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Swim pressure on walls with curves and corners
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The concept of swim pressure quantifies the average force exerted by microswimmers on confining walls in
nonequilibrium. Here we explore how the swim pressure depends on the wall curvature and on the presence of
sharp corners in the wall. For active Brownian particles at high dilution, we present a coherent framework which
describes the force and torque on passive particles of arbitrary shape, in the limit of large particles compared to
the persistence length of the swimmer trajectories. The resulting forces can be used to derive, for example, the
activity-induced depletion interaction between two disks, as well as to optimize the shape of a tracer particle for
high swimming velocity. Our predictions are verifiable in experiments on passive obstacles exposed to a bath of

bacteria or artificial microswimmers.
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I. INTRODUCTION

There is a rapidly growing interest in understanding the
physical principles of microswimmers both for living systems
such as bacteria [1-5] and for artificial self-propelled colloidal
particles [6—8]. Swimming of these active particles occurs at
low Reynolds numbers and is a nonequilibrium phenomenon.
Intriguingly, the concepts of equilibrium statistical physics
break down for this new type of “active matter.”

In particular, when passive obstacles are exposed to an ac-
tive suspension, such as a bacterial bath, they experience non-
thermal fluctuations from the self-propelled particles which
result in a fascinating wealth of new nonequilibrium phenom-
ena ranging from self-starting rotors and cogwheels [9—11]
and the spontaneous motion of microwedges [12,13] to
the rectification and sorting of bacterial motion through
asymmetric barriers [14—16] and ratchets [9]. This opens the
possibility to power microengines by an active bath [12,17]
and to steer microrobots by activity [18]. Moreover, more re-
cently, the swimmer-induced interaction between two parallel
walls [19-21] and two spheres [22,23] has been considered
and simulated. This is in a certain analogy to what is
known as depletion [24] and fluctuation-induced [25] forces
in equilibrium (or active [3]) suspensions.

There is a need to understand the principles of these novel
nonequilibrium effects within conceptually simple models
which generalize the concept of equilibrium thermodynamics.
This is most directly done in the context of active Brownian
motion describing self-propelled colloidal spheres. One of
the basic quantities characterizing the interaction between a
swimmer bath and an obstacle is the recently introduced swim
pressure [26,27]. The swim pressure is defined as the average
force per area (or per length in two spatial dimensions) exerted
by a microswimmer bath on a planar wall, such that an inten-
sive mechanical quantity can be defined in nonequilibrium
suspensions [28,29]. In the limit of planar walls and high
dilution of spherical swimmers, the swim pressure has been
calculated analytically [26,27]. Additionally, there has been
recent interest in the forces exerted on curved walls by both
spherical [30] and elongated [31] swimmers, as well as the
behavior of swimmers in strong confinement [32,33].

In this article, we consider the swim pressure on curved
walls, including walls with sharp corners. In particular, we
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study different wall shapes exposed to dilute suspensions of
torque-free, active Brownian particles. We obtain a coherent
and unified framework to describe both the motion of obstacles
of arbitrary hard shape in a bacterial bath and the swimmer-
induced force between two spheres in close proximity. Our
superpositionlike theory applies to any general shape with
length scales much larger than the persistence length of
the active particle trajectories. Note that the opposite limit,
where swimmers are trapped in confinements much smaller
than their persistence length, was extensively studied by Fily
et al. [32,33]. The theory presented here is semiempirical, but
captures the essential physics similar to the Asakura-Oosawa
model for depletion forces between spheres in a thermal
solvent [24].

In two spatial dimensions, we confirm that the curvature
correction to the swim pressure scales as 1/R for small
curvatures [30] and we propose a fit for this correction
for arbitrary curvature. This is in some formal analogy to
equilibrium thermodynamic for surfaces where the curvature
corrections to the interfacial free energy are of prime interest
and still debated [34-36]. The corners are treated as a
singularity in the shape and studied separately. The total force
is obtained from a superposition principle. As applications,
we calculate the force acting on some hard particles of
V-like and U-like shape, and propose a simple formula for
the depletion force between two disks which generalizes the
seminal Asakura-Oosawa model to an active suspension. Our
predictions are verifiable in experiments on passive obstacles
of different shape exposed to a bath of bacteria or of artificial
microswimmers.

