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Dynamics of two-dimensional one-component and binary Yukawa systems in a magnetic field
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We consider two-dimensional Yukawa systems in a perpendicular magnetic field. Computer simulations of
both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state.
The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion), for strong fields
(ωc/ωp � 1). For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the
particle species, providing an external control of their mobility ratio. At large magnetic fields, the highly charged
particles are almost immobilized by the magnetic field and form a porous matrix of obstacles for the mobile
low-charge particles.
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I. INTRODUCTION

Transport properties in liquids are relevant for various
applications ranging from solvation of tablets [1] and the
penetration of salt ions into fresh river water [2] to imbibition
problems [3]. Hence, there is a need for a basic understanding
of particle diffusion on the most fundamental level of the
individual particles. The particle trajectories, as governed by
Newton’s equation of motion with the interparticle forces, are
the natural starting point to understand and predict the transport
properties [4]. Already in equilibrium this is still a nontrivial
problem of classical statistical mechanics.

Yukawa systems are a quintessential model of softly inter-
acting systems and are used to study, e.g., complex plasmas [5–
7], colloidal suspensions [8], the warm dense matter state [9],
or the interior of white dwarf stars [10]. Further, in the limit of
vanishing screening, this model reduces to Coulomb systems,
such as ions in Paul traps; e.g., Refs. [11,12]. Typically, the
interaction between the particles in these systems is strong
and repulsive, so that, at high densities, the system can exhibit
both fluid and solid phases [13]. In this paper, we study the
particle dynamics of a two-dimensional Yukawa liquid which
is exposed to an external magnetic field of strength B.

Although the presence of a magnetic field does not alter
the equilibrium static properties, such as phase transitions, the
dynamics is strongly affected [14]. Due to the Lorentz force,
the charged particles exhibit a circular motion [15–17] which
is expected to slow down the particle migration. Therefore the
magnetic field opens the fascinating possibility of changing
the dynamical properties of the system externally without
preparing a new experiment with different particles. The
magnetic field might, however, change other aspects of the
experiment, such as the plasma parameters in complex plasma
experiments, which in turn influence details of the interaction
between the particles (screening); see below.

Some aspects of the dynamics of a one-component plasma
in a magnetic field have been considered in previous studies
[5,14,16,18–21]. In particular, the motion of few-particle
clusters in magnetic fields has been analyzed by both ex-
periments and simulation [15,17,22–24]. The dynamics of
three-dimensional ionic binary mixtures has also been under
investigation in early as well as recent research [25–28], with

a particular focus on astrophysical plasmas and those encoun-
tered in inertial confinement fusion. A recent work by Kalman
et al. focuses on the description of the collective excitation
of waves in two-dimensional binary Yukawa systems [29].
Binary Yukawa systems have also been studied in the context
of white dwarfs where liquid and crystalline ionic mixtures are
expected to exist [10], whereas binary Coulomb systems were
observed in ion trap experiments [12].

Here, we focus on two-dimensional systems and explore the
long-time dynamics by computer simulations. We confirm the
1/B scaling of the long-time diffusion coefficient for strong
magnetic fields [16] for the two-dimensional system. We
moreover consider binary systems composed of high-charge
and low-charge particles [30–32]. Our motivation to study
a binary system comes from the fact that the magnetic
field affects the dynamics of the particle species differently.
Thereby, the individual particle dynamics can be steered
externally via the magnetic field. One important parameter
is the mobility ratio of the two species, which governs the
mutual diffusion and is one key parameter for the nature of
the kinetic glass transition in mixtures [33–35]. This ratio is
typically fixed by the mass ratio [36] and the interactions [37]
and can therefore not be easily tuned. Here we show that this
ratio can be controlled by an external magnetic field insofar
as the high-charge particles are more strongly immobilized
than the low-charge particles. For large magnetic fields, it
is even conceivable that the high-charge particles are almost
immobilized while the low-charge particles are still mobile.
This opens the way to realizing a porous model matrix in
two dimensions. Recently a similar matrix has been created
by adsorbing colloidal particles onto a substrate [38]. Our
approach, however, is more flexible as everything can be
controlled externally.

This paper is organized as follows: In Sec. II we describe our
model of complex plasmas in a magnetic field. In Sec. III we
describe results for the one-component case. Binary mixtures
are then considered in Sec. IV. Finally, we conclude in Sec. V.

