞl
�
gfn1;n2gðxÞ

1
XM

l51

ðafn1 ;n2gÞlgfn1;n22lgðxÞ:

(26)

For M 5 0, eq. (26) reduces to the Picard iteration in eq.

(24). At every step of the iteration, the M-dimensional mixing

coefficient vector afn1 ;n2g is determined as the solution of the

set of linear equations

Dfn1;n2g � afn1 ;n2g5dfn1;n2g; (27)

where the elements,

ðDfn1;n2gÞlm5ðvfn1;n2;lg; vfn1;n2;mgÞ (28)

and

ðdfn1 ;n2gÞl5ðdfn1;n2g; vfn1;n2 ;lgÞ; (29)

of the M3M matrix Dfn1;n2g and the vector dfn1;n2g are inner

products involving the function arrays dfn1;n2g and

vfn1;n2 ;lg5dfn1 ;n2g2dfn1;n22lg: (30)

Solving for afn1;n2g in eqs. (27)–(30) is equivalent to solving

the minimization problem

jjdfn1;n2g2
XM

l51

ðafn1 ;n2gÞlvfn1;n2;lgjj5
!

min; (31)

with respect to afn1;n2g, and the minimization in expression

(31) can be motivated by approximating Afn1g as a locally lin-

ear operator.[56,68]

It may be counterintuitive, but is worthwhile to note that one

should not select M5n2, that is, the maximum possible order at

each inner loop iteration. Instead, numerical stability is increased

if one chooses M to rise slower than possible, in our case as

Mðn2Þ5
minfn2;Mmaxg for n2 � 5;

minf21bn2=2c;Mmaxg for n2 > 5;

(
(32)

with bac denoting the largest integer number smaller than or

equal to a, and Mmax520, which results in swift convergence.

Presumably, the reason for the increased numerical stability of

the rule in eq. (32) as compared to the rule M5n2, is that the

low-quality intermediate solutions for small values of n2 are

always retained in the mixing rule in eq. (26) if M5n2 is cho-

sen, whereas they are dismissed, and thereby prevented from

spoiling convergence at sufficiently high n2, if M rises more

slowly than n2.

The iteration scheme defined by eqs. (26)–(30) fails to con-

verge, if the seed of the inner loop iteration, c
ðsÞ
fn1 ;0gðxÞ, is too

different from the fixed point of operator Afn1g. A good analyt-

ical estimate of an iteration seed exists only for sufficiently

small coupling parameters and hypervolume fractions. In this

regime, one may approximate the cijðxÞ by their infinite dilu-

tion (number density n! 0) limit cijðxÞ ! fijðxÞ5exp

f2uijðxÞg21, where the fijðxÞ are the Mayer functions.[11,67]

This results in a seed

c
ðsÞ
f0;0gðxÞ5exp ½2uf0gðxÞ�211uf0gðxÞ (33)

for n15n250, where ufn1gðxÞ denotes an array of pair-

potentials ðufn1gÞijðxÞ between particles of species i and j,

obtained from inserting the potential parameters ðCfn1gÞij and

ð/fn1gÞi into eqs. (1–4).

To access HNC solutions at higher jCijj and ui, we construct

the seeds for n1 > 0 from the converged solutions of inner

iterations corresponding to smaller values of n1. For n151, we

choose
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c
ðsÞ
f1;0gðxÞ5gf0;nmax

2 ð0ÞgðxÞ; (34)

which is a Picard-iteration step in the outer loop. For n1 > 1,

we use the seed

c
ðsÞ
fn1;0gðxÞ5sð1Þgfn121;nmax

2 ðn121ÞgðxÞ;

1sð2Þgfn122;nmax
2 ðn122ÞgðxÞ;

(35)

with coefficients

sð1Þ5
Eðn1Þ2Eðn122Þ

Eðn121Þ2Eðn122Þ (36)

and

sð2Þ5
Eðn1Þ2Eðn121Þ

Eðn121Þ2Eðn122Þ ; (37)

that extrapolate linearly on basis of the previous two con-

verged inner iteration solutions. While the linear extrapolation

in eq. (35) is crucial for numerical stability at strong particle

correlations, generalizing to quadratic and higher orders of

polynomial extrapolation for n1 > 2 seems to have a weaken-

ing effect on numerical stability.

Variations of Ng’s fixed point iteration method have been

successfully applied in various liquid integral equation stud-

ies.[19,22,56,65,69–74] General performance figures of the algo-

rithm in eqs. (26–37) are difficult to formulate, as its efficiency

depends on the number of particle species and spatial dimen-

sions, and, most importantly, on the pair-potential parameters.

