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Combining analytic calculations, computer simulations, and classical density functional theory we
determine the interfacial tension of orientable two-dimensional hard rectangles near a curved hard
wall. Both a circular cavity holding the particles and a hard circular obstacle surrounded by particles
are considered. We focus on moderate bulk densities (corresponding to area fractions up to 50%) where
the bulk phase is isotropic and vary the aspect ratio of the rectangles and the curvature of the wall.
The Tolman length, which gives the leading curvature correction of the interfacial tension, is found
to change sign at a finite density, which can be tuned via the aspect ratio of the rectangles. Published
by AIP Publishing. [http://dx.doi.org/10.1063/1.4967876]

I. INTRODUCTION

When a fluid is in contact with a wall, the interfacial ten-
sion (also called “wall tension”) γ measures the free-energy
cost per boundary area due to the presence of the wall. Many
boundary and interfacial effects are governed and controlled
by the interfacial tension γ. For example, the wetting proper-
ties of a wall by a liquid droplet in the bulk gas phase depend
crucially on the wall-gas, wall-liquid, and bulk liquid-gas inter-
facial tensions as described by Young’s famous equation for
the contact angle.1,2 Moreover, heterogeneous nucleation at
the wall is strongly affected by the interfacial tension.3 Simple
classical theory for heterogeneous nucleation4,5 predicts that
the size of the critical nucleus is determined by the degree of
undercooling and the interfacial tensions between the wall, the
bulk phase, and the nucleating phase.6

In the simplest case, the wall is planar in three spatial
dimensions or a straight line in a two-dimensional system.
However, in many practical situations the wall is curved.
Examples are provided by spherical obstacles or impurities
which can act as a seed for heterogeneous nucleation, by
porous materials with a lot of inner curved walls and cavi-
ties, and by a rough or patterned substrate.7,8 This raises the
question of the curvature dependence of the interfacial tension
γ. For weak curvature, Tolman suggested the asymptotic series
expansion9

γ(R) = γ(∞)
(
1 −

2`T

R
+O(R−2)

)
, (1)

where R is the radius of curvature of the wall, γ(∞) is the inter-
facial tension for an uncurved wall, and the constant `T, which
has the dimensions of a length, is referred to as the Tolman
length.10 Of particular importance is the sign of the Tolman
length. If it is negative, there is a free-energy penalty upon
bending the wall, whereas a positive Tolman length implies a
free-energy decrease for a curved wall. For a flexible wall

a)Present address: Institut für Theoretische Physik, Westfälische Wilhelms-
Universität Münster, D-48149 Münster, Germany.

which can change shape, a positive Tolman length would
induce a spontaneous curvature of the wall under appropriate
conditions.

Therefore, there is a need to understand the sign of the Tol-
man length on a microscopic (i.e., particle-resolved) level. This
is achieved best for simple model systems of classical statisti-
cal mechanics. Hard objects have been studied extensively in
this respect as temperature scales out and density is the only rel-
evant thermodynamic parameter.11–13 In three spatial dimen-
sions, hard spheres near a hard wall have received considerable
attention.14,15 The interfacial tension between a planar hard
wall and a fluid hard-sphere bulk phase has been explored
by computer simulations16–20 and provides an ideal testing
ground for the performance of approximations in classical den-
sity functional theory (DFT) of inhomogeneous fluids.21–26

Subsequent analytic calculations,27 simulations,28 and DFT
calculations29–31 have considered a curved wall exposed to
a hard-sphere fluid and found a negative sign of the Tolman
length for hard spheres around a spherical obstacle. Moreover,
the Tolman length has been accessed for other interactions
such as (modified) Lennard-Jones potentials20,32–38 or Yukawa
potentials,32,39 at phase boundaries37,40 and in lattice models.41

In some systems with not only excluded volume interactions,
such as a Lennard-Jones fluid, the magnitude and sign of the
Tolman length are still under debate.33,35,36,38,39,92,93

However, no studies have been done so far for the Tolman
length of orientable shape-anisotropic particles, which have a
nontrivial rotational degree of freedom. These particles show
more complex structuring near walls as both translational and
orientational degrees of freedom are coupled. Although one of
the simplest of such systems, namely, orientable hard rectan-
gles in two spatial dimensions near a wall, has been intensely
studied by means of experiments,42–45 simulations,46–49 DFT
calculations,45,49–52 and other theories,53 the curvature depen-
dence of the interfacial tension in this system has not yet been
explored. Here we close this gap. At moderate aspect ratios,
hard rectangles exhibit a stable isotropic phase at densities up
to at least 50% in area fraction (also called “packing fraction”)
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but display significantly more complex ordering at higher
densities.54 For various aspect ratios and particle number den-
sities corresponding to a bulk isotropic state, we explore in
detail the effects of both a concave and a convex wall, corre-
sponding, respectively, to a circular cavity holding the rectan-
gles and a hard circular obstacle surrounded by rectangles.

Our results are threefold: first, we show that this model
yields an analytic expression for the Tolman length at low den-
sities. This is remarkable as any analytic result is helpful in
testing approximative theories and understanding qualitative
trends directly. Second, we calculate the Tolman length for a
range of densities and aspect ratios in the isotropic phase by
Monte Carlo (MC) computer simulations and thermodynamic
integration. Interestingly, we find a zero in the Tolman length
at finite density. This implies that the Tolman length is tunable
to a large extent via particle shape and density. Finally, we per-
form DFT calculations for the Tolman length and discuss their
performance by comparing the DFT results with our simula-
tion data. For all investigated aspect ratios, we observe good
agreement between MC simulations and DFT calculations up
to moderate densities.

The paper is organized as follows: in Sec. II, analytic
expressions for the Tolman length in systems with a concave
and a convex wall, respectively, are derived. Our MC simula-
tions and DFT calculations are described in Sec. III. The results
of our analytic and numerical calculations are presented and
discussed in Sec. IV. Finally, we conclude in Sec. V.

II. ANALYTIC CALCULATIONS

We study a two-dimensional system of orientable hard
rectangular particles with length L ≥ σ and width σ in the
presence of a hard unstructured wall. The wall has a con-
stant radius of curvature R so that it forms either a circular
cavity (concave wall) containing the rectangular particles (see
Fig. 1(a)) or a circular obstacle (convex wall) surrounded by
the particles (see Fig. 1(b)). In the latter case, we assume peri-
odic boundary conditions far away from the circular obstacle.
We define the domain A of the system as the total area acces-
sible to any part of a rectangle (i.e., the light blue areas in
Fig. 1). The limiting case R → ∞ of an infinite wall curva-
ture radius corresponds to a system with a flat wall, which
has already been studied in detail.3,16,18–20,44,46,48,50,55 For the

FIG. 1. A two-dimensional system of hard rectangular particles with length
L and width σ either (a) confined by a circular hard wall that forms a cavity
with radius R or (b) surrounding a circular hard wall that forms an obstacle
with radius R.

three situations of a flat wall, a cavity containing the particles,
and an obstacle surrounded by the particles, we are interested
in the particle number density ρ(~r, φ), which denotes the prob-
ability to find a particle with orientation φ at center-of-mass
position~r = (x, y), the interfacial tension γ(R), and the Tolman
length `T. While for high particle concentrations the quantities
ρ(~r, φ), γ(R), and `T are difficult to determine analytically, in
the low-density limit, interactions between the particles can be
neglected and analytic results can be obtained. Therefore, in
this section we will focus on low densities. We start with con-
sidering the ideal-gas limit where particle-particle interactions
are completely negligible. Afterwards we extend our results to
higher but still small densities on the level of a second-order
virial expansion.

