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Abstract Generalized Navier-Stokes equations which were proposed recently to
describe active turbulence in living fluids are analyzed rigorously. Results on well-
posedness and stability in the L2(Rn)-setting are derived. Due to the presence of a
Swift-Hohenberg term global wellposedness in a strong setting for arbitrary initial
data in L2

σ (Rn) is available. Based on the existence of global strong solutions, re-
sults on linear and nonlinear (in-) stability for the disordered steady state and the
manifold of ordered polar steady states are derived, depending on the involved pa-
rameters.

1 Introduction

There is a need to study analytical properties of generalized Navier-Stokes equations
which were recently proposed [33, 8, 7] for active soft matter (for recent reviews see
[25, 21, 22, 3]) to describe the dynamics of “living fluids” such as dense bacterial
suspensions at low Reynolds number [24]. On a continuum scale, a living fluid flows
with an internal speed that is set by the internal self-propulsion velocity of the bacte-
ria. Generalized incompressible Navier-Stokes equations were designed to describe
the spontaneous formation of fluid vortices on the mesoscale by including higher
order derivatives in the velocities entering into the stress tensor. Indeed, at high
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density of the bacterial suspension, experiments reveal the spontaneous formation
of meso-scale vortices [33], which is confirmed by particle-resolved simulations of
self-propelled particles [34] and is consistent with the predictions of the Navier-
Stokes equations generalized to living fluids. Therefore these continuum equations
constitute an important general framework for flow of living or active fluids and
provide a minimal continuum model for swirling. Though different to ordinary tur-
bulence, which occurs at high Reynolds number, this phenomenon is often called
“active turbulence” [37]. Active turbulence, which occurs at small Reynolds num-
ber, is characterized by scaling laws different to ordinary turbulence [33, 4].

Therefore a thorough mathematical study of this generalized Navier-Stokes sys-
tem is highly desirable both from a physical and a mathematical point of view. This
paper concerns the following minimal hydrodynamic model to describe the bacte-
rial velocity in the case of highly concentrated bacterial suspensions with negligible
density fluctuations considered on the domain (0,∞)×Rn:

vt +λ0v ·∇v = f −∇p+λ1∇|v|2− (α +β |v|2)v+Γ0∆v−Γ2∆ 2v
divv = 0
v(0) = v0

(1)

Here v : (0,∞)×Rn→ Rn is the (vectorial) bacterial velocity field and p : (0,∞)×
Rn→ R the (scalar) pressure. The first equation is the conservation of momentum
and the equation divv = 0 results from conservation of mass and the assumption of
constant density.

The generalized Navier-Stokes equations defined in (1) were originally proposed
by Wensink et al. in [33] and then considered in Refs. [8, 7]. Clearly, for λ0 = 1,
λ1 = β = Γ2 = 0, and Γ0 > 0, the model reduces to the incompressible Navier-
Stokes equations in n spatial dimensions. Let us briefly discuss the physics behind
the various terms entering in (1). The parameter λ0 describes advection and nematic
interactions and λ1 is a prefactor in front of an active pressure contribution [7]. The
two parameters λ0 and λ1 depend on the hydrodynamic nature of the swimmer, i.e.
whether they are pushers or pullers [9], and on the dimension n ∈ {2,3}. The term
involving the parameters α and β pushes the system towards rest with velocity v= 0
if α > 0 and towards a characteristic non-vanishing velocity of

√
−α/β if α < 0

and β > 0 as in the Toner-Tu model [31] corresponding to a quartic Landau-type
velocity potential. If the parameter Γ0 is positive, it determines the suspension’s
viscosity similar to the pure Navier-Stokes case. If it is negative, Γ2 > 0 is required
for stability reasons as in the traditional Swift-Hohenberg equation [30], for a review
see [10]. By this fact, here we always assume Γ2 > 0.

A main objective of this note is to provide an analytical approach to the gener-
alized Navier-Stokes equations (1) in the L2(Rn)-setting. This will be performed in
Section 3. There we will consider the general system (5), which includes the trans-
formed systems about the steady states given in Section 2. These are the disordered
isotropic state and the manifold of globally ordered polar states. The main results
of Section 3 are as follows. Subsection 3.1 provides an approach to the linearized
equations. The corresponding linear operator admits a bounded H∞-calculus, see
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Lemma 1. Propositions 1 and 2 give precise information on linear (in-) stability of
the steady states depending on the values of the involved parameters. In Subsec-
tion 3.2 we will prove global (strong) wellposedness for the generalized Navier-
Stokes equations (1) in the L2-setting, see Theorem 2. Based on the global solvabil-
ity, Subsection 3.3 concerns nonlinear (in-) stability. Theorem 3 transfers the linear
stability results for the disordered state to the nonlinear situation. Theorem 4 then
proves a nonlinear instability result for the ordered polar state.

We note that the physically relevant steady states (see Section 2) were given
earlier in [33]. There also a linear instability analysis is performed on a non-rigorous
level. Here we provide a rigorous analysis and go beyond linear instability.