All individual HNC solutions presented in this article took few

minutes or less to be computed on an inexpensive personal

computer.

Note that the fixed point iteration scheme in eqs. (26–37)

is merely one among a wide variety of solution methods that

have been developed. Part of the alternative solution meth-

ods have been reported to show superior numerical effi-

ciency, at the cost of a more complicated implementation.

Along with Ng’s algorithm, Newton-Raphson-like fixed-point

iteration schemes, first introduced by Gillan,[75] Lab�ık et al.,[76]

and Zerah,[77] are routinely used in integral equation studies

of liquids with strong pair-correlations.[17,20,21,78–86] For an

elaborate comparison of Ng’s and Zerah’s methods, including

a formulation of the latter method for liquid mixtures, we

refer to appendix A of Ref. 68. Furthermore, highly elaborate

Newton-GMRES (Krylov subspace) algorithms have been

applied,[87] and have been combined with multigrid techni-

ques.[88] Yet another alternative approach is the vector

extrapolation method.[89] For the sake of simplicity, in this study

we do not use the methods laid out in Refs. 75–77,87–89. In

future studies, however, use of such elaborate fixed point

solution methods, in combination with the Fourier transform

method described in the following subsection, might give

access to liquid integral equation solutions of the PM for

even larger ion-size and charge asymmetries than accom-

plished in this work.

Fourier transform on logarithmic grids

In this subsection, we present our numerical method of choice

to approximate the forward- and backward Fourier transforms

in eqs. (6) and (7), for functions f(x) and ~f ðyÞ that are sampled

on finite computational grids. The method used here has been

devised in essence by Talman, [36] and constitutes a sophisti-

cated version of the so-called quasi-fast Hankel transform

method of Siegman.[35] It is based on the use of logarithmic

variables, that is, computational grids of the form

xn5x0 exp fnL=Ng; yn5y0 exp fnL=Ng; (38)

with grid index n in the range 2bN=2c � n � bN=2c, and

L;N > 0. The use of logarithmic grids has been motivated by

the work of Gardner et al.[34] As demonstrated in Ref. 35, sam-

pling on logarithmic grids allows to rewrite eqs. (6) and (7) as

discrete circular correlations, each of which can be treated by

applying two subsequent FFTs. For a complete, and particu-

larly clear-cut documentation, we refer to the work of Hamil-

ton, [37,38] where the method has been named FFTLog. As we

have closely followed Refs. 37,38 in our implementation of the

FFTLog transform, we refrain from repeating all details here,

and list only the essential expressions instead.

Adapting to the notation of Refs. 37,38, we define the

primed sum symbol
P0 through

X0

n

xn5
XbN=2c

n52bN=2c
wnxn; (39)

with weights wn51 for all n, except for w2N=25wN=251=2 if N

is even.

In a preprocess, preceding the many FFTLog transforms

occurring in the fixed point iteration described in the previous

subsection, lookup tables of the grid-specific coefficients

un5
2

x0y0

� �2pin=L

C

�
d

4
1

pin

L

�
=C

�
d

4
2

pin

L

�
(40)

are computed. As pointed out in Refs. 36,39, numerical evalua-

tion of eq. (40) for large arguments of the Gamma functions is

considerably simplified by noticing that jCðx1iyÞ=Cðx2iyÞj51

for x; y 2 R. The remaining problem of determining the com-

plex phases of the Gamma functions in eq. (40) is conveniently

solved in resorting to Ref. 90. An alternative way to determine

the complex phases has been devised in Ref. 39, where the

problem was tackled using recurrence relations of the Gamma

function.

The forward FFTLog transform from the space of dimension-

less distances x to the space of dimensionless wavenumbers y

can be evaluated as[37,38]

~f ðynÞ5
2p
yn

� �d=2X0

m

cmumexp f22pimn

N
g; (41a)

cm5
1

N

X0

n

f ðxnÞxd=2
n exp f22pimn

N
g; (41b)

and the inverse transform (from y- to x-space) reads[37,38]
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f ðxnÞ5x2d=2
n

X0

m

~cm

u�m
exp

n22pimn

N

o
; (42a)

~cm5
1

N

X0

n

~f ðynÞ
yn

2p

� �d=2

exp
n22pimn

N

o
; (42b)

with the star denoting the complex conjugate. Being nothing

else but discrete, one-dimensional Fourier transforms, all four

eqs. (41a–42b) can be solved by numerically efficient FFT algo-

rithms, which are available in a great variety of implementa-

tions. Here, we use a mixed-radix FFT routine,[90] imposing no

constraints on the number of grid points 2bN=2c11.