II. MODEL

In our model, we consider a two-dimensional system con-
sisting of ideal (i.e., noninteracting) self-propelling particles,
in contact with one or more flat or curved walls. Apart from the
self-propulsion force fj, the particles experience a drag force
with friction coefficient ¢, and rotational diffusion of their axis
of self-propulsion with a diffusion constant D, . The equations
of motion for the position x and orientation ¢ are therefore

X = fext/g + fo/{ﬂ = fext/g + von,
¢ = V2D, R(1), (1)
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where f.x is any external force the particles experience from,
e.g., the confining walls, vy = fy/¢ is the self-propulsion
velocity, and R(z) represents a delta-correlated stochastic
noise term with zero mean and unit standard deviation. Note
that the particles do not undergo translational (Brownian)
diffusion.

The only inherent length scale in this model is the
persistence length of the particle trajectories [, = vo/D,; the
typical distance a particle travels before it rotates significantly
away from its original orientation. Additional length scales
can be imposed by the shape of the walls in contact with the
active bath.

In several recent studies [26,27,37], it was shown that for
an ideal system of swimmers, the swim pressure on a flat wall
in two dimensions is given by

Py = pLvy/2D;, (2)

where p is the bulk density of swimmers. This swim pressure
has been shown to behave similar to a thermodynamic state
function only if the swimmers experience no external torques
and the swim speed is uniform and isotropic throughout the
system [28].

In order to investigate the effects of curvature on this
swim pressure, we calculate the density profile of torque-free
swimmers at and near walls that are either curved or contain
a corner. To this end, we find the steady-state solution to the
Smoluchowski equation for the orientation-dependent density
distribution p(X,¢,t) in the system:

dpx.p.1)

92 0,
20D — V@) Vo) + p, LPxeD)

g2

Here, v(¢p) = (vg cos ¢,vp sin ¢) is the propulsion velocity of
a particle with orientation ¢. We find the steady-state solution
of this equation numerically on a mesh, for various choices
of the hard-wall geometry. In all cases, we use at least 500
spatial cells, and 64 discrete orientations for the particles.
The cells are adapted to the expected density profile, with
smaller cells near the hard boundaries and sharp corners,
where rapid changes in local density occur. Note that at the
walls, the local density technically diverges, as the swimmers
have a finite probability of being located at the wall. To
circumvent this issue, the cells directly adjacent to the hard
boundaries are chosen particularly small (thickness on the
order of 0.00117,,). Particles in these cells are considered to be in
contact with the wall, and therefore contribute to the pressure
experienced by the boundary. We have verified that varying
the number and sizes of cells does not significantly affect
our results. Note that to avoid nonphysical flow of particles
at the wall, the cell boundaries of these edge cells must be
chosen normal to the wall. Further details are described in the
Appendix.

In addition to numerically solving the Smoluchowski
equation, we also perform Brownian dynamics simulations
of active solutions in contact with hard walls. In these
simulations, the pointlike active particles do not interact, and
move according to the overdamped Brownian equations of
motion [Eq. (1)]. The interaction between the particles and the
wall is a purely hard repulsion.

3)
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III. CURVED WALLS

In order to investigate the force exerted on a curved wall by
an active solvent, we study both active solutions in spherical
confinement, and active solutions in contact with the outside
of a circular object, for a range of values of the radius of
curvature R of the hard boundary. As expected, in the limit
of large R >> [, the average pressure on the walls reduces to
the swim pressure Py in Eq. (2). However, when the radius of
curvature is finite, particles in contact with the inside of the
boundary tend to spend a longer time in contact with the wall
than those trapped at the outside. This results in a correction
to the swim pressure which increases in magnitude as the
radius of curvature decreases. This observation is consistent
with recent work by Mallory et al., where the authors studied
the net motion of curved objects placed in an active bath [30].
In agreement with their results, we find that the first-order
correction to the active pressure is proportional to 1/ R, with the
same coefficient for positive and negative radius of curvature.
In Fig. 1, we show the force on both the inside (R < 0) and
outside (R > 0) of the wall, as obtained from both simulations
and the numerical steady-state solutions of Eq. (3). We find
excellent agreement between both methods. The resulting
curve is well fitted by the empirical expression

P(R log2
Q —ae /R 4 (1 —a) og

., @
Py log(1 + expll,/R])

where o ~ 0.0893 is a single fitting parameter. Note that this
expression reduces to 1 in the limit of flat walls (R — ©0), as
expected. We emphasize here that the bulk swim pressure Py is
defined via Eq. (2) using the density of swimmers measured far
away from the wall. In the limit of strong confinement (where
R « 1)), the bulk density tends to zero [32], and thus the bulk
swim pressure also vanishes. This results in the divergence of
Eq. (4) when [,,/R — —o0. In this limit, nearly all particles
are trapped at the wall, and the density distribution on the wall
can be described in terms of the local curvature [32,33].