The fact that we can prove the existence of a global unique strong solution for
arbitrary initial data in L2

σ (Rn) for system (1) of course is due to the presence of
the Swift-Hohenberg term Γ2∆ 2u. It causes the nonlinear terms to appear less strong
compared to the classical second order Navier-Stokes equations. We refer to [11,
29, 35, 2, 5] and the references cited therein for more information on the classical
Navier-Stokes equations.

We also remark that the purpose of this note is not to present best possible re-
sults in every direction. The L2-approach given here is merely a first step towards
a thorough analysis of the active fluids continuum model (1) in a variety of further
significant situations. Further developments and future projects, e.g. including fluid
boundaries, are addressed in Section 4.

2 Steady States

We assume Γ2,β > 0 and α ∈ R. Then the following physically relevant stationary
solutions appear [33]:

(v, p) = (0, p0) (2)

with a pressure constant p0 and, if α < 0, additionally

(v, p) = (V, p0), (3)

where V ∈ Bα,β := {x∈Rn : |V |=
√
−α/β}, i.e., V denotes a constant vector with

arbitrary orientation and fixed swimming speed |V |=
√
−α/β .

The steady state (2) corresponds to a disordered isotropic state and (3) to the
manifold Bα,β of globally ordered polar states.

Note that mathematically there is a further manifold of stationary solutions given
by

v(x) = v0, p(x) = p0− (α +β |v0|2)v0 · x, x ∈Ω , p0 ∈ R, (4)

with v0 ∈ R3 arbitrary. For v0 = 0 or |v0|=
√
−α/β these solutions correspond to

the above steady states (2) and (3), respectively. For all other values of v0 they are,
however, physically not relevant since their pressure takes arbitrary large negative
values. Thus, in the sequel we will only consider (2) and (3).
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3 Wellposedness and Stability

We perform an approach to the hydrodynamic model (1) in the L2(Rn)-setting. In
order to include the steady states in our analysis we consider the following general-
ized system:

ut +λ0 [(u+V ) ·∇]u+(M+β |u|2)u−Γ0∆u+Γ2∆ 2u+∇q = f +N(u),
divu = 0,
u(0) = u0.

(5)

Here q = p−λ1|v|2, M ∈Rn×n is a symmetric matrix, and N(u) = ∑ j,k a jku juk with
(a jk)

n
j,k=1 ⊂ Rn is a quadratic nonlinear term. By setting

V = 0, M = α, N(u) = 0 (6)

we obtain (1) for u = v, i.e., the system corresponding to the steady state (2) and by
setting

V ∈ Bα,β , M = 2βVV t , N(u) =−β |u|2V −2β (u ·V )u (7)

we obtain the system for u = v−V corresponding to (3). Note that for the appearing
parameters we always assume that λ0,λ1,Γ0,α ∈R and that Γ2,β > 0. Furthermore,
dimension is always assumed to be n ∈ {2,3}.

For a domain Ω ⊂Rn, a Banach space X , and 1≤ p≤ ∞ in the sequel Lp(Ω ,X)
denotes the standard Bochner-Lebesgue space with norm

‖u‖Lp(X) =

(∫
Ω

‖u(x)‖p
X dx

)1/p

,

if 1≤ p < ∞ and ‖u‖L∞(X) = esssupx∈Ω‖u‖X if p = ∞. In case that Ω = X =Rn its
subspace of solenoidal functions is denoted by

Lp
σ (Rn) := {v ∈ Lp(Rn); divv = 0}.

Note that for 1 < p < ∞ we have the Helmholtz decomposition

Lp(Rn) = Lp
σ (Rn)⊕Gp(Rn)

with Gp(Rn) = {∇p; p ∈ D ′(Rn), ∇p ∈ Lp(Rn)}. The associated Helmholtz pro-
jector onto Lp

σ (Rn) is represented as

P = F−1
(

I− ξ ξ T

|ξ |2

)
F ,

where F denotes the Fourier transformation and I the identity matrix in Rn.
The symbol W k,p(Ω ,X), k ∈ N0, 1 ≤ p ≤ ∞, stands for the standard Sobolev

space of k-times differentiable functions in Lp(Rn,X). Its norm is given as
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‖ f‖W k,p(X) :=
(

∑
|α|≤k
‖∂ α f‖p

Lp(X)

)1/p

with the usual modification if p = ∞. The fractional order Sobolev resp. Besov
spaces are defined by complex resp. real interpolation as

W t,p(Ω ,X) :=
[
W k,p(Ω ,X),W k+1,p(Ω ,X)

]
t/k

,

Bt
p(Ω ,X) :=

(
W k,p(Ω ,X),W k+1,p(Ω ,X)

)
t/k,p

for t ∈ (0,k) and k ∈ N0. For p = 2 and s ≥ 0 we use the notation Hs(Ω ,X) :=
W s,2(Ω ,X) and we frequently write Lp(Ω), W s,p(Ω), and Bs

p(Ω) if X = Rn. Also
note that Hs(Ω) =W s,2(Ω) = Bs

2(Ω), but that W s,p(Ω ,X) 6= Bs
p(Ω ,X) in general.

Finally, L (X ,Y ) denotes the space of all bounded and linear operators from the
space X into the space Y , we write L (X) if X = Y , and σ(A) denotes the spectrum
of a linear operator A : D(A)⊂ X → X .