For validity of eqs. (41b) and (42b), it is necessary to fulfill

the constraint u2bN=2c5ubN=2c in choosing the parameters

x0; y0;N, and L of the grids in eq. (38). Fulfilling this constraint

is equivalent to

N ln ðx0y0Þ
L

5
1

p
Arg

�
2piN=L Cðd=41piN=ð2LÞÞ

Cðd=42piN=ð2LÞÞ

�
1z; (43)

with an arbitrary integer number z, and Arg[c] denoting the

phase of complex number c. In Refs. 37,38, the criterion in eq.

(43) has been named the low-ringing condition. In all calcula-

tions with results presented here, we have chosen x051, and

x0y0 � 1, while fulfilling eq. (43).

An important virtue of the FFTLog transform in eqs. (40–

42b) is its computational efficiency for arbitrary dimensions d.

Choosing the number of grid points as an integer power of 2

results in optimal performance of the transforms in eqs. (41a–

42b), each requiring OðNlog 2NÞ arithmetic operations in that

case. We note here that an alternative, numerically efficient

method of calculating d-dimensional Fourier-Bessel transforms

of the kind of eqs. (6) and (7) has been used in Refs. 91–94. In

this alternative approach, which does not require logarithmic

grids, the Fourier-Bessel transforms are replaced by a sequence

of so-called hat transforms and FFTs.

For even d, in particular for d 5 2, numerically less efficient

methods for computing the transforms in eqs. (6) and (7) have

been reported,[95–97] each of which requires OðN2Þ arithmetic

operations. Such numerically suboptimal OðN2Þ transforms

have been applied in various liquid integral equation

studies.[23,67,98]

For d 5 3 (odd number of dimensions, in general), using

the transform in eqs. (39)–(43) is not obvious as the standard

FFT can be directly applied to functions sampled on grids with

uniform spacing. Uniformly spaced grids, however, are not

ideally suited for sampling the correlation functions of highly

asymmetric PM fluids. Ion size and charge-ratios of the order

of 1:1000 in typical colloidal suspensions render it necessary to

simultaneously resolve length scales that differ by a factor of

more than 1000, which requires huge numbers of grid points

in uniformly spaced grids. For instance, in Ref. 27,

2185262; 144 points had to be used to sample correlation

functions for ion diameter asymmetry of 1:80 and charge

asymmetries up to 1:450 (at nonzero macroion number den-

sity), resembling only rather small macroions. Logarithmic

grids, conversely, are ideally suited to capture the different

length scales in (asymmetric) charged sphere systems, as it has

been first pointed out by Rossky and Friedman.[33] Logarithmic

grids have later been used in d 5 3 liquid integral equation

studies[41–43] but, to our knowledge, no liquid integral equa-

tion study has been conducted so far, where the advantages

of the transform in eqs. (39)–(43) have been exploited in solv-

ing pair correlations of an extremely asymmetric PM. Our

results presented here, for ion charge- and size-ratios both

simultaneously as high as 1:1000, have been obtained using

no more than 21358192 grid points.

In addition to ionic mixtures, suspensions of electrically neu-

tral, nonoverlapping hard (hyper)spheres, for which Cij50 in

eq. (4), are a salient testing ground for the applicability of the

numerical algorithm presented here. The rdf’s of hard sphere

suspensions exhibit narrowly spaced undulations in the rdf’s

gijðxÞ, with a periodicity that is approximately equal to the

dimensionless hard-core diameter rijn
1=d.[99] For logarithmic

grids with exponentially increasing spacing of the gridpoints,

one might therefore expect severe undersampling of hard-

sphere rdf’s for large values of x. This kind of undersampling,

however, is of negligible influence, since the hard-sphere total

correlation functions hijðxÞ decay very steeply to values that

are in the range of the numerical resolution of common digital

computers. Using representative values for d53 hard sphere

suspensions with nonadditive hard-core diameters, taken from

Ref. 99, we have checked that our algorithm converges reli-

ably, even for nonadditive hard sphere mixtures close to the

critical fluid–fluid demixing point.

MD simulations

In this article, we present MD simulation data for fluids in d 5

3 spatial dimensions only. We have simulated globally electro-

neutral systems with three or four different ion species in a

cubic box of edge length B with periodic boundary conditions

in all three Cartesian directions. The MD simulation method

used here is the same as in Refs. 8,100. In order to handle the

long-ranged Coulomb interactions, we use the Lekner summa-

tion method,[101–103] which takes the real-space particle coordi-

nates as its only input. An alternative way to handle the

Coulomb interactions is the Ewald summation method,[104]

where the Coulomb interactions are split into two quickly con-

vergent sums in real space and reciprocal (wavenumber)

space. Both methods are of comparable numerical expense,

and have been successfully applied to colloidal systems in d 5

3 dimensions. For a comprehensive review of the computation

of long-ranged interactions, including the Ewald and Lekner

summation methods, we refer to Ref. 105.