Note that we define the interfacial tension γ, and therefore
the Tolman length `T, in the grand-canonical ensemble, i.e.,29

γ =
Ωwall −Ωbulk

Lwall
, (2)

using the grand-canonical free energy of the system in the pres-
ence (Ωwall) and absence (Ωbulk) of a wall of length Lwall, at
fixed temperature T and chemical potential µ. Similar defini-
tions can be written down in other ensembles (using, e.g., the
Helmholtz free energy), which are equivalent in the thermody-
namic limit for both flat walls and circular obstacles. However,
in the case of a circular cavity, the length and curvature of the
wall are inherently linked to the system size, which leads to an
ensemble-dependence of the apparent Tolman length if Eq. (1)
is followed directly.

A. Tolman length in the ideal-gas limit

In the ideal-gas limit, where particle-particle interactions
can be completely neglected, the particle number density in
the grand-canonical ensemble is given by

ρ(~r, φ) =
ρ0

2π
e−βU(~r,φ) (3)

with the constant bulk particle number density ρ0 = eβµ/Λ2.
Here, β = 1/(kBT ) is the inverse thermal energy with
Boltzmann’s constant kB and Λ is the thermal de Broglie
wavelength corresponding to the particles. U(~r, φ) is the wall
potential that describes the interaction of a particle with center-
of-mass position ~r and orientation φ with the hard wall. This
potential is ∞ if ~r < A or if the particle and the wall (par-
tially) overlap and 0 otherwise. The wall potential U(~r, φ) and
thus the particle number density ρ(~r, φ) can therefore be deter-
mined by simple geometrical considerations. (For analogous
calculations for spherocylinders in three spatial dimensions see
Ref. 94.) If ρ(~r, φ) is known, one can calculate the interfacial
tension γ from Eq. (2). Since particle-particle interactions can
be neglected in the ideal-gas limit, the grand-canonical free
energies Ωwall and Ωbulk are here given by the exact analytic
expressions56

Ωwall =
1
β

∫
A

d2r
∫ 2π

0
dφ ρ(~r, φ)

(
ln(2πΛ2ρ(~r, φ)) − 1

+ βU(~r, φ) − βµ
)
, (4)

Ωbulk = −
Aeβµ

βΛ2
(5)
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with the domain area A = |A|.
Together with Eq. (3), inserting Eqs. (4) and (5) into

Eq. (2) leads to the interfacial tension

γ = −
p

Lwall

( 1
2π

∫
A

d2r
∫ 2π

0
dφ e−βU(~r,φ) − A

)
(6)

with the bulk pressure

p =
eβµ

βΛ2
. (7)

From γ the Tolman length `T is obtained by expansion (1). In
the following, the quantities U(~r, φ), which gives ρ(~r, φ) when
inserted into Eq. (3), γ(R), and `T are given both for circular
and rectangular particles in systems with a flat wall, a cavity
(concave wall), and an obstacle (convex wall).

1. Hard disks

For disk-shaped particles of radius R0, the orientation φ
of the particles is trivial due to their full rotational symmetry.

a. Flat wall. We consider a flat wall at x = 0 and circu-
lar particles with center-of-mass positions at x > 0. The wall
potential is then given by

U(~r, φ) =

{
∞, if x ≤ R0,
0, if R0 < x.

(8)

Using Eq. (6), one obtains the interfacial tension

γ = γ(∞) = pR0 (9)

with the bulk pressure p for a circular particle given by Eq. (7).

b. Cavity (concave wall). If a circular particle is inside a
circular cavity of radius R centered at ~r = ~0, its interaction
with the wall of length 2πR is described by the potential

U(~r, φ) =

{
0, if r < R − R0,
∞, if R − R0 ≤ r,

(10)

with r = |~r | denoting the distance of the particle’s center of
mass from the center of the cavity. Using Eq. (6), one obtains
the interfacial tension

γ(R) = γ(∞)
(
1 −

R0

2
1
R

)
. (11)

Note that this expression is exact and no higher-order terms
appear. The corresponding Tolman length is `T = R0/4.

c. Obstacle (convex wall). A circular obstacle with radius
R centered at ~r = ~0 interacts with a circular particle via the
potential

U(~r, φ) =

{
∞, if r ≤ R + R0,
0, if R + R0 < r,

(12)

with r = |~r | denoting the distance of the particle’s center of
mass from the center of the obstacle. The integral

Af =
1

2π

∫
A

d2r
∫ 2π

0
dφ e−βU(~r,φ) (13)

in Eq. (6) is basically the angle-averaged free area that is acces-
sible for a particle’s center of mass. Its calculation simplifies
significantly when using Af − A = −(Aov −Ao) and the follow-
ing expression for the overlap area Aov of an arbitrary convex

particle with area Ap and circumference Op and an arbitrary
convex obstacle with area Ao and circumference Oo:57

Aov = Ap + Ao +
OpOo

2π
. (14)

For the special case of a circular obstacle with radius R, the
interfacial tension for any convex particle reads according to
Eq. (6)

γ(R) = p
Ap + OpR

2πR
. (15)

Inserting Ap = πR2
0 and Op = 2πR0 into Eq. (15) and using

Eq. (9), this simplifies to the interfacial tension for circular
particles

γ(R) = γ(∞)
(
1 +

R0

2
1
R

)
. (16)

The corresponding Tolman length is `T = −R0/4.

2. Hard rectangles

The calculation of the free area Af becomes more com-
plicated for rectangular particles with length L and width σ
as their orientation φ must be considered. Due to the discrete
rotational symmetry of the rectangles, only angles φ ∈ [0, π/2]
need to be taken into account. In the following, the diameter
of the rectangles is denoted as D =

√
L2 + σ2 and the angle

between the long side of a rectangle and its diagonal is denoted
as α = arctan(σ/L).

a. Flat wall. We consider the same situation as in
Sec. II A 1 a, but now for rectangular particles. The angle
φ is defined as the angle between the wall, i.e., the y axis, and
the long side of the rectangle. Depending on the rectangle’s
distance to the wall, only certain angles are allowed for φ, i.e.,
correspond to U(~r, φ) < ∞. The rectangle’s center of mass at
distance x from the wall must not approach the wall closer than
σ/2. For x > σ/2 all angles between 0 and a threshold angle

φ1(x) = arcsin(2x/D) − α (17)

are allowed, at which a rectangle’s corner touches the wall.
Additionally, for x > L/2 the rectangle can be orthogonal to
the wall (φ = π/2) and also rotate around this orientation up
to another threshold angle

φ2(x) = − arcsin(2x/D) + π − α (18)

at which the same corner collides with the wall again. For
x ≥ D/2 the particle cannot overlap with the wall. This results
in the following wall potential (with 0 ≤ φ ≤ π/2):

U(~r, φ) =




0, if σ/2 < x ≤ L/2 ∧ φ ∈
[
0, φ1(x)

]
,

0, if L/2 < x ≤ D/2
∧ φ ∈

[
0, φ1(x)

]
∪

[
φ2(x), π/2

]
,

0, if D/2 < x,
∞, otherwise.