3.1 Linear Theory

In this subsection we consider the linearized system

ut +λ0(V ·∇)u+Mu−Γ0∆u+Γ2∆ 2u+∇q = f in (0,∞)×Rn,
divu = 0 in (0,∞)×Rn,
u(0) = u0 in Rn.

(8)

Thanks to Γ2 > 0 the operator

ASH u := Γ2∆
2u, u ∈ D(ASH ) :=W 4,p(Rn)∩Lp

σ (Rn),

admits a bounded H∞-calculus on Lp
σ (Rn) with H∞-angle φ ∞

ASH
= 0 for p ∈ (1,∞).

This follows as an easy consequence of Mikhlin’s multiplier theorem, for instance.
See e.g. [6, 19, 13] for an introduction to the notion of a bounded H∞-calculus. Since
every other term appearing in (8), more precisely the operator

Bu := λ0(V ·∇)u+PMu−Γ0∆u, (9)

is of lower order, by a standard perturbation argument we immediately deduce

Lemma 1. Let 1 < p < ∞. There is an ω > 0 such that the operator ω +ALF , where

ALF u := (ASH +B)u, u ∈ D(ALF ) :=W 4,p(Rn)∩Lp
σ (Rn), (10)

admits a bounded H∞-calculus on Lp
σ (Rn) with H∞-angle φ ∞

ω+ALF
< π/2.
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As a consequence, cf. [6], −ALF is the generator of an analytic C0-semigroup on
Lp

σ (Rn) and it has maximal regularity:

Corollary 1. Let 1 < p < ∞, T ∈ (0,∞). For f ∈ Lp((0,T ),Lp
σ (Rn)) and u0 ∈

B4−4/p
p (Rn)∩Lp

σ (Rn) there exists a unique solution (u,q) of (8) satisfying

‖u‖W 1,p((0,T ),Lp)+‖u‖Lp((0,T ),W 4,p)+‖∇q‖Lp((0,T ),Lp)

≤C
(
‖ f‖Lp((0,T ),Lp)+‖u0‖B4−4/p

p

)
with C > 0 independent of u,q, f ,u0.

To obtain preciser information on the spectrum of the operator ALF we apply
Fourier transformation to (10) to the result that

σALF
(ξ ) = FALF F−1 = Γ2|ξ |4 +Γ0|ξ |2 +σP(ξ )M+ iλ0V ·ξ , ξ ∈ Rn,

with σP(ξ ) = (1− ξ ξ t/|ξ |2) the symbol of the Helmholtz projector P. We first
consider the disordered state (2). We set Ad := ALF in this case. Then according to
(6) the above expression takes the form

σAd (ξ ) = Γ2|ξ |4 +Γ0|ξ |2 +α, ξ ∈ Rn.

Calculating the intersection points of the parabola in s = |ξ |2 we obtain

s2
± =
−Γ0

Γ2

(
1
2
±
√

1
4
− αΓ2

Γ 2
0

)
.

Consequently, if Γ0 < 0 there is an unstable band of modes for s2 ∈ (s2
−,s

2
+) pro-

vided this interval is nonempty. In this case the spectral bound s(Ad) = sup{Rez; z∈
σ(Ad)} of −Ad is positive. Since it is well known that for analytic C0-semigroups
spectral bound of the generator and growth bound of the generated semigroup co-
incide [23], we deduce that exp(−tAd) is exponentially unstable precisely if Γ0 < 0
and 4α < Γ 2

0 /Γ2, or if Γ0 ≥ 0 and α < 0. This leads to the following result.

Proposition 1. Let Γ2 > 0, β > 0, and 1 < p < ∞. If Γ0 < 0, then the disordered
state (2) is linearly stable if and only if 4α ≥ Γ 2

0 /Γ2. If Γ0 ≥ 0, then the disordered
state (2) is stable if and only if α ≥ 0. To be precise, the semigroup (exp(−tAd))t≥0
on Lp

σ (Rn) corresponding to the disordered state (2) is

(1) exponentially stable if Γ0 < 0 and 4α > Γ 2
0 /Γ2, or if Γ0 ≥ 0 and α > 0;

(2) asymptotically stable if Γ0 < 0 and 4α = Γ 2
0 /Γ2, or if Γ0 ≥ 0 and α = 0;

(3) exponentially unstable if Γ0 < 0 and 4α < Γ 2
0 /Γ2, or if Γ0 ≥ 0 and α < 0.

Proof. It remains to prove (2), the other assertions are obvious by the discussion
above. On the other hand, in the situation of (2) we see that (exp(−tAd))t≥0 is a
bounded analytic C0-semigroup on Lp

σ (Rn), which are known to be asymptotically
stable, see [23].
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Next, we consider the manifold Bα,β of ordered polar states (3). In this case we
set Ao := ALF and the symbol of this operator according to (7) reads as

σAo(ξ ) = Γ2|ξ |4 +Γ0|ξ |2 +2βσP(ξ )VV t + iλ0V ·ξ , ξ ∈ Rn,

with V ∈ Bα,β . Note that the matrix σP(ξ )VV t is positive semidefinite and that
zero is an eigenvalue by the fact that V tx = 0 if x ∈ Rn \{0} is perpendicular to V .
Choosing x,ξ ∈ {V}⊥ such that |x|= 1 and that |ξ | is small enough, we can always
achieve that

xt
σAo(ξ )x = Γ2|ξ |4 +Γ0|ξ |2 < 0,

provided that Γ0 < 0. Thus, here we obtain the following result.