I,/R

FIG. 1. (Color online) Pressure P on walls as a function of the
wall radius of curvature R. The red (dark gray) points were obtained
by numerically solving the Smoluchowski equation, the blue (light
gray) points from simulations, and the black line is the fit from Eq. (4).
Note that different choices of /, collapse onto the same curve. The
insets show a typical particle trajectory for each geometry.
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FIG. 2. (Color online) (a) Local wall pressure near the inside and outside of a sharp corner of angle 6 = /2, as a function of the distance
x to the corner. The corners are part of a wall with a zigzag geometry, as shown in the inset. Note that far away from the corner, we recover
P = P,. (b) Net force near an inner corner of varying angle for different choices of the ratio of the wall length L and the persistence length
l,. The points are the results of Brownian dynamics simulations, and the lines are obtained by numerically solving Eq. (3). (c) Excess force
on the wall next to a sharp corner of angle 6, in the limit where the lengths of the (straight) walls adjacent to the corner are much longer than
the trajectory persistence length /,. The blue (light gray) and red (dark gray) points are obtained from the solution to Eq. (3) and Brownian
dynamics simulations, respectively. The black line is the fit in Eq. (5). The force direction is always normal to the wall, and angles 6 > =&

correspond to the outer corner.

IV. SHARP CORNERS

We now consider a sharp corner in a zigzagging wall,
with an opening angle 0 < # < m, and examine the resulting
pressure near both the inner and outer corners. Near the inner
corner, increased buildup of particles results in a locally higher
pressure [as shown in Fig. 2(a)]. In contrast, close to the outer
corner the local swim pressure is decreased. We note here that
even for relatively long walls (L /I, >~ 20), there can still be
a significant effect of the wall length on the measured force.
We note that the total excess force on the wall (as compared
to the force resulting from the global swim pressure Fp) is
zero. This suggests that local irregularities in the geometry of a
(globally flat) wall do not interfere with the observation that the
pressure of a gas of torque-free swimmers is well defined [28].
In Fig. 2(b) we show for several angles 6 the finite-size scaling
for the inner corner for data obtained both from solving the
Smoluchowski equation and from simulations. In Fig. 2(c)
we plot the total excess force Fex = Fyop — L Py on the wall,
extrapolated to the limit of small/,,, as a function of the opening
angle. The behavior is well fitted by a function of the form

Fex(8) = 0.41 Pyl cot(6/2). (5)

V. FORCES ON ARBITRARY SHAPES

The calculated forces can be used to predict the motion of
large objects in contact with an active suspension. As an exam-
ple, we consider a slender object with a continuously varying
radius of curvature, for which the shape is parametrized by
w(s). We assume that, compared to the persistence length [/, of
the particles, the radius of curvature of the object R(s) is large
everywhere, and its rate of change is small. The total force on
this object is given by

F- / " PLR()IAG)IW ()l ds,

S0

(6)

where the prime indicates a derivative with respect to s, and
n(s) is a vector that is locally normal to the surface of the
object. In the limit of large radius of curvature R, the pressure
on a curved wall is linear in 1/R, such that P(R) = Py(l —

Al,/R), with A >~ 0.836. Thus, the net pressure resulting from
the forces on both sides of the object is given by Py(R) =
2Al, Py/R. If we assume (without loss of generality), that the
curve w(s) is parametrized by length [i.e., |W'(s)| = 1], then
1/R(s) = %, where ¢(s) is the local angle of the curve with

the x axis, ar;d Eq. (6) reduces to

cos ¢(s1) — cos P(so)
sin ¢(s1) — sin(sp) )

Thus, for curves with a smoothly changing, large radius of
curvature, the total force on a curve is only dependent on the
angles at the end points. For objects with sharp corners, the
excess force from Fig. 2(c) should be included in F, as well.
It is interesting to note that in both cases, the force on an
object is independent of the size of the object. Assuming the
persistence length of the active solvent is sufficiently small
compared to the scale of the object, increasing the length of
straight walls does not generate additional net forces. Scaling
a curved object, on the other hand, changes the excess pressure
on the wall due to the change in radius of curvature. However,
in the limit where R > [, this effect is canceled out by the
change in length of the curved region.