(19)

The interfacial tension is then according to Eq. (6)

γ = γ(∞) = p
L + σ
π

, (20)

with the bulk pressure p for a rectangular particle given by
Eq. (7).
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b. Cavity (concave wall). The wall potential for a rectan-
gular particle in a cavity with radius R centered at ~r = ~0 can
be written as

U(~r, φ) =




0, if r < R − D
2 ,

0, if R − D
2 ≤ r <

√
R2 − σ2

4 −
L
2

∧ φ ∈
[
0, φ3(r)

]
∪
[
φ4(r), π2

]
,

0, if
√

R2 − σ2

4 −
L
2 ≤ r <

√
R2 − L2

4 −
σ
2

∧ φ ∈
[
0, φ3(r)

]
,

∞, otherwise,
(21)

with r = |~r | denoting the distance of the rectangle’s center
of mass from the center of the cavity and φ defined as the
angle between~r and a short side of the rectangle. The contact
angles of the rectangle’s corner with the wall are in analogy to
Sec. II A 2 a

φ3(r) = arccos
( r2 + D2

4 − R2

Dr

)
−
π

2
− α, (22)

φ4(r) =
3π
2
− α − arccos

( r2 + D2

4 − R2

Dr

)
. (23)

In a circular cavity, the accessible area for a rectangle’s center
of mass is independent of the orientation φ due to the rota-
tional symmetry of the cavity. This simplifies the integration in
Eq. (6) and the interfacial tension reads

γ(R) =
p

2πR

(
πR2 − Lσ + L

√
R2 −

L2

4
+ σ

√
R2 −

σ2

4

+ 2R2 arctan
( σ
√

4R2 − σ2

)
− 2R2 arctan

(√4R2

L2
− 1

))
.

(24)

The series expansion

γ(R) = γ(∞)
(
1 −

Lσ
2(L + σ)

1
R
−

L3 + σ3

24(L + σ)
1

R2

−
L5 + σ5

640(L + σ)
1

R4
+O(R−6)

) (25)

with respect to 1/R at R → ∞ results in the Tolman length
`T = Lσ/(4(L + σ)).

c. Obstacle (convex wall). The wall potential for a rect-
angular particle outside of a circular obstacle with radius R
centered at ~r = ~0 is given by

U(~r, φ) =




0, if R + σ
2 ≤ r <

√
R2 + D2

4 + Rσ
∧ φ ∈

[
0, φ5(r)

]
,

0, if
√

R2 + D2

4 + Rσ ≤ r < R + D
2

∧ φ ∈
[
0, φ6(r)

]
,

0, if R + L
2 < r ≤

√
R2 + D2

4 + RL

∧ φ ∈
[
φ7(r), π2

]
,

0, if
√

R2 + D2

4 + RL < r ≤ R + D
2

∧ φ ∈
[
φ8(r), π2

]
,

0, if R + D
2 < r,

∞, otherwise,

(26)

with r = |~r | denoting the distance of the rectangle’s center of
mass from the center of the obstacle, φ defined as the angle
between ~r and a short side of the rectangle, and the contact
angles

φ5(r) = arccos
(R + σ

2

r

)
, (27)

φ6(r) = arcsin
( r2 + D2

4 − R2

Dr

)
− α, (28)

φ7(r) = arcsin
(R + L

2

r

)
, (29)

φ8(r) = arccos
( r2 + D2

4 − R2

Dr

)
− α +

π

2
. (30)

Here, the rectangle is not restricted to touch the wall with a
corner (corresponding to the contact angles φ6(r) and φ8(r)).
It can also touch the wall with its edges. Therefore, additional
cases appear in the potential, where φ= φ5(r) corresponds to
a collision with a long edge and φ = φ7(r) corresponds to
a collision with a short edge. The interfacial tension can be
calculated analogously to the situation for a circular particle
in Sec. II A 1 c by inserting Ap = Lσ and Op = 2(L + σ) into
Eq. (15) and is given by

γ(R) = γ(∞)
(
1 +

Lσ
2(L + σ)

1
R

)
. (31)

Note that this analytic result is exact and no terms of higher
order in 1/R appear. The corresponding Tolman length is
`T = −Lσ/(4(L + σ)).

Comparing the Tolman lengths for disks and rectangles
derived above, two features are remarkable. First, the only
difference between the Tolman lengths for the cavity and the
obstacle is the sign. Second, for both a cavity and an obstacle,
the magnitude of the Tolman length is related to the particle’s
area Ap and circumference Op via |`T | = Ap/(2Op). We note
here that in ensembles other than the grand-canonical one,
neither of these two features is reproduced. For example, in
the canonical ensemble we can define the interfacial tension

γF =
Fwall − Fbulk

Lwall
, (32)

where F denotes the Helmholtz free energy and the systems
with and without wall are compared at equal particle number
N, domain area A, and temperature T. For an ideal gas, we then
have

βF = N ln(NΛ2/Af) − N (33)

with Af as defined in Eq. (13). Note that in the canonical ensem-
ble, the overall density N /A is fixed rather than the bulk density
ρ0. As a result, any change in local density near the walls has to
be compensated by a change in the bulk density. This is in con-
trast to the grand-canonical ensemble, where the bulk density
is set by the external chemical potential. For flat walls and cir-
cular obstacles, γF converges to γ in the thermodynamic limit,
i.e., when the domain area A is much larger than the region
where a particle interacts with the wall. However, in the case
of a cavity, this limit is only reached when R→ ∞. Explicitly
performing the series expansion of γF in 1/R for hard disks
with radius R0, we obtain

γF(R) = γ(∞)

(
1 +

R0

2
1
R
+O(R−2)

)
. (34)
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Similarly, for rectangular particles we obtain

γF(R) = γ(∞)

(
1 +

(
L + σ
π
−

Lσ
2(L + σ)

)
1
R
+O(R−2)

)
. (35)

Comparison to Eqs. (11) and (24) shows significant changes to
the term proportional to 1/R, which defines the Tolman length.
In fact, for a cavity in the canonical ensemble, we obtain a pos-
itive Tolman length for both disks and rectangles (regardless
of L/σ), which is in contrast to a negative one in the grand-
canonical ensemble. As this is essentially a finite-size effect,
we define the interfacial tension in the remainder of this paper
in the grand-canonical ensemble.

B. Low-density expansion of the Tolman length

The grand-canonical partition function Ξ is given by

Ξ =

∞∑
N=0

eβµN

Λ2N
QN . (36)

Here, we have defined the N-particle partition function QN as

QN =
1

(2π)N N!

∫
A

d2N r
∫ 2π

0
dNφ e−βU(~rN ,φN ) (37)

with the N-particle interaction potential U(~rN , φN ). In the limit
of low chemical potential µ, the first few terms in the sum over
N in Eq. (36) dominate. Expanding up to second order in the
fugacity z = exp(βµ)/Λ2, we obtain

βΩ = − ln(Ξ) = − ln(1 + zQ1 + z2Q2 +O(z3))

= −zQ1 + z2 *
,

Q2
1

2
− Q2+

-
+O(z3).