Proposition 2. Let 1 < p < ∞, Γ2 > 0, β > 0, and α < 0. The ordered polar state (3)
is linearly stable if and only if Γ0 ≥ 0. To be precise, the semigroup (exp(−tAo))t≥0
corresponding to the ordered state (3) is

(1) exponentially unstable on Lp
σ (Rn) if Γ0 < 0;

(2) asymptotically stable on L2
σ (Rn) if Γ0 ≥ 0.

Proof. Assertion (1) is clear. To see (2) first observe that due to the occurrence
of the term iλ0V · ξ , (e−Aot)t≥0 is not a bounded analytic semigroup. Hence we
cannot argue as for Ad to deduce asymptotic stability. Instead, for (2) we restrict
ourselves to the case p = 2 and proceed as in [15]: For v0 ∈ H1(Rn)∩ L2

σ (Rn),
v(t) := exp(−tAo)v0 solves

vt(t)+Γ2∆
2v(t)−Γ0∆v(t)+λ0(V ·∇)v(t)+2βPVV tv(t) = 0.

Multiplication in L2(Rn) with v(t) and integration from t = 0 to T yields

‖v(T )‖2
L2 +2

∫ T

0

(
Γ2‖∆v(t)‖2

L2 +Γ0‖∇v(t)‖2
L2 +2β‖V · v(t)‖2

L2

)
dt = ‖v0‖2

L2

for every T > 0. This has two consequences: First, the semigroup exp(−tAo) is
contractive since it is strongly continuous and since H1(Rn)∩L2

σ (Rn) is dense in
L2

σ (Rn), and second, we have ∫
∞

0
‖∆v(t)‖2

L2dt < ∞. (11)

If v0 ∈ H4(Rn), using the contractiveness we obtain∣∣∣∣ d
dt
‖∆v(t)‖2

L2

∣∣∣∣= |2〈∆v(t),∆vt(t)〉|

=
∣∣−2〈∆ 2 exp(−tAo)v0,Aov(t)〉

∣∣≤C‖v0‖2
H4 ,

i.e. ‖∆v(·)‖2
L2 ∈ BC1(0,∞). Together with (11) this implies

lim
t→∞
‖exp(−tAo)∆v0‖L2 = lim

t→∞
‖∆v(t)‖L2 = 0. (12)
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In order to prove asymptotic stability we have to show that for every u0 ∈ L2
σ (Rn),

u(t) := exp(−tAo)u0 satisfies

lim
t→∞
‖u(t)‖L2 = 0.

Considering that {∆w; w ∈ H4(Rn)∩L2
σ (Rn)} is dense in L2

σ (Rn) we can always
find v0 ∈ H4(Rn)∩L2

σ (Rn) with ‖u0−∆v0‖L2 arbitrary small. Making once more
use of the contractiveness of the semigroup we obtain

‖u(t)‖L2 ≤ ‖exp(−tAo)u0− exp(−tAo)∆v0‖L2 +‖exp(−tAo)∆v0‖L2

≤ ‖u0−∆v0‖L2 +‖exp(−tAo)∆v0‖L2 ,

and (12) yields the asymptotic stability.

3.2 Local and global strong solvability

We first consider local-in-time wellposedness. For T > 0 we define relevant function
spaces as

ET :=W 1,p((0,T ),Lp
σ (Rn))∩Lp((0,T ),W 4,p(Rn)),

F1
T := Lp((0,T ),Lp

σ (Rn)), F2 := B4−4/p
p (Rn),

FT := F1
T ×F2,

and the linear operator

L : ET → FT , Lu := (∂tu+ALF u,u(0)).

If we also set
H(u) := βP|u|2u+λ0P(u ·∇)u−PN(u) (13)

and
F(u) := Lu+(H(u),0), (14)

then the full system (5) is rephrased as

F(u) = ( f ,u0).

Lemma 2. Let p > (4+ n)/4. We have H ∈C1(ET ,FT ) and its Fréchet derivative
is represented as

DH(v)u = P ∑
|α|≤1

bα ∂
α u+λ0P(u ·∇)v, u,v ∈ E, (15)

with matrices bα = bα(v) ∈ L∞((0,T )×Rn,Rn×n).
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Proof. First observe that by [1, Proposition 1.4.2] we have

ET ↪→ L∞((0,T ),B4−4/p
p (Rn)). (16)

The assumption p > (4+n)/4 in combination with the Sobolev embedding yields

ET ↪→ L∞((0,T )×Rn). (17)

Utilizing this fact we obtain

‖(u ·∇)u‖F1
T
≤C‖u‖∞‖∇u‖F1

T
≤C‖u‖2

ET
,

‖|u|2u‖F1
T
≤C‖|u|2‖∞‖u‖F1

T
≤C‖u‖3

ET
,

‖N(u)‖F1
T
≤C‖u‖∞‖u‖F1

T
≤C‖u‖2

ET
,

hence H :ET →FT . By the fact that H consists of bi- and trilinear terms it is obvious
that H ∈C1(ET ,FT ) (even H ∈C∞(ET ,FT )). The Fréchet derivative reads as

DH(v)u = βP|v|2u+2βP(u · v)v+λ0P(u ·∇)v

+λ0P(v ·∇)u−2P
n

∑
i,k=1

a jk(u jvk +ukv j).