In order to illustrate how these results can be used to predict
the motion of obstacles in a bath of swimmers, we assume a
simple setup where the object and swimmers are suspended
in a three-dimensional fluid, but confined to two dimensions
via, e.g., optical forces. In this case, we can make use of
slender body theory [38,39] to determine the forces exerted on
the object by the solvent. For example, the approximate drag
force on a curved cylindrical object moving through a solvent
moving with velocity v is given by

Foo = 241, p0< )

A L

log(L/a) Jo

where L is the total length of the curved object, a is the radius
of the circular cross section of the object, u is the solvent
viscosity, and I is a unit matrix. If the object is sufficiently
large, we can assume that it will move slowly compared to
the velocity of the active particles (v < vp), and thus the

Fdrag =

V- (I — %w/(s)w/(s)>ds, (8)
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FIG. 3. (Color online) Velocity v of a slender U shape (red) or
V shape (blue) immersed in an active bath. The U shapes are
parametrized by a cosine function of varying amplitude (resulting in a
varying angle 6 between the two ends), while the sharp shapes simply
consist of two line segments at an angle 0 (see pictures). The object
length L is the same in all cases. The prefactor I' = log(L/a)/47 L,
with u the viscosity of the solvent. The inset shows that the net force
on each shape is approximately the same.

forces exerted by the active particles will be independent of the
object’s velocity. In this case, the velocity v can be calculated
simply by setting Fyrag = —Fac:.

In Fig. 3, we plot the predicted velocity for both a sharp
V shape and a continuously curved U shape (parametrized
by a cosine function) for a range of opening angles 6 and a
fixed total length L. These shapes will be propelled forward,
in the direction away from the “open” end of the shape.
When the shape is approximately a straight line (6 >~ ),
both shapes move approximately equally fast. However, there
are differences between the two velocities at smaller angles.
This framework can readily be extended to calculate the net
velocity or angular velocity of an arbitrarily shaped slender
object, assuming that all of its relevant length scales L > [,,.
Interestingly, these differences purely result from differences
in the friction the obstacle experiences from the solvent: as
shown in the inset, the net force on each shape is the same for
V and U shapes within our numerical accuracy. This can also

(a) (b)
0.4}—llo.=0.2 Oct0a
—I,/0.=0.05
0.2} —1l,/o.=0.01
Qz --AO
A
S
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be seen directly from the fact that the prefactor in Eq. (5) is
approximately equal to A/2.

VI. ACTIVE DEPLETION FORCES

Finally, we use the calculated forces on both curves and
corners to predict “active depletion” forces: the interaction
between two large disks immersed in an active solvent. In
this case, we consider two disks of diameter o, immersed in a
bath of particles with diameter o,. The excluded volume for the
active particles consists of two overlapping disks of diameter
(o, + 0,)/2, with a center-to-center distance r. Where the two
disks touch, the two sharp corners lead to a repulsive force
between the particles, which is counteracted by the active
pressure on the rest of the dumbbell shape. The total depletion
force is thus given by

Faepl = 2Fex(0) sin(0) — Pl /0 )0, sin(0/2),  (9)

where 6 = 2 arccos(r/o,) is the opening angle at the points
where the two disks of excluded volume meet, and P(l,/o.)
and F(0) are given by Egs. (4) and (5), respectively.

In Fig. 4(a), we plot the active depletion force as a
function of distance for several choices of the persistence
length. In the limit of small /,, the pressure on the curved
walls dominates the forces on the corners, and we recover
the two-dimensional Asakura-Oosawa depletion force, with
an effective temperature kpT.;¢ = ;vé /2D, (such that Py
is equivalent to an ideal gas pressure). We obtain good
agreement between simulations and the prediction of Eq. (9)
for small values of /,, /o.. We can obtain an effective interaction
potential, U (r), by integrating the obtained forces:

Uett(r) = _/
o.+oy,

where we have chosen the interaction potential to be zero
at r = o, + 0,. We plot the effective potentials in Fig. 4(c).
Note that despite the divergence in the force [Fig. 4(a)], the
interaction energy remains finite, indicating that the colloids
can, in principle, approach each other.

Note that for distances larger than r = o, + o,, the active
particles can suddenly pass between the two disks, leading to

dr,Fact(r/)a (10)

()
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0.01
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U.esilo 2Py

-0.01
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FIG. 4. (Color online) (a) Active depletion force between two disks of diameter 0., immersed in an active bath (particle diameter o, = 0.10,)
for various values of the persistence length /,,. The lines result from numerical calculations, and the points from simulations. The black dashed line
is the depletion force in the two-dimensional Asakura-Oosawa model, with the temperature set to the effective temperature kp Ty = {vé /2D,.
Note that a singularity occurs when r = o, + g,. (b) Schematic representation of the disks (red), depletion zones (white), and the relevant
length scales. (c) Effective interaction potential U corresponding to the forces plotted in panel (a).
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a discontinuous change in the force. Although we expect the
depletion force to decay rapidly to zero beyond this distance,
we have not closely investigated this regime, as it inherently
involves geometrical features with a length scale smaller than
l,. However, simulations indeed show a steep drop to zero
in the force at slightly larger distances. Moreover, in a recent
study on active depletion forces [21], simulations for relatively
weak active propulsion (i.e., small /) indeed revealed a peak
in the depletion force near r = o, 4 0,, and a decay to zero
at larger distances. Note that more complex effects, such as
geometric shielding, can occur when the persistence length
of the particles is large compared to the separation of the
two obstacles. In particular, simulations of swimmers confined
between two walls [19] showed oscillatory behavior of the
interaction force in this regime.