All parameters for the simulations presented here are listed

in Table 1, with Ni denoting the total number of particles of

species i in the simulation box, such that ni5Ni=B3. All simula-

tions are for a Bjerrum length of LB50:701 nm, corresponding

to water at room temperature. A representative snapshot of

particle positions for the four-component system (rightmost

column of Table 1) is shown in Figure 1.

On average, 1 week of execution time on a 64 bit computer

cluster is enough to get fairly good statistics for the
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macroion–macroion and the macroion–microion correlation

functions, for the systems consisting of up to 32,208 charged

particles. Achieving comparably good microion–microion statis-

tics would require even much longer execution times, due to

the small relevant microion–microion scattering cross section,

the overall rather small number density of microions, and the

short binning length that would be required to extract sensible

microion–microion radial distribution functions from the raw

MD data. Therefore, we restrict ourselves here to comparisons of

macroion–macroion and macroion–microion pair correlations

obtained from MD simulations and the HNC scheme.

Results

Thermodynamical properties and pair-correlations in one to

six dimensions

As a first result, the HNC solutions computed in our numerical

algorithm are in agreement with the d-dimensional local elec-

troneutrality (LEN) conditions

sgnðZiÞ
ffiffiffiffiffiffiffiffi
jCiij

p
5
!

2 lim
x!1

AðdÞ
ðx
0

dx0siðx0Þx
0d21; (44)

where siðxÞ, defined as

siðxÞ5visgnðZiZjÞ
ffiffiffiffiffiffiffiffi
jCijj

q
gijðxÞ (45)

is the isotropic charge density around a test particle of species

i. In eqs. (44) and (45), sgnðxÞ is the sign function. The LEN

condition states that the total charge of ions around a test

particle cancels out with the test particle’s charge. If a compu-

tational grid is chosen that extends to a very large outer

radius xbN=2c, we find the LEN condition in eq. (44) violated at

large x, where the functions c
ðsÞ
ij ðxÞ and cðsÞij ðxÞ assume values

too small to be resolved at machine precision. However, if tak-

ing the x !1 limit in eq. (44) is replaced by insertion of an

intermediately large value of x � 100, where the oscillations in

all gijðxÞ have essentially died out, we find eqs. (44) fulfilled to

within good accuracy.

In the special case of m 5 1, our algorithm allows to com-

pute pair-correlations of the OCP in arbitrary dimensions, as

illustrated in Figure 2. Note here the good quality of the HNC

solutions at small wavenumbers, where the vanishing com-

pressibility of the OCP, with lim y!0 S11ðyÞ50, is well described.

The magnitude of the undulations in the S11ðyÞ and g11ðxÞ
plotted in Figure 2 is a nonmonotonic function of the dimen-

sion d, with maximal undulations occurring for d 5 3.

In Figures 3 and 4, we compare the HNC rdf’s gijðrÞ for

three- and four-component PMs in d 5 3 to the results of our

MD simulations. Overall good agreement is observed between

the HNC and MD results, the most prominent discrepancy

being an underestimation (of up to about 20%) of the princi-

pal peak height in the HNC macroion–macroion rdf’s, occur-

ring at strong macroion correlations. Underestimation of the

principal peak heights in the macroion–macroion pair-

correlation functions is a known shortcoming of the

HNC,[11,106,107] which can be tackled by choosing an alterna-

tive, thermodynamically partially self-consistent integral equa-

tion scheme. [13–16] An alternative method to improve the

accuracy of the HNC consists in using a tailored Ansatz[56,98]

for the bridge function[11] at high coupling, which is neglected

altogether in the HNC.

In Figure 5, we display all HNC partial rdf’s and static struc-

ture factors of three-component, globally electroneutral PMs in

all integer dimensions d from 2 to 6. The dimensionless pair-

potential parameters are the same for all systems in the figure,

with coupling constants C225C3352C2350:01; C1352C12525,

and C115625, corresponding, for d 5 3, to Z15250,

Table 1. Parameters for the d 5 3 MD simulations of the present study.