(38)

Using Eq. (2), we can now write the interfacial tension γ as

βLwallγ = z(Qbulk
1 − Qwall

1 ) + z2
(
Qbulk

2 − Qwall
2

−
1
2

((Qbulk
1 )

2
− (Qwall

1 )
2
)

)
+O(z3). (39)

Here, Qbulk
1 and Qwall

1 are equal to A and Af, respectively, with
Af as defined in Eq. (13). Additionally, Qbulk

2 = A(A−Abulk
ex )/2,

with Abulk
ex the orientationally averaged excluded area between

two particles in the bulk, which is given by Eq. (14) as

Abulk
ex = 2Lσ + 2(L + σ)2/π. (40)

Thus, the only remaining unknown quantity is Qwall
2 , which

can be written as

Qwall
2 =

1

2(2π)2

∫
A

d2r1

∫
A

d2r2

∫ 2π

0
dφ1

∫ 2π

0
dφ2 e−β(U1+U2+U12),

(41)
where U1 and U2 represent the interactions of particles
1 and 2 with the wall, respectively, and U12 is the pair-
interaction potential of the particles. Although this integral
is too cumbersome to tackle analytically, it can be rewritten as

Qwall
2 =

Af

2

〈
1

2π

∫
A

d2r2

∫ 2π

0
dφ2 e−β(U2+U12)

〉
1
, (42)

where 〈·〉1 denotes averaging over all positions ~r1 ∈ A and
orientations φ1 of particle 1 which do not correspond to a

particle-wall interaction. The expression in the average in
Eq. (42) simply represents the free area available to particle 2
for a given choice of ~r1 and φ1. Thus, Qwall

2 can be written as

Qwall
2 =

Af

2

(
Af − 〈A

wall
ex 〉

)
, (43)

where 〈Awall
ex 〉 is the orientationally and translationally aver-

aged excluded area between two particles in the given wall
geometry. As 〈Awall

ex 〉/Af is simply the probability that two
non-interacting particles overlap in the same wall geometry,
it can be numerically measured in simple two-particle MC
simulations.

Combining Eqs. (39) and (43), we obtain

βγ =
A − Af

Lwall
z −

AAbulk
ex − Af〈Awall

ex 〉

2Lwall
z2 +O(z3). (44)

Rewriting this expression in terms of the bulk density

ρ0 =
〈N〉
A
=

1
A

∑∞
N=0 NzN QN∑∞
N=0 zN QN

= z + z2(2Qbulk
2 − A2)/A +O(z3)

(45)

yields

βγ =
A − Af

Lwall
ρ0

+
(A − Af)Abulk

ex + Af(〈Awall
ex 〉 − Abulk

ex )
2Lwall

ρ2
0

+O(ρ3
0). (46)

Note that the first term here corresponds to the ideal-gas limit
considered in Sec. II A 2 as

A − Af

Lwall
=

L + σ
π

(
1 +

Lσ
2(L + σ)

1
R

)
(47)

for the obstacle (the corresponding expression for the cavity
can be obtained by substituting R → −R and adding O(R−2)
on the right-hand side of Eq. (47)). We calculate 〈Awall

ex 〉 and the
resulting interfacial tensions γ for walls with various radii of
curvature and for several different aspect ratios. On this basis,
we extract from our results the (linear) low-density behavior
of the Tolman length.

III. NUMERICAL METHODS

In the following, we define the orientation φ of a rectan-
gular particle as the angle measured counterclockwise from
the y axis to the long axis of the particle (i.e., the particle
is parallel to the y axis for φ = 0). To calculate the particle
number density ρ(~r, φ) and interfacial tension γ at moderate
particle densities, where analytic results are no longer possi-
ble, we perform MC simulations and numerical calculations
based on DFT. The Tolman length `T is again determined from
the wall-curvature dependence of the interfacial tension γ. In
this section, we describe both numerical approaches in detail.

A. Monte Carlo simulations

We perform MC simulations of perfectly hard rectangular
particles in the grand-canonical ensemble and employ thermo-
dynamic integration to obtain the interfacial tensions.11 The
simulations are performed at constant domain area A = |A|,
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constant chemical potential µ, and constant temperature T in
the presence of flat or curved walls, as well as in the absence of
walls. During each simulation, we measure the average number
of particles 〈N〉 in the simulation box as well as average den-
sity profiles ρ(~r, φ). Overlaps between rectangles are detected
using the separating axis theorem (see, e.g., Ref. 58). Simula-
tions are run for at least 1010 MC steps. For simulations where
the particles are not completely confined by a wall, the area of
the simulation box is chosen such that A = 2500σ2.

To calculate the interfacial tension γ, we take the deriva-
tive of Eq. (2) with respect to the chemical potential µ and
obtain

Lwall
dγ
dµ
= 〈N〉bulk

µ − 〈N〉wall
µ . (48)

Here, 〈N〉bulk
µ and 〈N〉wall

µ indicate the average number of par-
ticles in a simulation at chemical potential µwithout and with
a wall, respectively. Integrating with respect to µ from the
low-density limit µ = −∞, we obtain

γ =
1

Lwall

∫ µ

−∞

dµ′
(
〈N〉bulk

µ′ − 〈N〉
wall
µ′

)
. (49)

Note that no additional integration constant is required as
γ(µ=−∞)= 0. Thus, in order to calculate γ(µ) in each
wall geometry, we integrate a fit to the simulation results
〈N〉bulk

µ − 〈N〉wall
µ . We make use of our analytic results for the

ideal-gas limit (see Sec. II A) in order to improve accuracy at
low chemical potential. Finally, to convert γ(µ) to a function
of the bulk density ρ0, we simply measure

ρ0(µ) =
〈N〉bulk

µ

A
(50)

in the simulations without walls.

B. Density functional theory

In addition to MC simulations, we use DFT calculations
in order to obtain density profiles ρ(~r, φ) and free energies.
The Helmholtz free energy F of the system can be written as
the sum of an ideal-gas term Fid and an excess term Fexc

F = Fid + Fexc. (51)

While the free energy for an ideal gasFid is analytically known
and given by

Fid = kBT
∫
A

d2r
∫ 2π

0
dφ ρ(~r, φ)

(
ln(Λ2ρ(~r, φ)) − 1

)
, (52)

the exact excess termFexc is only known in rare cases (e.g., for
a hard-rod fluid in one spatial dimension59) and usually needs
to be approximated.

An expression for the excess free energy Fexc

= kBT
∫
A

d2r Φexc(~r) for hard rectangles in two spatial dimen-

sions was proposed by Martı́nez-Ratón et al.60 It is based on
an approximation for the rescaled excess free-energy density
Φexc(~r). In order to match both the low-density and the high-
density limit, they combined the Onsager approximation61 and
fundamental-measure theory (FMT).62 Their expression for
Φexc(~r) also recovers results from scaled particle theory in the
uniform limit.

In the scope of FMT, weighted densities ni(~r) are defined
as the angle-integrated cross correlations

ni(~r) =
∫ 2π

0
dφ

[
ρ?ω(i)

]
(~r, φ)

=

∫ 2π

0
dφ

∫
A

d2r ′ ρ(~r ′, φ)ω(i)(~r ′ −~r, φ)

(53)

of the density profile ρ(~r, φ) with the geometric weight
functions

ω(0)(~r, φ) =
1
4
δ

(
σ

2
− |xφ |

)
δ

(
L
2
− |yφ |

)
, (54)

ω(2)(~r, φ) = Θ

(
σ

2
− |xφ |

)
Θ

(
L
2
− |yφ |

)
. (55)

Here, δ(x) is the Dirac delta function, Θ(x) is the Heaviside
function, xφ = x cos(φ)− y sin(φ), and yφ = x sin(φ)+ y cos(φ).
The approximative rescaled excess free-energy density reads60

Φexc(~r) = −n0(~r) ln(1 − n2(~r)) −
n0(~r)n2(~r)
1 − n2(~r)

+
1
2

∫ 2π

0
dφ ρ(~r, φ) [(1 − n2)−1 ?ω(0)](~r, φ)

