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Aging and rejuvenation of 
active matter under topological 
constraints
Liesbeth M. C. Janssen1,3, Andreas Kaiser2 & Hartmut Löwen1

The coupling of active, self-motile particles to topological constraints can give rise to novel non-
equilibrium dynamical patterns that lack any passive counterpart. Here we study the behavior 
of self-propelled rods confined to a compact spherical manifold by means of Brownian dynamics 
simulations. We establish the state diagram and find that short active rods at sufficiently high density 
exhibit a glass transition toward a disordered state characterized by persistent self-spinning motion. 
By periodically melting and revitrifying the spherical spinning glass, we observe clear signatures of 
time-dependent aging and rejuvenation physics. We quantify the crucial role of activity in these non-
equilibrium processes, and rationalize the aging dynamics in terms of an absorbing-state transition 
toward a more stable active glassy state. Our results demonstrate both how concepts of passive glass 
phenomenology can carry over into the realm of active matter, and how topology can enrich the 
collective spatiotemporal dynamics in inherently non-equilibrium systems.

Active systems are composed of particles that can convert chemical, magnetic, or radiation energy into autono-
mous motion, rendering them intrinsically far from equilibrium1–4. Examples of living active matter are found on 
many length scales, from microscopic motile bacteria to macroscopic flocks of birds, and also numerous synthetic 
active materials have recently become available5. The spatiotemporal dynamics exhibited by such systems range 
from swarming and giant number fluctuations6, 7 to low-Reynolds-number turbulence8–11 and motility-induced 
phase separation12–15, illustrating the rich collective behavior that emerges from the non-equilibrium energy dis-
sipation and active self-motility at the single-particle level.

It was recently found that sufficiently dense assemblies of active matter can also exhibit hallmarks of glassy 
dynamics16–28, including slow relaxation, dynamic heterogeneity, and ultimate kinetic arrest–akin to the behavior 
observed in non-active supercooled liquids and dense colloidal suspensions29. For passive systems, the process 
of glass formation has been widely studied over the last few decades, resulting in multiple compelling theoretical 
scenarios for the conventional glass transition29–31. However, the extent to which the phenomenology of passive 
glass-formers differs from that of non-equilibium dense active matter remains a topic of scientific debate. For 
example, while initial simulation studies suggested that adding activity generally pushes the glass transition to 
higher densities and lower temperatures18, 19, more recent work argues that active self-motility can both increase 
and decrease a system’s glassiness21, 22. This indicates that activity has a more intricate effect on the dynamics than 
merely shifting the effective density or temperature. The question whether time-dependent out-of-equilibrium 
glassy phenomena such as aging and rejuvenation may also occur in active matter has thus far remained unex-
plored. These latter processes are generally understood in terms of an energy-landscape picture, whereby aging 
and rejuvenation correspond to relaxation toward deeper and shallower energy minima, respectively32. However, 
owing to the non-Hamiltonian nature of particle activity, the potential (or free) energy is generally not a useful 
metric for active matter, and hence it remains unclear if and how aging and rejuvenation might be manifested in 
an active glass.

A different avenue of research concerns the effects of geometric33–38 and topological39–46 constraints on active 
matter. For passive soft matter systems, it is well established that confining a system to a curved surface can both 
frustrate and promote long-range orientational order47–49, induce complex topological-defect structures50–53, and 
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affect a system’s glass-forming properties54. In a biological context, surface curvature is known to play a role in 
collective cell migration during e.g. embryonic development55 and the growth of the corneal epithelium56. For 
active soft-matter systems, however, only a limited number of experimental and theoretical studies has addressed 
the role of curvature and topology. Explicitly, recent experimental work has focused on active nematic microtu-
buli confined to a deformable droplet interface39, and subsequent theoretical40–42 and simulation43–46 studies have 
explored the dynamics of nematic and polar active particles under a spherical or ellipsoidal constraint. These 
developments point toward a rich array of topological-defect patterns and curvature-driven dynamics in the 
presence of strong aligning interactions between the particles. It remains unclear, however, how active particles 
with weak alignment interactions behave under topological constraints, and how disordered glass-like dynamics 
may possibly emerge under such conditions.