Ternary Quaternary

Results in Fig. 3 Fig. 4

N1 48 24

N2 4080 24

N3 6280–28080 1900

N4 -.- 13680

r1 150 nm 122 nm

r2 0.60 nm 68 nm

r3 0.60 nm 0.61 nm

r4 -.- 0.61 nm

Z1 25–500 380

Z2 1 190

Z3 21 1

Z4 -.- 21

B=r1 7.951 7.566

The Ni are the numbers of particles of species i in the cubic box of

edge length B.

Figure 1. A representative snapshot of particle positions from our MD sim-

ulations of a four-component, three dimensional PM (right column of Table

1, with rdf’s shown in Fig. 4). The full simulation box is shown. Two macro-

ion species (green and bronze) of different diameters and charge numbers

are contained. Sizes of coions (blue) and counterions (red) are exaggerated,

to render the microions visible.
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Z2521; Z351, and LBn1=350:1. The hypervolume fraction of

species 1 is u150:01 for all systems in Figure 5, and

n35n1

ffiffiffiffiffiffiffi
C11

p
, which means that there is one salt coion per

macroion-surface released counterion. A rather small ratio of

macroion- to microion diameters, r1=r25r1=r355, has been

chosen for the systems in Figure 5 since, for larger size asym-

metry, the solution in higher dimensions such as d 5 6

becomes numerically very slowly convergent or divergent. Note

that Figure 5 features panels with double logarithmic as well as

logarithmic-linear axes, and that the axes ranges vary from

panel to panel, to exhibit simultaneously the details of the vari-

ous plotted functions.

In Figure 5, the gijðxÞ and SijðyÞ with the most pronounced

oscillations around the asymptotic value one are for d 5 2. For

rising dimension and fixed dimensionless potential parameters,

particle packing becomes less efficient and the decay of the

Coulomb potentials becomes steeper. Therefore, the undulations

in the pair-correlation functions get reduced for rising d until, for

d 5 6, the undulations have almost completely died out.

Application to the colloidal domain

Figure 6 features all HNC gijðxÞ and SijðyÞ for a d 5 3, ternary

PM that resembles a realistic suspension of colloidal particles

in aqueous (LB50:70 nm) electrolyte with a low concentration

of dissociated NaCl. The diameter of the macroions is taken to

be r151 lm, corresponding to rather large colloidal particles,

while the diameters r250:756 nm and r350:922 nm corre-

spond to hydrated Na1 and Cl2 ions, respectively. Here, we

have chosen the concentration of Cl2 coions (species 3) as

n35n1jZ1j, so that the suspension contains one coion per

colloid-surface released counterion, and overall about twice as

many counterions as coions, n2 � 2n3. With the assumed mac-

roion charge Z152750, which is a realistic bare charge for a

micron-sized colloidal sphere, this gives a coion concentration

of n350:71 lM. This corresponds to an almost deionized aque-

ous solvent with a little amount of dissociated salt only (c.f.,

the number concentration, n50:1 lM, of the water self-

dissociation products H3O1 and OH- at neutral pH-value,

which is a lower bound for the coion concentration).

Effective colloidal interactions

As a dimensionless effective pair potential between particles

of the same species a in an m-component fluid mixture, one

can define[79]

ueff
aaðxÞ5haaðxÞ2ceff

aa ðxÞ2ln ½gaaðxÞ�; (46)

where ceff
aa ðxÞ is an effective direct correlation function between

particles of species a. The Fourier transform of the latter is

~ceff
aaðyÞ5

~haaðyÞ
11va

~haaðyÞ
; (47)

with the total correlation function ~haaðyÞ5~caaðyÞ1~caaðyÞ
5~cðsÞaa ðyÞ1~cðsÞaa ðyÞ taken from the solution of the coupled m-com-

ponent set of eqs. (12–14). Equations (46) and (47) constitute an

inversion of the HNC for species a only, meaning that a one-

component fluid of particles with pair-potential ueff
aaðxÞ, solved

within the HNC approximation, shows exactly the same pair-

correlation functions as component a of the m-component

mixture.