From this and (17) representation (15) easily follows.

Remark 1. Note that the lower bound p > (4+n)/4 is not optimal. But, since here
we are mainly interested in an L2-approach for dimension n = 2,3, it is sufficient
for our purposes.

Lemma 3. Let p > (4+n)/4, T ∈ (0,∞), and v ∈ ET . Then we have

L+(DH(v),0) ∈Lis(ET ,FT ).

Proof. By employing representation (15) for B(t) := DH(v(t)) we will show that
B(·) is a lower order perturbation of L. To this end, observe that p > (4 + n)/4
yields

W 3,p(Rn) ↪→ L∞(Rn)

and thanks to (16) also v ∈ L∞((0,T ),W 1,p(Rn)). This implies

‖(u ·∇)v(t)‖Lp(Rn) ≤ ‖∇v(t)‖p‖u‖∞

≤C‖v‖L∞((0,T ),W 1,p)

1
µ1/4 ‖(µ +ALF )u‖p

for all u ∈D(ALF ) and all µ > µ0 with µ0 > 0 large enough. We estimate the second
term in (15) as
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‖ ∑
|α|≤1

bα ∂
α u‖Lp(Rn) ≤C‖v‖∞‖∇u‖p

≤C‖v‖∞

1
µ3/4 ‖(µ +ALF )u‖p

for all u ∈ D(ALF ) and all µ > µ0. This shows that

‖B(t)u‖p ≤
C(v)
µ1/4 ‖(µ +ALF )u‖p (u ∈ D(ALF ), µ > µ0).

Thus, choosing µ large enough and due to Corollary 1, we can apply [26, Theo-
rem 2.5] to the result that

L+(µ +DH(v),0) ∈Lis(ET ,FT ).

Since L+DH(v) is linear, we can remove the shift µ > 0 and the assertion follows.

Appealing to the local inverse theorem we can now prove the following result.

Theorem 1 (local wellposedness). Let Γ2,β > 0, Γ0,α ∈R, and p > (4+n)/4. For
every u0 ∈ B4−4/p

p (Rn)∩Lp
σ (Rn) and f ∈ Lp((0,T ),Lp

σ (Rn)) there exists a T > 0
and a unique solution (u,q) of (5) such that

u ∈W 1,p((0,T ),Lp
σ (Rn))∩Lp((0,T ),W 4,p(Rn)),

∇q ∈ Lp((0,T ),Lp(Rn)).

Proof. We fix ( f ,u0) ∈ FT and define a reference solution as

u∗ := L−1( f ,u0) ∈ ET .

For the Fréchet derivative of the nonlinear operator F ∈ C1(ET ,FT ) given in (14)
we obtain in view of Lemma 3 that

DF(u∗) = L+DH(u∗) ∈Lis(ET ,FT ).

Hence the local inverse theorem yields neighborhoods U ⊂ ET of u∗ and V ⊂ FT of
F(u∗) such that F : U →V is bijective.

Now, taking T ′ > 0 small enough, we find a solution. To see this, for 0 < T ′ < T
we define fT ′ ∈ F1

T by

fT ′(t) :=
{

f (t), t ∈ (0,T ′)
f (t)+H(u∗)(t), t ∈ [T ′,T ).

The continuity of the integral implies

fT ′
T ′→0−−−→ f +H(u∗) in F1

T .
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Thus, since F(u∗) = ( f +H(u∗),u0), there is T ′ > 0 with ( fT ′ ,u0) ∈V . The unique
function u ∈U with F(u) = ( fT ′ ,u0) satisfies F(u) = ( f ,u0) on (0,T ′). Thus, re-
covering the pressure via

∇q :=−(I−P)
[
λ0 [u ·∇]u+(M+β |u|2)u−N(u)

]
∈ Lp((0,T ),Lp(Rn))

we find that (u,q)|(0,T ′) is a strong solution to (5).

The just constructed local solution extends to a global one, at least if p = 2.

Theorem 2 (global wellposedness). Let Γ2,β > 0, Γ0,α ∈ R, T ∈ (0,∞). For every
u0 ∈ H2(Rn)∩ L2

σ (Rn) and f ∈ L2((0,T ),L2
σ (Rn)) there exists a unique solution

(u,q) of (5) such that

u ∈ H1((0,T ),L2
σ (Rn))∩L2((0,T ),H4(Rn)),

∇q ∈ L2((0,T ),L2(Rn)).