×

∫
A

d2r ′
∫ 2π

0
dφ′ρ(~r ′, φ′)f (~r −~r ′, φ, φ′), (56)

where f (~r −~r ′, φ, φ′) is the (negative) Mayer function

f (~r −~r ′, φ, φ′) =



1, if particles with coordinates
(~r, φ) and (~r ′, φ′) overlap,

0, otherwise.
(57)

To obtain the equilibrium density ρeq(~r, φ), we minimize the
grand-canonical free-energy functional

Ω[ρ(~r, φ)] = F [ρ(~r, φ)] − µ
∫
A

d2r
∫ 2π

0
dφ ρ(~r, φ) (58)

in real space with respect to ρ(~r, φ) using a Picard iteration
scheme24 in combination with direct inversion in the iterative
subspace (DIIS).63–66

For fixed values of the chemical potential µ, we calculate
the equilibrium densities in the bulk, allowing to translate µ
into the corresponding bulk area fraction η. Then the equilib-
rium density profiles for flat and curved walls with several dif-
ferent radii of curvature R are calculated. From the equilibrium
profiles, we determine the corresponding grand-canonical free
energies using Eq. (4) in the presence and Eq. (5) in the absence
of a wall. On this basis, the interfacial tensions γ(R) are calcu-
lated using Eq. (2). According to Eq. (1), the Tolman length is
proportional to the slope of γ(1/R) in the limit 1/R→ 0, which
can be accessed by a polynomial fit through the data points for
γ(1/R). By considering various values of µ, we obtain the Tol-
man length `T(η) as a function of the bulk area fraction η. This
procedure was repeated for the aspect ratios L/σ = 1, 2, 3, and
4. Further details on the density-functional minimization are
given in the Appendix.

IV. RESULTS

Figure 2 shows typical snapshots from our MC simula-
tions (top row) and density profiles from our DFT calculations
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FIG. 2. Snapshots from MC simulations (top row) and equilibrium density profiles from DFT calculations (bottom row) are shown for rectangular particles with
length L = 2σ and bulk area fraction η = 0.5 in a cavity (left column) and around an obstacle (right column) with R = 5σ, respectively. For the DFT results,
the orientation-integrated density ρ(~r) is shown by the density plots and the green dashes depict the local mean orientation of the particles as well as—through
their length—the amount of local particle alignment |S(~r) | (a dash with length corresponding to |S(~r) | = 1 is indicated in (c) for scale). Note that in (b) and (d)
the full system is significantly larger than the region shown in these plots.

(bottom row)67 for equilibrated systems of rectangular parti-
cles with L = 2σ at bulk area fraction η = 0.5 in a circular cav-
ity (left column) and around a circular obstacle (right column)
with R = 5σ. For the DFT results, the orientation-integrated
particle number density

ρ(~r) =
∫ 2π

0
dφ ρ(~r, φ) (59)

is shown as a density plot and the orientation field of the par-
ticles is depicted with green dashes. The orientation of the
dashes shows the local mean orientation of the particles and
the length of the dashes is proportional to the absolute value
of the orientational order-parameter field

S(~r) = 2

∫ 2π

0
dφ sin2(φ − θ) ρ(rû(θ), φ)∫ 2π

0
dφ ρ(rû(θ), φ)

− 1 (60)

with the polar angle θ and the parametrization ~r = rû(θ) with
û(θ) = (cos(θ), sin(θ)). S(~r) describes the amount of local par-
ticle alignment relative to the wall with |S(~r)| = 1 for a perfect
alignment and S(~r) = 0 for a uniform distribution of the ori-
entation φ. In Fig. 2, a layering of the particles near the wall
is visible. Like the density field, also the orientation field is
rotationally symmetric and shows a damped oscillation as a
function of the distance from the wall. Near the wall, the

local mean orientation of the particles is aligned parallel to
the wall. When the distance from the wall is increased, the
local mean particle orientation oscillates between an alignment
perpendicular (S(~r) < 0) and parallel (S(~r) > 0) to the wall.

In order to compare the different approaches, we calcu-
late from our analytic, MC, and DFT results the orientation-
integrated density ρ(d) and the orientational order parameter
S(d), where d is the distance of a rectangle’s center of mass
from the wall in units of σ, i.e., d = (R − r)/σ with r = |~r |
for a cavity, d = x/σ for a flat wall, and d = (r − R)/σ for
an obstacle. These profiles are shown in Fig. 3 for rectangular
particles with L = 2σ in the ideal-gas limit (analytic results,
left) and at area fraction η = 0.5 for both MC simulations (mid-
dle) and DFT calculations (right). Both a cavity (orange) and
an obstacle (blue) with R = 5σ are considered and compared
to the limiting case of a flat wall (green). The profiles for the
cavity and the obstacle at η = 0.5 correspond to the snapshots
and density profiles shown in Fig. 2.

In the ideal-gas limit (left column in Fig. 3), we find dif-
ferences between the three systems, which can be explained
by geometrical considerations. Clearly, the rectangle’s center
of mass cannot approach a wall closer than half the rectan-
gle’s width (d = 0.5). In the cavity, this inaccessible area is
larger, due to the concave curvature of the wall, which prevents
the rectangle from touching the wall with its edges. There-
fore, this threshold shifts to dc

1 = (σ/2 + R −
√

R2 − L2/4)/σ.
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FIG. 3. (a)-(c) The orientation-integrated particle number density ρ(~r) and (d)-(f) the orientational order parameter S(~r) are shown for rectangular particles with
L = 2σ as a function of the distance from the wall for a circular cavity (R = 5σ, orange), a flat wall (R = ∞, green), and a circular obstacle (R = 5σ, blue).
The columns correspond to (a) and (d) analytic results in the ideal-gas limit with dc

1 = (σ/2 + R −
√

R2 − L2/4)/σ and dc
2 = (L/2 + R −

√
R2 − σ2/4)/σ, (b)

and (e) MC results for η = 0.5, and (c) and (f) DFT results for η = 0.5. Note that the local mean particle alignment is either perpendicular (S(~r) < 0) or parallel
(S(~r) > 0) to the wall.

At distances smaller than those threshold values, ρ(d) vanishes
and S(d) is not defined. As the orientational freedom grows
with increasing distance to the wall, ρ(d) increases with d in
all three systems. However, we find a qualitatively different
behavior for the profiles near a cavity or flat wall, in com-
parison to that near an obstacle. While ρ(d) is convex in the
former two cases, meaning that its second derivative is always
positive, we observe a sharp increase of ρ(d) at d = 0.5 and
then a transition from a concave to a convex curve in the latter
case. In this concave regime of the density profile around an
obstacle, the freedom of rotation of a rectangle is limited by the
contact between one of its long edges and the obstacle, rather
than its corners, allowing a significantly larger amount of ori-
entational freedom. When looking at the orientational order
parameter very closely to the wall, the rectangles are aligned
exclusively parallel to the wall (S(d) = 1) as only this orien-
tation is possible. Due to the increased orientational freedom
further away from the wall, S(d) decreases monotonically with
d. As soon as the rectangle’s distance from the wall reaches
half its length (d = L/(2σ)) in case of the flat wall or obstacle,
or dc

2 = (L/2 + R −
√

R2 − σ2/4)/σ in case of the cavity, the
rectangles may also be aligned orthogonal to the wall and with
further increasing distance they also rotate around this orien-
tation. This gives rise to a kink in the profiles for both ρ(d) and
S(d) in all systems under consideration. For larger distances
to the wall, the density profiles increase monotonically with
the same qualitative differences between the cavity and the flat

wall on one side and the obstacle on the other side as observed
very close to the wall (see above). This is accompanied with
an ongoing monotonic decrease of S(d). As all orientations are
allowed for d ≥ D/(2σ), ρ(d) reaches the bulk density ρ0 and
S(d) reaches 0 at d = D/(2σ). Both ρ(d) and S(d) are constant
for d ≥ D/(2σ).