VII. CONCLUSIONS

In conclusion, we have generalized the concept of swim
pressure to nonflat walls, and calculated the curvature- and
corner-induced corrections to the bulk swim pressure both nu-
merically and via particle-resolved simulations. This approach
yields a coherent framework to obtain the forces and torques
on passive particles of arbitrary shape and to derive a simple
approximation for the activity-induced depletion interaction.

Our approach can, in principle, be generalized to three
spatial dimensions as well as to incorporate more details of the
hydrodynamic swimmer-wall interactions. It would further be
interesting to study the motion of passive carriers in a density
gradient of active particles. Moreover, an important extension
of this work would be to consider an active background
outside the dilute regime, where the interactions between the
active particles can lead to clustering, ordering, and phase
separation [40—45].
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APPENDIX: COMPUTATIONAL DETAILS

In order to numerically obtain the density distribution of
active particles near an obstacle, we find the steady-state
solution of the the Smoluchowski equation for the orientation-
dependent density distribution p(x,¢,7):

opx.p.1)

92 0,
20D — V@) Vo) + p, LPxeD

ety
(A1)

Here, x indicates the particle position, ¢ denotes the particle
orientation, and v(¢) = vg(cos ¢, sin ¢) is the self-propulsion
velocity of a particle with orientation ¢, where vy is the swim
speed. D, is the orientational diffusion coefficient. To find
the steady-state solution to this equation, we divide the system
area up into n,,, cells, and divide the set of possible orientations
into ny equal intervals. We assume that the cells are sufficiently
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small, such that in each cell p(x,¢) is approximately constant
over the area and orientation range of the cell, and calculate
the total flow of particles into and out of each cell. For each
cell, this particle current can be written as a linear combination
of the densities of the cell and its neighbors. Setting the rate
of density change for each cell to zero yields a complete set
of linear equations for the density p;; for each cell i and
orientation k, of the form
8 Rxy ng
it = w0 ) Ty )90 + D Y Rulipi(9n) = 0.

j=1 I=1

(A2)

where the translation matrix 7;;(k) is the n,, X n,, matrix
representing the flow of particles with orientation k between
cells due to their active motion. Similarly, the rotation matrix
Ry (i) represents the rotational diffusion in each cell i. In order
to obtain the elements of the translation matrix, we determine
the particle current J. , out of cell ¢ through edge e with edge
length /, and norm n, using an upwind scheme, yielding

I = {V(¢k) : nelepc,k if V(¢k) -, 2 0

V() - nel, Preighbor,k otherwise, (A3)

where ¢y = 2km /ng, and Ppeighbor,x indicates the density of the
cell neighboring cell ¢ through edge e. Combining all particle
currents yields the translation matrix

apik Fie
—_— = —_— A4
(a:)m Z.Ai, (Ad)
ran ecedges(i)
=vo Y T;(K)pj (AS)

Jjecells

where A; is the surface area of cell i. The rotation matrix Ry; (i)
is obtained by numerically approximating the second-order
derivative with respect to ¢ in Eq. (A1):

api i k+1 = Pik] — [Pik — Pik—
( P,k) _ p Pisr1 = pird = [pik — pis-1] (A6)
rot

ot - Q2 /ngy)? ’

=D, ) Ru(i)pi- (A7)
1

Using Eq. (A2), the translation and rotation matrices define
a full set of linear equations for the density distribution in the
system, which can be solved numerically. The hard walls in
the system are represented by zero-flux boundary conditions
on parts of the mesh edges. For the other mesh boundaries, we
make use of either reflecting or shifted boundary conditions,
depending on the symmetry of the geometry. For the case of
curved walls, we make use of the rotational symmetry that the
density profile exhibits both on the inside and the outside of
a circular wall. In this case, only one row of cells is needed
along the radial direction, and translation along the azimuthal
direction can be considered as a change in orientation instead
of a change in position. In the case of walls with sharp corners,
we implement a wall with a zigzagging geometry, where we
make use of mirror symmetry in order to reduce the size of the
mesh. Additionally, to reduce numerical error, we make use
of the knowledge that the total wall pressure should equal the
bulk swim pressure [Eq. (2)].
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