Proof. We derive a priori bounds in the strong class which will give the result. To
this end, we multiply (5) with u and integrate over (0, t)×Rn. This yields

1
2
‖u(t)‖2

2 +Γ2

∫ t

0
‖∆u‖2

2 ds+β

∫ t

0
‖u‖4

4 ds =
1
2
‖u0‖2

2 +
∫ t

0

∫
Rn

f udxds

+Γ0

∫ t

0

∫
Rn

u∆udxds−
∫ t

0

∫
Rn

uMudxds+
∫ t

0

∫
Rn

uN(u)dxds

for t ∈ (0,T ). By applying Cauchy-Schwarz’ and Young’s inequality we can esti-
mate as ∫ t

0

∫
Rn

u∆udxds≤ Γ2

2|Γ0|
‖∆u‖2

L2((0,t),L2)+C
∫ t

0
‖u‖2

2 dt

and ∫ t

0

∫
Rn

uN(u)dxds≤ β

2
‖u‖4

L4((0,t),L4)+C
∫ t

0
‖u‖2

2 dt. (18)

Plugging this into the above equality we arrive at

‖u(t)‖2
2 +‖u‖2

L2((0,t),H2)+‖u‖
4
L4((0,t),L4)

≤C
(
‖u0‖2

2 +‖ f‖2
L2((0,t),L2)

)
+C

∫ t

0
‖u(s)‖2

2 ds (t ∈ (0,T )).

Hence, Gronwall’s lemma yields

‖u‖2
L∞((0,T ),L2)+‖u‖

2
L2((0,T ),H2)+‖u‖

4
L4((0,T ),L4)

≤C(1+TeωT )
(
‖u0‖2

2 +‖ f‖2
L2((0,T ),L2)

) (19)

for some C,ω > 0.
Next we multiply (5) with −∆u and obtain by utilizing integration by parts
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1
2
‖∇u(t)‖2

2 +Γ2

∫ t

0
‖∇∆u‖2

2 ds+β

∫ t

0

∫
Rn
(∇|u|2u)∇udxds

=
1
2
‖∇u0‖2

2−
∫ t

0

∫
Rn

f ∆udxds−Γ0‖∆u‖2
L2((0,t),L2)

−
∫ t

0

∫
Rn
(∇u)M∇udxds−

∫ t

0

∫
Rn
(∆u)N(u)dxds

−λ0

∫ t

0

∫
Rn
[(V +u) ·∇]u∆udxds.

(20)

Concerning the third term on the left hand side we calculate

(∇|u|2u)∇u =
n

∑
j,k,`=1

(∂ku j)∂k(u`)2u j

=
n

∑
j,k,`=1

(u`)2(∂ku j)2 +2
n

∑
k=1

(u ·∂ku)2.

This shows that this term is non-negative, hence it drops out. For the fifth term on
the right hand side analogously to (18) we obtain∫ t

0

∫
Rn
(∆u)N(u)dxds≤C

(
‖u‖4

L4((0,t),L4)+
∫ t

0
‖∆u‖2

2 ds
)
,

whereas the last term on the right hand side can be estimated utilizing integration
by parts and div(V +u) = 0 as∫ t

0

∫
Rn
[(V +u) ·∇]u∆udxds

≤C
(
‖u‖2

L2((0,t),L2)+‖u‖
4
L4((0,t),L4)

)
+

Γ2

2|λ0|

∫ t

0
‖∇∆u‖2

2 dt.

Plugging this into (20) yields in combination with (19) that

‖u‖2
L∞((0,T ),H1)+‖u‖

2
L2((0,T ),H3)+‖u‖

4
L4((0,T ),L4)

≤C(1+TeωT )
(
‖u0‖2

H1 +‖ f‖2
L2((0,T ),L2)

)
.

(21)

In the third step we multiply with ∆ 2u to obtain

1
2
‖∆u(t)‖2

2 +Γ2

∫ t

0
‖∆ 2u‖2

2 ds

=
1
2
‖∆u0‖2

2 +
∫ t

0

∫
Rn

f ∆
2udxds−Γ0‖∆∇u‖2

L2((0,t),L2)

−
∫ t

0

∫
Rn
(∆u)M∆udxds+

∫ t

0

∫
Rn
(∆ 2u)N(u)dxds

−λ0

∫ t

0

∫
Rn
[(V +u) ·∇]u∆

2udxds−β

∫ t

0

∫
Rn
|u|2u∆

2udxds.

(22)
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It is enough to focus on the last two terms on the right hand side. The remaining
terms can be handled very similar as before. The first one of those two terms can be
controlled by utilizing the estimate∫ t

0
‖(u ·∇)u‖2

2 ds≤C
∫ t

0
‖u‖2

4‖∇u‖2
4 ds

≤C‖u‖2
L∞(H1)

∫ t

0
‖u‖2

H2 ds

≤C(1+TeωT )2
(
‖u0‖2

H1 +‖ f‖2
L2((0,T ),L2)

)2
,

which is valid thanks to (21) and the Sobolev embedding H1(Rn) ↪→ L4(Rn).
For the last term, using complex interpolation [32] we obtain

L∞((0,T ),H1(Rn))∩L2((0,T ),H3(Rn)) ↪→ L2/s((0,T ),H2s+1(Rn))

for s ∈ [0,1]. Taking into account n≤ 3 the Sobolev embedding yields

H5/3 ↪→ L6(Rn). (23)

Hence, by setting s = 1/3 we obtain

L∞((0,T ),H1(Rn))∩L2((0,T ),H3(Rn)) ↪→ L6((0,T ),L6(Rn)).