We now turn our attention to larger area fractions and
focus on η = 0.5 (middle and right columns in Fig. 3). For
both MC simulations and DFT calculations, the broadened
inaccessible area for the cavity as explained for the ideal-gas
limit is retrieved. As in the ideal-gas limit, we find kinks for
ρ(d) and S(d) at d ≈ 1 for both methods.68 For larger distances
d, an accumulation of particles close to the wall as well as a
successive layering is clearly visible. Such a layering close
to a hard wall is frequently reported in the literature.29,46,55,69

Though the amplitudes of the density peaks slightly deviate
between MC simulations and DFT calculations, we find very
good qualitative agreement when comparing the different wall
curvatures, as the relative amplitude differences between the
different systems (amplitude for cavity > amplitude for flat
wall > amplitude for obstacle) are in agreement. For large dis-
tances from the wall, these density fluctuations damp out and
the bulk density ρ0 is reached, if enough space is available.
Note that in a small cavity (as shown for R = 5σ in Fig. 3(c)),
the bulk density is not reached in the center, which gives rise
to strong finite-size effects; we therefore exclude those small
cavities in the calculations of the Tolman length further below.
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In contrast, the bulk reservoir for the flat wall and the obstacle
can always be chosen sufficiently large to reach the bulk den-
sity in the isotropic phase. In our MC simulations and DFT
calculations, we carefully confirmed that the bulk density was
reached far away from the wall.

Based on our results for the equilibrium density profiles,
we determine the interfacial tension γ for various aspect ratios
L/σ, bulk area fractions η, and wall curvatures±1/R, using Eq.
(46) for our analytic calculations, Eq. (49) for our MC sim-
ulations, and Eq. (2) for our DFT calculations as described
in Secs. II B and III. Figure 4 shows γ(η) as obtained by
analytic calculations, MC simulations, and DFT calculations
for squares with L =σ (top row) and rectangles with L = 2σ
(bottom row) in a circular cavity (left column) and around
a circular obstacle (right column) with R= 5σ. In each plot,
we also show the reference case of a flat wall for compari-
son. We find perfect agreement with our analytic results in
the low-density limit. Additionally, at bulk area fractions up to
η ' 0.3, we also observe good quantitative agreement between
MC and DFT results. For both flat and curved walls, we find
a monotonic increase in γ with the area fraction. At low den-
sities, a concave curvature of the wall (left column) results
in a clear decrease in γ, whereas a convex curvature (right
column) increases γ, as one would expect from the signs of
the Tolman lengths as predicted in the ideal-gas limit (see

Sec. II A). However, at high densities, the interfacial ten-
sion for both the cavity and the obstacle appears to be higher
than that for a flat wall. This surprising result occurs for both
aspect ratios L/σ = 1 and L/σ = 2, and in both the MC sim-
ulations and DFT calculations for R = 5σ. We note here that
for R > 10σ the interfacial tension at high densities is lower
for the obstacle than for the flat wall. Although this behavior
clearly demonstrates that for R = 5σ the first-order expansion
of γ in terms of 1/R in Eq. (1) is no longer an accurate approx-
imation, it also strongly suggests that the Tolman length may
be strongly dependent on the particle density.

We therefore now consider the Tolman length in more
detail. In both MC simulations and DFT calculations, we
obtain the Tolman lengths at finite densities from polynomial
fits to the interfacial tension γ(R). Consistent with our analytic
results, we expected the Tolman lengths for the cavity and the
obstacle—also at higher densities—to differ only in sign and
not in magnitude. Therefore, we plotted the data for both cavity
and obstacle simultaneously, with the cavities corresponding
to negative curvatures −1/R. Figure 5 shows an example for
L = 2σ and η = 0.5. In this representation, the Tolman length
`T can be obtained from the slope of γ(R)/γ(∞) as a function
of the wall curvature ±1/R, taken in the limit 1/R→ 0, which
we obtained using a single polynomial fit through the data for
both the cavities and obstacles to optimize the fit accuracy. In

FIG. 4. Analytic results from our low-density expansion, MC results, and DFT results for the interfacial tensions γ are shown as a function of the bulk area
fraction η for squares with L = σ (top) and rectangles with L = 2σ (bottom) in a circular cavity (left) and around a circular obstacle (right) with R = 5σ. For
small area fractions, the agreement between the results is very good, whereas for larger area fractions, deviations become visible. In the case of the MC and DFT
results, even the differences of the curves for R = 5σ and R = ∞ are consistent for both methods.

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  134.99.64.185 On: Thu, 01 Dec

2016 09:04:30



204508-10 Sitta et al. J. Chem. Phys. 145, 204508 (2016)

FIG. 5. For both (a) MC simulations and (b) DFT calculations, the normalized
interfacial tension γ(R)/γ(∞) is shown for rectangular particles with L = 2σ
at bulk area fraction η = 0.5 in systems with cavities (orange) and obstacles
(blue) with various radii of curvature R including a flat wall as limiting case
(green, R=∞). Note that the curvature of the cavity is −1/R, whereas the
curvature of the obstacle is 1/R. A third-order polynomial fit is also shown. Its
slope at σ/R = 0 is 2`T/σ for the cavity and −2`T/σ for the obstacle, which
allows to determine the Tolman length `T.

Fig. 5, γ shows a clear negative slope near 1/R = 0 in both
our MC and DFT results, resulting in a negative Tolman
length for the cavity and a positive Tolman length for the
obstacle.70 This is in sharp contrast to the positive Tolman
length we find at low densities for the cavity (or negative Tol-
man length at low densities for the obstacle) and indicates a
sign change of the Tolman length as a function of the area
fraction for this system. In other words, a bulk particle den-
sity exists at which `T = 0, i.e., where the interfacial tension
γ(R) is, to first order in 1/R, independent of the radius of
curvature R.

In order to examine this intriguing behavior in more detail,
we obtained the Tolman lengths for the aspect ratios L/σ = 1,
2, 3, and 4 for various area fractions using MC simulations
and DFT calculations and compare these results in Fig. 6 with
our theoretical results from Sec. II. For comparison, we also
include MC results for disks of diameter σ. To maintain read-
ability, we skip distinguishing between cavity and obstacle
but instead focus on the obstacle in the following, as the Tol-
man lengths for the cavity and the obstacle only differ in sign.

FIG. 6. Tolman lengths `T for a fluid inside a circular cavity and for a fluid
surrounding a circular obstacle as a function of the bulk area fraction η.
The data are obtained using MC simulations (circles with dashed lines) and
DFT calculations (squares with dotted lines) for rectangular particles with
aspect ratios L/σ = 1, 2, 3, and 4. In addition, MC results for disks with radii
R0 = σ/2 are shown. These MC and DFT results are compared with the
analytic results from our low-density expansion (solid lines). The agreement
is very good for low and intermediate densities. Especially in the ideal-gas
limit, our analytic results (±0.125 for disks and for L = σ, ±1/6 ≈ 0.1667
for L = 2σ, ±0.1875 for L = 3σ, and ±0.2 for L = 4σ) match our numerical
results precisely.