Here we seek to unite these independent lines of research and present a systematic study of the interplay 
between topology, particle activity, and effective particle alignment interactions. Specifically, we perform 
Brownian dynamics simulations of repulsive, self-propelled polar rods confined to a compact spherical manifold, 
and explore the emergent collective dynamics for different packing densities and particle aspect ratios. We find 
that particularly the high-density regimes are influenced by the confining topology, and for sufficiently dense 
short rods, we observe a novel glass transition toward a solid-like disordered state in which all particles undergo 
collective rotation. Remarkably, upon repeated melting and vitrification of this self-spinning glass phase, we also 
find evidence of aging and rejuvenation dynamics, which we clarify in terms of an absorbing-state formalism and 
a stability-landscape picture. Overall, our results exemplify both the novel spatiotemporal dynamics that may 
emerge from coupling activity to topology, and the surprising analogies between active matter that is intrinsically 
out-of-equilibrium, and passive glassy matter that is collectively out-of-equilibrium. Our findings might be tested 
in experiments on e.g. dense suspensions of bacterial or synthetic active particles confined to a spherical droplet 
or hydrogel interface.

Results
State diagram.  We first explore the full non-equilibrium state diagram of self-propelled rods on a sphere as 
a function of the packing fraction and particle aspect ratio. Our system is based on a suitable minimal model 
system for bacterial microswimmers in Euclidean space8, 57, which is illustrated in Fig. 1(a) and discussed in detail 
in the Methods section. Briefly, we consider N rigid, self-propelled rods of length  that move with a constant 
self-propulsion force F directed along the main rod axis û. Each rod consists of n spherical segments that interact 
with the segments of any other rod through a steeply repulsive Yukawa potential, preventing particles to overlap. 
The screening length λ of the Yukawa interaction defines the effective width of the rods and serves as our unit of 
length. We perform a series of overdamped Brownian dynamics simulations as a function of the particle aspect 
ratio λ= a /  and effective packing fraction φ λ π= N R/(4 )2 , where R denotes the radius of the confining sphere. 
Throughout the simulations, the rods are constrained to lie tangent to the surface of the confining spherical man-
ifold, with each rod’s center-of-mass position ri connected to the sphere. For simplicity we ignore hydrodynamic 
interactions and thermal noise, thus allowing us to focus on a minimal model system that captures the interplay 
between the particles’ geometry, packing density, and topology of the confining sphere. Finally, considering the 
inherent finize size of a spherical surface, which implicitly prevents the existence of a thermodynamic limit, we 
restrict ourselves to the behavior of small systems of typically 400–800 rods.

Figure 1(b) shows the state diagram of our spherically constrained active-rod system as a function of the rod 
aspect ratio a and packing fraction φ, calculated for a system of N = 800 rods. Snapshots of the corresponding 
phases are shown in Fig. 1(c,d), and the time-dependent dynamics can be seen in Supplementary Movies S1 to S5. 
With the exception of extremely dilute packings φ < .



0 01–in which case an active-gas phase forms–we can iden-
tify a marked dependence on rod length in the dynamical behavior. For large particle aspect ratios, we find that 
the rods tend to align and spontaneously form domains of local polar order. This alignment effect is well estab-
lished for active repulsive rods in 2D Euclidean space, and here we find that it also applies in curved space. The 
observed alignment is the result of pair collisions: when two active rods collide, the resulting torques and steric 
forces cause the rods to orient in the same direction and move close to each other–even though no attractive 
forces exist between the particles58. At low packing fractions, this leads to a distinct swarming phase in which the 
rods group together in isolated flocks and exhibit giant density fluctuations, completely analogous to swarming in 
Euclidean space57. For higher packing fractions, however, the rods experience a packing constraint and become 
affected by the presence of the confining topology: the different swarms become connected and form a giant, 
dynamic “multi-domain swarm” that ultimately spans the entire sphere. As in the lower-density swarming phase, 
each of these domains is composed of locally oriented rods with polar and/or smectic order. At sufficiently high 
densities, transient topological defects can be identified at the boundaries between the different domains, and the 
dynamics becomes a rich pattern of mobile defects and transient counter flows.