On the other hand, from Cauchy-Schwarz’ and Young’s inequality we see that

|
∫ t

0

∫
Rn
|u|2u∆

2udxds| ≤C‖u‖6
L6((0,t),L6)

+
Γ2

2β
‖∆ 2u‖2

L2((0,t),L2).

Here the second term on the right hand side is absorbed by the left hand side of (22)
and the first term is again controlled by estimate (21). Summarizing, we arrive at

‖u‖2
L∞((0,T ),H2)+‖u‖

2
L2((0,T ),H4)

≤C(1+TeωT )3
(
‖u0‖2

H1 +‖ f‖2
L2((0,T ),L2)

)3
.

Using equations (5) it is straight forward to derive similar bounds for the quantities
‖u‖H1((0,T ),L2) and ‖∇q‖L2((0,T ),L2) as well. Thus the assertion is proved.

3.3 Nonlinear (In-) Stability

Most of the outcome on linear (in-) stability in the L2-setting transfers to the corre-
sponding nonlinear situation. For the transfer of the stability results we apply energy
methods and for the transfer of the results on instability we employ Henry’s instabil-
ity theorem [14, Corollary 5.1.6], which we reformulate suitably for our purposes.
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Proposition 3. Let −A be the generator of a holomorphic C0-semigroup in a Ba-
nach space X and let f : U → X, where U is an open neighborhood in X γ := D(Aγ)
for some γ ∈ (0,1), be locally Lipschitz. Let x0 ∈ D(A)∩U be an equilibrium point
of

ẇ(t)+Aw(t) = f (w(t)), (24)

i.e. Ax0 = f (x0). Suppose

f (x0 + z) = f (x0)+Bz+g(z), g(0) = 0,
‖g(z)‖= O(‖z‖s

Xγ ), as z→ 0 in X γ ,

for some s > 1, B ∈L (X γ ,X), and σ(−A+B)∩{z ∈C : Rez > 0} 6= /0. Then x0 is
nonlinearly unstable in the following sense: there is a constant ε0 > 0 such that for
any δ > 0 there exists x ∈ X γ with ‖x− x0‖γ < δ such that there is some finite time
t0 > 0 with

‖w(t0,x)− x0‖Xγ ≥ ε0,

where w(·,x) denotes the solution of (24) with initial value w(0,x) = x.

For instability also the following lemma will be helpful.

Lemma 4. Let the nonlinearity H be given as in (13). Then for every σ ≥ 5/4 we
have H ∈C1(Hσ (Rn),L2

σ (Rn)) and

‖H(u)‖2 ≤C‖u‖2
Hσ (‖u‖Hσ ≤ 1).

Proof. Employing Hölder’s inequality we obtain

‖(u ·∇)u‖2 ≤ ‖u‖p‖∇u‖q

for 1/p+1/q = 1/2. It is easily checked that the Sobolev embeddings Hγ(Rn) ↪→
Lp(Rn) and Hγ−1(Rn) ↪→ Lq(Rn) are sharp for p = 12, q = 12/5, and γ = 5/4. By
the fact that

‖|u|2u‖2 = ‖u‖3
6 ≤C‖u‖3

H1

and since H consists of bi- and trilinear terms the assertion follows.

Remark 2. It is clear that due to better Sobolev embeddings the lower bound on σ

can be improved if n = 2.

As before, first we consider the disordered state (2).

Theorem 3. Let Γ2 > 0 and β > 0. Then the disordered state (2) is nonlinearly

(1) (globally) exponentially stable in L2
σ (Rn) if Γ0 < 0 and 4α > Γ 2

0 /Γ2, or if Γ0 ≥ 0
and α > 0;

(2) stable in L2
σ (Rn) if Γ0 < 0 and 4α = Γ 2

0 /Γ2, or if Γ0 ≥ 0 and α = 0;
(3) unstable in Hγ(Rn)∩L2

σ (Rn) for γ ∈ [5/16,1) if Γ0 < 0 and 4α < Γ 2
0 /Γ2, or if

Γ0 ≥ 0 and α < 0.
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Proof. Suppose u and q with regularity as in Proposition 2 solve the nonlinear sys-
tem (5) corresponding to the disordered state (2), that is

ut +Γ2∆
2u−Γ0∆u+λ0(u ·∇)u+(α +β |u|2)u+∇q = 0.

Testing this equation with u we obtain

1
2

d
dt
‖u‖2

2 +Γ2‖∆u‖2
2 +Γ0‖∇u‖2

2 +α‖u‖2
2 +β‖u‖4

4 = 0.