(The discussion for the Tolman length in the cavity is therefore
obtained when exchanging the terms “positive” and “negative”
as well as “increase” and “decrease,” etc.) At low bulk area
fractions η, we find negative Tolman lengths for all aspect
ratios and observe very good agreement between analytic
results, MC simulations, and DFT calculations. With increas-
ing η, the Tolman length increases monotonically, with higher
aspect ratios resulting in a stronger increase. This increase
eventually leads to a sign change in `T for rectangular parti-
cles of all investigated aspect ratios. This sign switching is one
of the main results of our article and can be observed for lower
area fractions as the aspect ratio increases. To our knowledge,
a dependence of the sign of the Tolman length on the bulk area
fraction was not observed before, and indeed we do not observe
this phenomenon for disk-shaped particles. Although the Tol-
man length for disks may change sign at area fractions higher
than those investigated here, extrapolation would suggest that
this does not occur before the onset of the hexatic phase around
area fraction η ≈ 0.7.71,72 This observation for disks in two
spatial dimensions is in agreement with previous works, in
which no change of sign of the Tolman length was observed
for spheres around a cylinder in three spatial dimensions.28

When scaled accordingly, our results for disks are in qualita-
tive agreement with Fig. 2 in Ref. 28. As we do not see a change
of sign of the Tolman length for disks, we conclude that the
change of sign of the Tolman length is caused by the anisotropy
of the particle shape and not by the restriction to two spatial
dimensions.

The effect of particle shape on the density-dependence of
the Tolman length, as well as its sign change, is qualitatively
captured by the second-order expansion of the interfacial ten-
sion in terms of the bulk density in Sec. II B. This suggests that
this behavior can be explained by simple one- and two-particle
arguments, even if it occurs at relatively high densities. We
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recall that up to second order in the fugacity z, the interfacial
tension can be written as

βLwallγ = (A − Af)z −
(
AAbulk

ex − Af〈A
wall
ex 〉

) z2

2
+O(z3). (61)

On the right-hand side of this equation, only Af and 〈Awall
ex 〉

depend on the radius of curvature of the wall R. The ini-
tial negative Tolman length at low density results from the
first term of this expansion in z. Given the same total avail-
able area A and wall length Lwall, the effective free area Af

is smaller for convex than for flat walls, resulting in a higher
interfacial tension γ. This corresponds to a negative Tolman
length.

We now consider the second term on the right-hand side of
Eq. (61). The term 〈Awall

ex 〉 represents the average area excluded
by one particle to another particle within the relevant wall
geometry. While far away from the wall, the area excluded
by the first particle to the second is simply equal to the bulk
value Abulk

ex , close to the wall a part of this excluded area is
inaccessible to the second particle due to its interaction with
the wall, ensuring that 〈Awall

ex 〉 < Abulk
ex . Since Af is also smaller

than A in all cases, the second term on the right-hand side
of Eq. (61) is always negative. Moreover, for convex walls,
Af is again smaller, and the particles are on average closer
to the wall than for a concave wall (see Fig. 3), resulting
in a smaller 〈Awall

ex 〉 as well. Thus, for convex walls, the z2

term in Eq. (61) is more strongly negative, resulting in a
positive contribution to the Tolman length, which becomes
more important at higher fugacity z (i.e., at higher bulk den-
sity ρ0 ∝ η). This explains the positive slope of the Tolman
length `T(η) as a function of the bulk area fraction η, which
at sufficiently high density leads to a sign change. Finally,
we note that for longer particles, the effect of the curvature
on both Af and 〈Awall

ex 〉 is stronger, resulting in a stronger
positive slope in `T(η), consistent with our observations in
Fig. 6.

V. CONCLUSIONS

In conclusion, we combined analytic calculations, com-
puter simulations, and classical density functional theory to
calculate the interfacial tension in a two-dimensional fluid of
orientable hard rectangular particles near a curved hard wall.
We considered particle densities where the bulk phase of the
fluid is isotropic and found that the sign and magnitude of the
Tolman length, which characterizes the leading-order curva-
ture contribution to the interfacial tension, vary strongly with
the particle shape and density. Specifically, we found a transi-
tion from negative to positive Tolman length for a fluid around
a circular obstacle (and vice versa for a fluid in a cavity)
at a density controlled by the aspect ratio of the rectangles.
This sign change does not appear for hard disks in the same
geometry.

Our results are in principle verifiable in experiments with
sterically stabilized colloidal42,45,73–77 or granular43,78 parti-
cles on a two-dimensional substrate. However, it should be
noted that the particle number density field near the wall is

more direct to obtain than the interfacial tension itself, which
requires a thermodynamic integration.

For future studies it would be interesting to general-
ize our results to various directions: first of all, other bulk
phases different from the isotropic fluid such as nematic,
smectic, and crystalline phases should be considered. This
situation is much more complex and hardly explored, except
for the case of the planar hard wall, which was investigated
using a restricted-orientation approximation.50 For complex
bulk phases, the interfacial tension will depend also on the
relative orientation of the wall with respect to the macro-
scopic nematic director. Second, other shapes of hard par-
ticles should be considered both in two and in three spa-
tial dimensions. These will typically exhibit more complex
phase diagrams (see, e.g., Ref. 79). Concomitantly, new clas-
sical density functional theories for shape-anisotropic hard
particles69,80–83 should be used to access the Tolman length
for bodies of more complex shapes. Some of these were
already used for planar hard walls69 and could be applied
to more general systems with curved walls. Finally, also
other particle-particle or particle-wall interactions (such as
Lennard-Jones potentials or homeotropic anchoring) could be
considered.
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APPENDIX: NUMERICAL DETAILS
ON THE DENSITY FUNCTIONAL MINIMIZATION

The area of a rectangle with its center at position
~r = (x, y) and with orientation φ is denoted asA(~r, φ), whereas
the corners of the rectangle A(~r, φ) are denoted as C(~r, φ). The
cross correlations in the calculation of the weighted densities
are performed in real space as they can be written as corner
and area integrals

n0(~r) =
∫ 2π

0
dφ
∫
C(~r,φ)
d2r ′ρ(~r ′, φ), (A1)

n2(~r) =
∫ 2π

0
dφ
∫
A(~r,φ)
d2r ′ρ(~r ′, φ), (A2)

using the following notation for the corner and area integrals
of a function g(~r, φ):

∫
C(~r,φ)
d2r ′ g(~r ′, φ) =

∫
A

d2r ′ω(0)(~r ′ −~r, φ)g(~r ′, φ), (A3)∫
A(~r,φ)
d2r ′ g(~r ′, φ) =

∫
A

d2r ′ω(2)(~r ′ −~r, φ)g(~r ′, φ). (A4)

The functional derivative of the excess free-energy func-
tional Fexc[ρ(~r, φ)], which is needed for the minimization, is
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given by

δ βFexc

δρ(~r, φ)
= −

∫
C(~r,φ)
d2r ′

(
ln

(
1 − n2(~r ′)

)
+

n2(~r ′)
1 − n2(~r ′)

)
−

∫
A(~r,φ)
d2r ′

n0(~r ′)n2(~r ′)

(1 − n2(~r ′))2
+ m1(~r, φ)m2(~r, φ)

+

∫ 2π

0
dφ′

∫
A

d2r ′ ρ(~r ′, φ′)m2(~r ′, φ′)f (~r ′ −~r, φ′, φ)