II. MODEL

We consider one-component systems and charge-
asymmetric binary mixtures of uniform mass m, charge ratio
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FIG. 1. (Color online) Pair distribution functions and particle
trajectories during time ωpt = 30 at � = 30, β = 0.5. Left: One-
component system. Right: Binary mixture with Qr = 4 and nr = 1/3.
The highly charged particles are shown in red (gray).

Qr = q2/q1, and density ratio nr = n2/n1, where the numeric
indices label the particles species. The particles are situated in
a two-dimensional quadratic simulation box of side length L,
giving rise to partial densities n1,2 = N1,2/L

2, and interact via
a screened Coulomb interaction with screening length λ,

Vij (ri ,rj ) = qiqj

|ri − rj | exp(−|ri − rj |/λ). (1)

In addition, we consider the influence of an external magnetic
field B perpendicular to the particle plane, giving rise to the
cyclotron frequency ωc,1,2 = |q1,2|B/(mc) (c is the speed of
light).

The system is fully described by a set of five parameters: Qr ,
nr , κ , �, and β. Here, the screening strength is defined as κ =
a/λ with the Wigner-Seitz radius a = [π (n1 + n2)]−1/2, � =
�1 = Q2

1/(akBT ) (T is the temperature), and β = β1 = β2 =
ωc,1,2/ωp,1,2, where ωp,1,2 = (2q2

1,2/(a3m))1/2 is the nominal
Coulomb plasma frequency. In the following, we normalize
lengths by a and times by the inverse of ωp=̇ωp,1.

Our investigations are carried out by molecular dynam-
ics simulation for N = 16 320 particles and encompass a
measurement time of ωpt = 100 000 which is preceded by
an equilibration period. The simulation is carried out in
the microcanonical ensemble at κ = 1; typical trajectory
snapshots are shown in Fig. 1. Notice the familiar circular
paths induced by the magnetic field and the different mobility
of the particle species in the binary system. An external
magnetic field does not influence the equilibrium structure of
one-component systems or binary mixtures (by the Bohr–van
Leeuwen theorem). The charge ratio, on the other hand, has
a strong influence on the structure as quantified by the pair
distribution function gαβ(r); see the upper graphs in Fig. 1.
In the binary mixture, the lightly charged particles exhibit
a smaller correlation gap at small distances and a lower
peak height, indicating a smaller degree of correlation in
this subsystem. The highly charged subsystem is considerably
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FIG. 2. (Color online) MSD of a one-component system with
� = 100 at different magnetic field strengths. The straight lines
indicate linear and quadratic growth. The order of the curves is the
same as in the key.

more correlated [see g22(r) in Fig. 1], and the cross correlation
between the particles species [g12(r)] falls in between.

The study of the dynamics of the system is undertaken
by calculating the mean-squared displacement (MSD) u(t)
defined as

u(t) = 〈|ri(t + t0) − ri(t0)|2〉i,t0 , (2)

where the averaging is over all particles and all starting
times t0. According to classical transport theory, the diffusion
coefficient follows as

D = 1
4 lim

t→∞
u(t)
t

. (3)

Since the existence of Fickian diffusion is doubtful for
strongly coupled two-dimensional Yukawa systems [39,40],
we evaluate Eq. (3) at a fixed time instant tωp = 4850 and
denote it D∗, keeping in mind that this measure of the
mobility should not be identified with the long-time diffusion
coefficient.

III. ONE-COMPONENT SYSTEM

Before investigating the binary system, we first establish
the general diffusion trends in a magnetized, one-component
two-dimensional (2D) Yukawa system [41]. The behavior
of the MSD in such a system at � = 100 is shown in
Fig. 2 for different magnetic field strengths. For β = 0, the
ballistic regime with a quadratic increase at small times is
followed by a quasidiffusive regime in which the MSD grows
almost linearly with time. With increasing magnetic field, the
signature of the circular paths is visible in the MSD curves as an
oscillatory growth. The localization of individual particles at
high magnetic field values gives rise to an additional regime at
very small time delays during which the MSD is subdiffusive,
i.e, during which u(t) grows less than linearly with time.