Consider now a three-dimensional, ternary ionic liquid mix-

ture of macroionic spheres (species a) with diameter ra and

charge number Za, monovalent counterions, and monovalent

coions. In this case, the repulsive part of the dimensionless

Derjaguin-Landau-Verwey-Overbeek (DLVO) effective pair

potential between two macroions at a nonoverlap center-to-

center distance x > ran1=3 can be written as[108]

uDLVO
aa ðxÞ5Caa

ekra n1=3

11 kra n1=3

2

� �2

e2kx

x
; (48)

with Caa5LBn1=3Z2
a , as defined further up this text. Equation

(48) involves the dimensionless DLVO screening parameter k,

which is given by

k254pLBn1=3ðvajZaj12vcoionÞ (49)

with vcoion denoting the mole fraction of coions. The DLVO

potential in eq. (48) is valid for two macroions in a bath of

microions whose distribution can be treated in the Debye-

H€uckel approximation. It is thus valid only at low-macroion con-

centration, and for LBZa=ra�1, that is, for ionic pair interactions

that do not considerably exceed the thermal energy. Under con-

ditions where LBZa=ra > 1, the potential in eq. (48) is neverthe-

less a good approximation to the effective macroion pair-

potential at sufficiently large particle separation, provided that

the charge number Za, entering via Caa and eq. (49), is replaced

by an effective charge number Zeff
a < Za.[44,46,49,109–117] The

Figure 2. OCP (m 5 1) static structure factors, S11ðyÞ, and rdf’s, g11ðxÞ, for

coupling parameter C115100 and hypervolume fraction u151023. The

value of u1 is in every case small enough to ensure a practically vanishing

rdf contact value, g11ðx5r11n1=dÞ � 0. Correlation functions for systems in

all integer dimensions from d 5 1 to d 5 6 are plotted. Principal peak

positions of S11ðyÞ and g11ðxÞ shift from left to right as d increases.
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effective charge Zeff
a e has to be regarded as the net charge of a

colloid dressed with closely associated counterions.

While theories for the saturation value, Zeff
a ðZa !1Þ, of the

effective charge number are available,[112,113,118] calculation of

the nonsaturated effective charge in a PM, in its full depend-

ence on the concentrations and charges of all ionic species,

remains a challenging task. Two approximate theories must be

mentioned at this point, which are being extensively used to

calculate colloidal effective charges. The first approach is com-

monly referred to as the CM and has been introduced by

Figure 3. HNC (solid curves) results for all partial rdf’s of three-dimensional, three-component, globally electroneutral PMs. Macroion–macroion and macro-

ion–microion rdf’s are compared with MD simulation results (symbols) in the upper row of panels. Each panel corresponds to a fixed particle-species pair-

ing, as indicated on the vertical axes labels. Common system parameters are r15150 nm, r25r35r1=25050:6 nm, LB50:701 nm,

u150:05; n354 lM Z2521; Z351. The macroion charge number, Z1, has been varied, assuming the values Z1525 (open black circles, black lines), Z1550

(open red diamonds, red lines), Z15100 (open blue squares, blue lines), Z15200 (open green upwards triangles, green lines), Z15300 (filled blue circles,

blue lines), Z15400 (filled red downward triangles, red lines), and Z15500 (black crosses, black lines). [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 4. HNC (solid, dashed, and dotted curves) results for all partial rdf’s of a three-dimensional, four-component, globally electroneutral PM. Macroion–

macroion and macroion–microion rdf’s are compared with MD simulation results (symbols). Species 1 and 2 are macroions with charges of equal sign,

where species 1 is more strongly charged and possesses a larger hard-core diameter than species 2. Species 3 are the counterions, which are of equal size,

but opposite charge, as the coions of species 4. System parameters are r15122 nm, r2568 nm, r35r45r1=20050:61 nm, LB50:701 nm,

u5
X

i

ui50:034; n15n2; n454 lM Z15380; Z25190; Z3521; Z451. The left two panels are in logarithmic-linear scale, and the right panel exposes the

details of the macroion–macroion rdf’s on a doubly linear scale. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Alexander et al. [44] In this approach, the coupled Poisson and

Boltzmann (PB) equations for the microion distribution are

numerically solved in a spherical cell reminiscent to the

Wigner-Seitz cell of a crystal, with the diameter of the cell cho-

sen equal to the colloidal mean geometric distance �n
21=3
a .

The CM allows to compute approximate values for Zeff
a , and its

dependence on Za and the concentration of all ion species.

However, macroion correlation effects are represented only in

a minimalistic fashion in the CM, by a contraction of the cell

at rising particle concentration.

A second, alternative mean-field like approach to determine

Zeff
a is the RJM by Trizac and Levin.[46] In the RJM, the macroion

charges entering the PB equation are approximated as a homo-

geneous background charge density (the “jellium”) of a magni-

tude 2naZeff
a e, which has to be determined self-consistently.