+
1
2

∫ 2π

0
dφ′′

∫
A

d2r ′′ ρ(~r ′′, φ′′)m1(~r ′′, φ′′)

×

∫
C(~r′′,φ′′)∩A(~r,φ)

d2r ′
1

(1 − n2(~r ′))2
(A5)

with the auxiliary functions m1(~r, φ) and m2(~r, φ) defined as

m1(~r, φ) =
∫ 2π

0
dφ′

∫
A

d2r ′ ρ(~r ′, φ′)f (~r −~r ′, φ, φ′), (A6)

m2(~r, φ) =
1
2

∫
C(~r,φ)
d2r ′

1
1 − n2(~r ′)

. (A7)

The grand-canonical free-energy functional (58) is min-
imized in real space with respect to ρ(~r, φ) using the Picard
iteration scheme24

ρ(i+1)(~r, φ) = (1 − α)ρ(i)(~r, φ)

+ α
1

Λ2
exp

(
βµ −

δ βFexc

δρ(~r, φ)

) (A8)

with the mixing parameter α ≤ 0.02 and Λ set to σ. As
in previous works,26,84 this iteration is combined with the
DIIS63–66 to improve the convergence significantly. The iter-
ation is terminated when the relative change in the grand-
canonical free energy during the last 50 iteration steps is less
than 10−8: |Ω[ρ(n)(~r, φ)]/Ω[ρ(n−50)(~r, φ)] − 1| < 10−8. Reduc-
ing the threshold value from 10−8 to 10−9 does not affect the
results. Alternatively, the functional Ω[ρ(~r, φ)] could also be
minimized using algorithms based on the conjugate gradient
method85,86 or dynamical density functional theory.87–91

The discrete orientations φi of the particles are chosen in
equidistant steps of ∆φ = 2π/64. The orientations are shifted
by ∆φ/2 relative to the orientation of the spatial grid (so that
φ1 = π/64) to avoid particle orientations parallel to the grid
which might be numerically discriminated or favored. Making
use of the particle’s symmetries, only 16 (for L = σ) or 32 (for
L > σ) different orientations have to be taken into account.

The step size of the spatial grid is chosen as ∆x = ∆y
≈ 0.03σ. Increasing the resolution of the spatial grid has only
a negligible effect on the results. For the corners and edges in
the corner and area integrals, a bilinear interpolation is used.

For the bulk system, periodic boundary conditions in the
x- and y-directions are used. In the case of the flat-wall sys-
tem, the periodic boundaries in the x-direction are replaced by
hard walls at the borders of the system. It is carefully checked
that the bulk density is reached between the walls and that
the results do not change upon further increasing the distance
between the walls (e.g., a wall distance Lx = 30σ is used for
L = 2σ and η = 0.5).

For systems with curved walls, we placed the center of
the cavity or obstacle at ~r = ~0. Making use of the rotational
symmetry of our system, we only consider a quarter of the

full system (x ≥ 0, y ≥ 0) and “mirror” the density profiles
at the edges of the system, which significantly speeds up the
calculations. When calculating the equilibrium density profiles
for an obstacle, we ensure that the domain A is sufficiently
large so that all wall-induced fluctuations are damped out at
the edges of the system.

We calculate equilibrium density profiles for various val-
ues of the chemical potential µ and consider at least 26 wall
curvatures ±1/R for each value of µ. To reduce finite-size
effects, we limit the radii of curvature to R >10σ for the cavity
and R > 5σ for the obstacle. The interfacial tensions γ cor-
responding to the equilibrium density profiles are normalized
by the interfacial tension for a flat wall γ(∞) and plotted as
a function of the curvature ±1/R as described in Sec. IV (see
Fig. 5). To access the slope of the data at σ/R = 0 and thus
to determine the Tolman length, we use a least-squares fit to
a polynomial in σ/R (up to 3rd order for L ≤ 3σ and up to
4th order for L = 4σ). We do not force the fit to pass through
the data point for the flat wall at σ/R = 0, i.e., the value of
the polynomial at σ/R = 0 is not fixed to 1 but kept as a free
fit parameter. In our calculations, this value never differs from
1 for more than 0.005, demonstrating internal consistency of
the data.
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41A. Tröster and K. Binder, Phys. Rev. Lett. 107, 265701 (2011).
42J. Galanis, R. Nossal, W. Losert, and D. Harries, Phys. Rev. Lett. 105, 168001

(2010).
43R. Cruz Hidalgo, I. Zuriguel, D. Maza, and I. Pagonabarraga, J. Stat. Mech.:

Theory Exp. 2010, P06025.
44M. Acevedo, R. C. Hidalgo, I. Zuriguel, D. Maza, and I. Pagonabarraga,

Phys. Rev. E 87, 012202 (2013).
45T. Müller, D. de las Heras, I. Rehberg, and K. Huang, Phys. Rev. E 91,

062207 (2015).
46D. A. Triplett and K. A. Fichthorn, Phys. Rev. E 77, 011707 (2008).
47D. de las Heras and E. Velasco, Soft Matter 10, 1758 (2014).
48T. Geigenfeind, S. Rosenzweig, M. Schmidt, and D. de las Heras, J. Chem.

Phys. 142, 174701 (2015).
49M. Oettel, M. Klopotek, M. Dixit, E. Empting, T. Schilling, and

H. Hansen-Goos, J. Chem. Phys. 145, 074902 (2016).
50Y. Martı́nez-Ratón, Phys. Rev. E 75, 051708 (2007).
51J. Z. Y. Chen, Soft Matter 9, 10921 (2013).
52M. González-Pinto, Y. Martı́nez-Ratón, and E. Velasco, Phys. Rev. E 88,

032506 (2013).
53J. C. Everts, M. T. J. J. M. Punter, S. Samin, P. van der Schoot, and

R. van Roij, J. Chem. Phys. 144, 194901 (2016).
54M. A. Bates and D. Frenkel, J. Chem. Phys. 112, 10034 (2000).
55M. Schoen and S. H. L. Klapp, Nanoconfined Fluids: Soft Matter Between

Two and Three Dimensions, Review in Computational Chemistry, Vol. 24
(John Wiley & Sons, Hoboken, NJ, 2007) pp. 1–517.
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and L. Gránásy, Adv. Phys. 61, 665 (2012).

57T. Boublı́k, Mol. Phys. 29, 421 (1975).
58S. Gottschalk, M. C. Lin, and D. Manocha, in Proceedings of the 23rd

Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH’96 (ACM, New York, 1996), pp. 171–180.

59J. K. Percus, J. Stat. Phys. 15, 505 (1976).
60Y. Martı́nez-Ratón, E. Velasco, and L. Mederos, J. Chem. Phys. 122, 064903

(2005).
61L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).

62Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).
63K. C. Ng, J. Chem. Phys. 61, 2680 (1974).
64P. Pulay, Chem. Phys. Lett. 73, 393 (1980).
65P. Pulay, J. Comput. Chem. 3, 556 (1982).
66A. Kovalenko, S. Ten-no, and F. Hirata, J. Comput. Chem. 20, 928 (1999).
67Though only a quarter of the systems was considered in the numerical DFT

calculations, we make use of the boundary conditions and show here the
full cavity and obstacle for a better illustration.

68In the DFT calculations, the orientations φ are not continuous but dis-
cretized, which causes a non-continuous increase in possible orientations
and therefore small discontinuities in the profiles for d <D/(2σ). As
these discontinuities are numerical artifacts with known origin, they were
smoothed in Fig. 3 to show the limit of a continuous φ.
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