The scaling of the diffusivity D∗ as a function of the
magnetic field strength is of central interest with regard to
the dynamics of the system. This scaling is shown in Fig. 3.
For small values of β, the rapidity of the diffusive motion
is unaffected, regardless of the coupling constant �. Only
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FIG. 3. (Color online) Top: D∗ as a function of β for values of
� as indicated in the figure. The dotted lines show a decay β−1 as
a guide for the eye. Bottom: D∗ normalized by the field-free value
D∗

0 = D∗(0). The normalized values fall on a universal curve for all
values of �.

when magnetic field effects become important at β � 0.1
does D∗ begin to decay. At β ≈ 1, the scaling becomes the
familiar Bohm type diffusion, D∗ ∝ 1/β [45]. This is the same
behavior that was found in the diffusion perpendicular to the
field in strongly coupled three-dimensional one-component
plasmas (OCPs) [16].

The functional form of the D∗(β) dependence is quite
insensitive to �, as demonstrated in the lower graph of
Fig. 3. This is in contrast with the corresponding behavior
of a three-dimensional OCP [16] which shows a clear �

dependence in both field-parallel and -perpendicular diffusion.
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FIG. 4. (Color online) MSD of a binary system with nr = 1,
Qr = 0.5, and � = 100 at different magnetic field strengths. The
lower of each pair of curves corresponds to the more highly charged
particles. The straight lines indicate linear and quadratic growth. The
order of the curves is the same as in the key.

The reason for the more complex behavior in 3D systems is
the mutual interference between the two diffusion directions
(mediated by the strong coupling between the particles), which
is absent in 2D systems.

IV. BINARY SYSTEM

In this section, we expand on the previous investigation and
consider charge-asymmetric binary Yukawa systems with a
repulsive interaction. The density ratio is fixed to nr = 1, i.e.,
N1 = N2, while the charge ratio Qr and the magnetic field
strength β are varied.

Figure 4 shows the MSD of such a binary system at Qr =
0.5 and different magnetization; for each value of β, there are
two curves, reflecting the two particle species. Evidently, the
particles carrying a lower charge are more mobile, regardless
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FIG. 5. (Color online) D∗ as a function of β for binary systems
with charge ratio Qr = 0.5 and Qr = 0.2. The lower one of each pair
of curves corresponds to the more highly charged species. The dotted
lines show a decay β−1 as a guide for the eye.
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FIG. 6. (Color online) Ratio D∗
2/D

∗
1 for � = 100,160 (top) and

� = 30 (bottom) at different charge ratios Qr as a function of β.
The right axis in the top graph shows the relative change for Qr =
0.2,� = 100, normalized to β = 0.

of the magnetic field strength. For increasing β, however, the
disparity in mobility between the two species grows steadily,
as evidenced by the increasing gap between the two MSD
curves when going from zero magnetic field to β = 10.

More data are presented in Fig. 5, which shows D∗ as a
function of β for two values of Qr . The functional form of the
data is comparable to that in the one-component case consid-
ered in the previous section and is well described by Bohmian
diffusion for both species for β � 1. A closer look, however,
reveals that the response of the less highly charged (more

mobile) species is shifted to higher values of β which results
in an increase in the mobility ratio between the two species.

In the upper graph of Fig. 6, this is demonstrated for strong
coupling � = 100,160, by plotting the ratio D∗

2/D
∗
1 . While

a modest charge ratio of Qr = 0.8 results only in a small
variation of this ratio, the influence of the magnetic field grows
with decreasing Qr , so that at Qr = 0.2, the magnetic field
alone can be used to manipulate the mobility ratio by a factor
of 2 for β = 10 (see the right-hand scale in Fig. 6). Since the
mobility ratio plays a crucial role during the glass transition,
this effect can be leveraged to investigate the conditions for
glass formation in one and the same system by controlling the
mobility ratio by the external magnetic field.

The relatively simple dependence of D∗
2/D

∗
1 on β for

strongly coupled plasmas shown in the upper part of Fig. 6
has to be contrasted with the more intricate behavior of
the same ratio for � = 30 (lower graph in Fig. 6). Here,
a highly nonmonotonic dependence of the ratio D∗

2/D
∗
1 is

observed, which becomes more strongly pronounced for more
disparate charge ratios. The strong growth of D∗

2/D
∗
1 , which

is undisturbed at large values of �, is suppressed at magnetic
field strengths surpassing β ≈ 1, leading to the formation of a
pronounced peak at this value of β.