Later works comprise modifications of the RJM, where macroion

correlations are accounted for in a minimalistic model for the

macroion–macroion rdf with a density-dependent correlation

hole,[9,47] or via the Rogers-Young integral equation scheme,[106]

solved self-consistently in combination with the PB equation.[49]

Figure 5. HNC partial rdf’s gijðxÞ (dark and light blue) and partial static structure factors SijðyÞ (red and orange) of three-component, globally electroneutral

PMs in d52; 3; 4; 5; and 6 spatial dimensions, with equal dimensionless pair-potential parameters as indicated in the box in the upper left corner. The

undulations in the functions are strongest for d 5 2, and decay with rising dimension d. All rdf’s are plotted in double-logarithmic scales of equal horizon-

tal and vertical axes ranges. The horizontal y-axis ranges are equal in all structure factor plots, and the vertical SijðyÞ-axis ranges are ½0; 2� for i5j51; ½21; 6�
for j 5 2 and for i5j53, and [26,1] for j53 6¼ i. The peak positions of the three d 5 2 partial static structure factors that exceed their panel’s vertical axis

ranges are S22ðy50:237Þ59:0; S23ðy50:237Þ529:5, and S33ðy50:236Þ510:7. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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In Ref. 50, the RJM has been revisited and an efficient solution

method for the self-consistent solution has been proposed,

where the colloidal bare charge is avoided as an input parame-

ter. The same method has been extended to suspensions con-

taining macroions of different size and charge.[51] The CM, the

RJM, and related schemes where the PB equation has been

solved for particle configuration obtained from Monte Carlo

simulation, are routinely being used in determining the micro-

structure in suspensions of highly charged colloidal particles.[48]

Here, we determine the effective charge by replacing Za with

Zeff
a in eqs. (48) and (49), and tuning Zeff

a until the resulting pair-

potential optimally fits the HNC inversion effective potential in

eq. (46) at large x. Examples for systems of colloidal particles

with ra5r15250 nm, suspended at ua5u151024 in an aque-

ous 1-1 electrolyte with a fixed concentration, n351 lM, of salt

coions, are shown in Figure 7. Results for three different colloi-

dal charge numbers, Z15100; 400, and 1000 are shown. Note

that v35vcoion 	 Zava5Z1v1 for all three systems shown in Fig-

ure 7, such that the DLVO screening length in eq. (49) is not

considerably altered by replacing Za with Zeff
a . Fitting the poten-

tial in eq. (48) to the one obtained from eq. (46) therefore corre-

sponds to vertical translation of uDLVO
aa ðxÞ in the linear-

logarithmic plot of Figure 7. For the lowest considered colloid

charge number, Z15100, the DLVO-potential calculated accord-

ing to eqs. (48) and (49) (lowermost blue dotted curve) is in

nearly perfect agreement with the HNC-inversion potential (low-

ermost red solid curve). Fitting the DLVO potential with effective

charge number input to the HNC-inversion potential, results in

Zeff
1 599:85, which is only slightly lower than the bare colloidal

charge number. The same procedure, carried out for Z15400

and Z151000, results in effective charge numbers of Zeff
1 5390

and 825, respectively. This demonstrates the capability of the

used numerical methods to access HNC solutions of the PM for

realistic suspensions of charged colloids, where charge renorm-

alization plays an important role.

In Figure 8, we plot the effective charge of macroions (spe-

cies 1) as a function of the macroion bare charge, for various

concentrations of salt coions, n351; 10; and 100 lM. The maxi-

mal macroion–microion attraction for systems plotted in Figure

8 is characterized by a value of LBZ1=r1 � 3:92, for Z151400

and n35100 lM. In agreement with recent small angle X-ray

scattering studies for charged colloidal spheres in aqueous

electrolytes,[119,120] we find that association of counterions to

the macroion surfaces is most efficient at low salinity. This is

reflected in Figure 8 by a steepening decay of Zeff
1 ðZ1Þ, for

decreasing salinity n3. The macroion–counterion rdf’s g12ðxÞ
(not shown here) exhibit a contact value g12ðr12n1=31Þ that is

much higher at low than at high salinity, which can be attrib-

uted to changes in the effective macroion–counterion pair-

potential: in a similar way as the repulsive macroion–macroion

interactions, also the attractive macroion–counterion interac-

tions are screened in the presence of (other) microions. This

screening is more efficient at high microion concentrations,

Figure 6. All HNC partial static structure factors (top) and rdf’s (bottom) for

a three-dimensional, three-component PM of micrometer-sized colloids in

aqueous NaCl electrolyte. Particle-species indices corresponding to each

curve are given in the legend. Parameters: r151000 nm, r250:756 nm

(hydrated Na1), r350:922 nm (hydrated Cl2), Z152750; Z251;