If Γ0 ≥ 0 and α ≥ 0, all coefficients are nonnegative and we deduce

d
dt
‖u‖2

2 ≤−2α‖u‖2
2,

which yields
‖u(t)‖2

2 ≤ e−2αt‖u0‖2
2 (t ≥ 0),

i.e. stability if α = 0 and exponential stability if α > 0.
If Γ0 < 0, we use the Plancherel theorem, Hölder’s inequality, and Young’s in-

equality with ε to estimate the term

‖∇u‖2
2 =

∫
Rn
|ξ |2|û(ξ )|2dξ ≤ ‖|ξ |2û(ξ )‖2‖û‖2

= ‖∆u‖2‖u‖2 ≤
ε2

2
‖∆u‖2

2 +
1

2ε2 ‖u‖
2
2.

The ε2/2-term can be absorbed by the Γ2-term if we choose ε2 = 2Γ2/|Γ0|. Dropping
the β -term as well we are left with

1
2

d
dt
‖u‖2

2 +α‖u‖2
2 ≤

Γ 2
0

4Γ2
‖u‖2

2.

As before, this implies stability if 4α = Γ 2
0 /Γ2 and exponential stability if 4α >

Γ 2
0 /Γ2. Thus assertions (1) and (2) are proved.

To see instability we apply Proposition 3. In our situation we have x0 = 0, B = 0,
x = u, A = Ad , and f (u) = H(u). From this we also see that H(0) = 0, i.e., that
g = f = H in Henry’s notation. Note that Proposition 1(3) under the assumption (3)
above implies that σ(−Ad)∩{z ∈ C : Rez > 0} 6= /0. Next, the fact that ω +Ad
admits a bounded H∞-calculus for some ω > 0 (Lemma 1) yields

D(Aγ

d) =
[
L2

σ (Rn),D(Ad)
]

γ
= H4γ(Rn) (γ ∈ [0,1]),

where [·, ·]s denotes the complex interpolation space, cf. [32]. Lemma 4 then implies
that the assertions of Proposition 3 are fulfilled for γ ∈ [5/16,1) and s = 2. Hence
the disordered state is unstable.

Finally we consider instability for the ordered polar state.
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Theorem 4. Let Γ2,β > 0 and Γ0,α < 0. Then the ordered polar state (3) is nonlin-
early unstable in Hγ(Rn)∩L2

σ (Rn) for γ ∈ [5/16,1).

Proof. Based on Lemma 4 and Proposition 2(1) the proof is analogous to the proof
of Theorem 3(3).

Remark 3. We have seen in Theorem 3 that for the disordered steady state the results
on linear (in-) stability in principle completely transfer to the nonlinear situation.
Note that for the time being it is not clear if for Γ0 ≥ 0 the linear stability for the
ordered polar state given by Proposition 2(2) transfers to the nonlinear situation
as well. Proceeding as for the disordered state, i.e., employing energy methods, it
appears that for the ordered state ’disturbing’ terms on the right hand side can not
easily be absorbed by the ’good’ terms on the left hand side by just applying Young,
Sobolev and Hölder. It seems that here a refined analysis is required which, however,
is left as a future challenge.

4 Conclusions and future developments

In conclusion, we have shown that the model proposed by Wensink et al. in [33]
gives rise to a mathematically wellposed system which reflects the asymptotic be-
havior observed in simulations and experiments. In detail we have proved:

(i) existence of a unique local-in-time solution for initial data in B4−4/p
p (Rn) ∩

Lp
σ (Rn);

(ii) existence of a unique global strong solution for arbitrary initial data in H2(Rn)∩
L2

σ (Rn);
(iii) results on stability and instability of the ordered and the disordered steady states

in the L2-setting depending on the values of the occurring physically relevant
parameters.

Note that (ii) is in contrast to the (mathematical) situation of the classical Navier-
Stokes system. The fact that we can prove existence of a unique global strong solu-
tion here, of course essentially relies on the presence of the fourth order term in (1)
which provides sufficient regularity.

The intention of this note is to give an analytical approach in the L2-setting which
serves as a first step for further thorough examinations in several directions. Future
work should address the following problems: first of all, it should also be men-
tioned that the generalized Navier-Stokes framework was augmented even further
by including further higher derivatives in the velocities entering into the stress ten-
sor, see the recent work by Slomka and Dunkel [28]. We anticipate that our analysis
can also be performed in this more general case provided the highest order term has
the correct stabilizing sign.

Second, another more complex problem is that of boundary conditions for the
fluid velocity field. This is important to take into account walls and obstacles which
confine the bacterial flow. In fact, recent experiments with bacterial turbulence were
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performed with mobile wedge-like obstacles or carriers [16, 17, 18] which were
powered by activity or in static meso-structured environments [36] where there is
an interesting competition between the geometric structure of the boundaries and
the swirling. Recent observations have also addressed spheres as passive additives
to steer bacterial turbulence. For all these interesting set-ups the mathematical anal-
ysis should include boundary conditions. The latter are typically stick or slip or
involve a finite slipping length. Therefore the wellposedness and stability of the
generalized Navier-Stokes equation in nontrivial boundaries should be addressed in
future studies.

Third, some bacteria move on the surface of an emulsion droplet, which has mo-
tivated recent studies of active particles on a compact manifold, such as a sphere
[27, 12, 20]. It would be interesting to generalize the hydrodynamic model (1) to-
wards a nonplanar geometry and to prove wellposedness and stability for the prob-
lem on curved space.
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