The microscopic reason for the suppression at large
magnetic fields lies in the reduced mobility of the lightly
charged species and is elucidated by considering the ratio
	 = rL,2/

√
n1 of two length scales: the Larmor radius rL,2 of

the lightly charged species and the average nearest-neighbor
distance

√
n1 of the highly charged species. For small values

of 	 (large magnetic fields), a lightly charged particle will
perform many gyrations before colliding with a highly charged
particle. For very large values of 	, its trajectory is only
weakly influenced by the magnetic field before a collision
occurs. At 	 = 1/4, however, the trajectory leads, at thermal
velocity of the particle, to a collision with one of the highly
charged particles, effectively preventing the diffusion of the
lightly charged particle (see the schematic in Fig. 7). This
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FIG. 7. (Color online) Ratio D∗
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n1. Note that small values of 	 correspond to large magnetic
fields, and vice versa.
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results in a reduction of D∗
2/D

∗
1 at 	 = 1/4. We have tested

this simple geometric reason by plotting data for the mobility
ratio as a function of the geometric parameter 	; see Fig. 7
(notice that rL,2 is a function of both � and Qr ). In fact, a
resonant dip in the mobility ratio is formed around 	 = 1/4,
supporting the underlying picture. This geometric resonance
effect persists across different parameter regimes, but becomes
less pronounced as Qr or � is increased, since an increased
particle coupling leads to stronger caging effects.

V. CONCLUSION

In conclusion, we have explored the dynamics of charged
particles with Yukawa interaction in a layer exposed to a
perpendicular magnetic field which allows for an additional
external control of the particle transport. Our results, when
extended to three dimensions, are of relevance to white dwarf
stars in which binary ionic mixtures are exposed to a magnetic
field; see, e.g., Ref. [10]. Another application is to binary
mixtures of ions in Paul traps [11,12].

Further, our simulation results can be verified in dusty
plasma experiments. One possibility is to use a rotating
plasma which exactly mimics the effect of a magnetic field
on the heavy dust component(s) [15,17] without disturbing
the light plasma components, as was confirmed in recent ex-
periments on two-dimensional plasmas [15,46]. The extension
to two dust components appears to be straightforward. An
experimental realization of an unmagnetized binary system
was recently reported [47], where it was confirmed that the
particle interaction of this system is of the Yukawa type
and that the vertical separation of the two species can be
much smaller than the horizontal interparticle distance [48].
The second possibility consists in using strong magnets that
are now available in several laboratories [49]. However, the
interesting range of magnetizations, β � 1, can be reached
only with submicron particles, which, in fact, have recently
attracted great interest [50]. These systems do not allow for
a direct optical diagnostics and, therefore, rely strongly on

simulation results. The present results are expected to be a
valuable starting point, whereas for a quantitative comparison,
obviously, the effect of the magnetic field on the electrons and
ions, will also have to be incorporated [51,52].

We have demonstrated that the mobility in two-dimensional
Yukawa systems adheres to the same 1/B Bohm scaling as in
three-dimensional systems. In contrast to three-dimensional
systems, however, the functional form of the scaling is largely
independent of the coupling �, indicating a decoupling of
magnetic and interaction effects.

Our main focus has been on the response of a charge-
asymmetric binary mixture to an external magnetic field. Since
the two subsystems are affected differently by the magnetic
field, the mobility ratio between them can be controlled by
the strength of the magnetic field. For less strongly coupled
systems and high charge asymmetry, we have found that the
circular trajectories of the lightly charged particles can be
in resonance with the positional configuration of the highly
charged particles, which leads to a distinct reduction of the
mobility of the former. This is an interesting realization of a
porous model matrix in a fluid system.

For future studies, as regards binary systems, a systematic
understanding of the two-dimensional glass transition in binary
mixtures lies ahead, where the magnetic field is exploited as a
steering wheel to change the mobility ratio between the particle
species. Moreover, it is known that the crystallization process
out of an undercooled melt depends sensitively on the mobility
ratio in binary systems [53] such that the magnetic field can
be used to tune crystal nucleation in mixtures [54–57].
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Phys. Rev. Lett. 111, 098301 (2013).
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