Z3521; u150:1; LB50:70 nm, n35n1jZ1j (one coion per surface-released

counterion). [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

Figure 7. Unscreened dimensionless Coulomb-potentials u11ðxÞ (black solid

curves), effective dimensionless pair-potentials ueff
11 ðxÞ, computed by the

HNC inversion in eqs. (46) and (47) (red solid curves), and dimensionless

DLVO pair potentials uDLVO
11 ðxÞ, defined in eqs. (48) and (49) (blue dotted

curves), between a pair of macroions (species 1) in three-component,

three-dimensional, globally electroneutral ionic mixtures with common

parameters r15250 nm, r25r350:6 nm, Z2521; Z351; LB50:701 nm,

u151024, and n351 l M. Results for three macroion charge numbers,

Z15100; 400, and 1000 are shown. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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that is, at high salinity, where it leads to a less pronounced

accumulation of counterions close to the macroion surfaces.

Upon further reducing the salt coion concentration n3 to

values significantly less than 1 lM, we did not succeed in fit-

ting the DLVO potential in eq. (48), with adjustable effective

charge number, to the effective potential obtained from the

HNC inversion at large particle separations. This failure to pre-

dict reliable effective colloidal charge numbers at very low

salinity can be traced back to the corresponding small value of

the screening parameter k, and the relative long-rangedness of

ueff
aa ðxÞ: For very long-ranged effective potentials, the asymp-

totic decay is shifted to particle separations x�100, where the

LEN condition in eq. (44) is violated due to numerical rounding

errors. In such a case, we do not obtain reliable long-ranged

asymptotics of ueff
aa ðxÞ from the coupled PM-HNC scheme solu-

tion. Unfortunately, the failure of our method to predict effec-

tive charges at very low salinity complicates comparisons to

CM or RJM results for Zeff
a as a function of Za. Although, the

CM and RJM are not in principle limited to low salinity,[48]

results for Zeff
a ðZaÞ have been published for vanishing or very

small salt-ion concentrations only. Note, however, that salt-ion

concentrations of less than 1 lM are uncommon in typical

experiments where solvent self-dissociation and ionic contami-

nations such as adsorbed CO2 are difficult to avoid. The salt

concentration range covered in Figure 8, therefore, includes

the experimentally most relevant cases. Also, we have checked

that our results shown in Figure 8 are in reasonable agree-

ment with modified RJM results for zero salinity and a small

volume fraction u51023, shown in Figure 2 of Ref. 47.

Conclusions

We have shown that a combination of a numerically robust

fixed-point iteration scheme and logarithmically spaced com-

putational grids allows efficient computation of HNC solutions

of the d-dimensional PM, with explicit results shown for d � 6.

Logarithmic grids are ideally suited for the discretization of

pair-correlation functions of ionic mixtures with large particle

diameter and charge asymmetries. This has allowed us to

access HNC solutions for PM parameters corresponding to real-

istic suspensions of micrometer-sized colloidal spheres with

charge numbers as high as jZj � 1000, in an aqueous 1-1

electrolyte.

Numerical stability might be further improved in future

studies, if another elaborate fixed-point iteration scheme is

used.[75–77,87–89] We expect that this would give access to HNC

solutions of the PM at charge and diameter asymmetries

exceeding the ones reported here.

We have demonstrated that colloidal effective interaction

potentials and effective DLVO charge numbers can be extracted

from the multicomponent HNC scheme solution, provided that

the salt ion concentration is nonzero, and that the macroion–

counterion attraction energy at contact does not exceed a value

of LBZ1=r11 � 4:0. Our approach of determining colloidal

effective charges complements the Poisson-Boltzmann cell

model and the jellium model in its various recent modifications.

Both the cell model and the jellium model have been solved

mostly for vanishing salinity, in very large ranges of the bare col-

loidal charge Z1 that exceed the values accessible by our

method.

Future projects, based on the methods presented here,

might include ab initio modeling of colloidal suspensions with

reactive electrolytes such as NaOH,[52,53] including chemical

association–dissociation reactions influenced by the locally

varying pH-value near the colloidal particle’s surfaces.

As opposed to MD simulations of the asymmetric PM, with

very long program execution times even for moderate ion size

and charge-asymmetries, the solution of the HNC equations

with the method described here takes few minutes or less on

an inexpensive, standard computer. In addition, the HNC is a

good approximation for mixtures of charged particles with

long-ranged pair-potentials, predicting pair-correlation functions

in good agreement with the numerically expensive computer

simulations. Despite continuing rapid progress in computer sim-

ulations, liquid integral equations therefore remain an indispen-

sable approach in studying highly asymmetric electrolytes.
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