We remark that in the limit of an infinite sphere radius (or infinite particle number N), our state diagram 
should extrapolate to that for a flat 2D surface. The latter contains a distinct turbulent and laning phase for long 
rods at high density57, while in our current work we can identify only a “connected swarms” phase. The fact that 
we do not observe a well-developed turbulent phase here is likely due to the relatively small number of particles 
used, preventing the formation of a coarse-grained vorticity field. However, the fact that we do not observe a clear 
laning phase is inherently due to the confining topology: at least for small system sizes of N = 800 rods, we have 
verified that a flat 2D surface with periodic boundary conditions quickly gives rise to distinct laning, while on the 
sphere such a phase is never stable. Thus, if the system size is sufficiently small to “feel” the presence of the con-
fining spherical topology, the 2D global laning phase is destabilized and converted into the dynamic “connected 
swarms” phase that exhibits only local and transient laning-like behavior.
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The emergent dynamics becomes dramatically different when reducing the particle aspect ratio a. Short rods 
experience only a small torque during a pair collision, causing the alignment effect to eventually vanish and con-
sequently giving rise to strongly disordered dynamics. Indeed, for short rods at low packing fractions, we observe 
an active-liquid phase in which the particles move incoherently and exhibit no strong cooperative motion. Note 
that in this state, in contrast to the long-rod case, the particles are all oriented randomly and are spread homoge-
neously across the surface of the sphere.

Intriguingly, we find that at sufficiently dense packings, systems with a < 2.5 undergo a marked transition into 
a kinetically arrested state, as depicted in Fig. 1 and Supplementary Movie S5. In this non-ergodic phase, which 
we term a self-spinning glass, the relative positions and orientations of all particles are frozen in a disordered 
configuration, but the system as a whole undergoes a collective rotation about a fixed arbitrary axis with constant 
angular velocity. The source of this self-sustained spinning dynamics lies in the activity: every particle in the 
glassy state exerts a constant self-propulsion force F in a (quasi-)random direction, giving rise to a net (random) 
force that in general will be small but nonzero. This, in turn, produces a finite torque that drives the collective 
rotation. Note that such a spinning motion is a consequence of the unique topology of the sphere and would be 
unattainable on a flat 2D plane–the latter permitting only collective translational motion, as indeed also found 
in ref. 57. The active spinning behavior is reminiscent of the rotational dynamics found in multicellular spherical 
Volvox colonies59, but differs in the sense that the glass phase lacks any orchestrated mechanism to direct the 
individual particles’ activity.

Dynamics of the self-spinning active glass.  In order to characterize the self-spinning motion, let us 
focus on the angular velocity field in the glass phase. Figure 2(a) depicts a snapshot of the typical particle orienta-
tions ûi, instantaneous velocities vi, and corresponding angular velocity field for a glass of N = 800 particles with 
aspect ratio a = 2 and packing fraction φ = 0.5, where the normalized angular velocity for each particle i is defined 

Figure 1.  Non-equilibrium state diagram for active rods on a sphere. (a) Schematic representation of our 
active-rod model system. (b) State diagram for N = 800 active particles on a spherical surface as a function of the 
particle aspect ratio λ= a /  and packing fraction φ. The different phases were identified by visual inspection of 
each indivual trajectory. Dashed lines indicate approximate boundaries between phases and serve as a guide to 
the eye. The evaluated state points are indicated in the Supplementary Information. (c) Typical snapshots of the 
different phases indicated in the state diagram: gas (a = 10, φ = 0.01), liquid (a = 4, φ = 0.2), isolated swarms 
(a = 16, φ = 0.1), connected swarms (a = 10, φ = 0.6), and glass (a = 2, φ = 0.5). (d) Corresponding close-ups of 
the snapshots. Every blue arrow represents a single particle with orientation vector ûi.
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as ω = ×ˆ r v r v( )/i i i i i . The total angular velocity, defined as ω = ∑ ×r vi i itot , is a vector pointing in the direc-
tion of the rotation axis, whose norm ωtot  quantifies the global angular speed of rotation. The time-dependent 
dynamics of the spinning motion is now conveniently captured in the autocorrelation function of the angular 
velocity. To this end, we make a distinction between the incoherent or self-part of the correlation function
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where t denotes time and the brackets are appropriate statistical averages. As discussed below, these two functions 
offer valuable and complementary insight into the time-dependent dynamics of the system.

Figure 2(b) shows the time-dependent behavior of both correlation functions, calculated for the glassy state 
depicted in Fig. 2(a), where the statistical average is taken over different time origins. The incoherent function Cs(t) 
clearly reveals a steady non-vanishing rotational motion, with the period of rotation determined by the net angular 
speed ωtot . We point out that this oscillation period is essentially arbitrary; a different random starting configuration 
will equilibrate to a different disordered state, giving rise to a different net angular velocity. Indeed, we have per-
formed tests for 1000 different initial conditions, and found that the Cartesian components of ωtot are normally dis-
tributed around zero, consistent with the Central Limit Theorem. Also note that Cs(t) oscillates between the values of 
1 and 1/3, which is a consequence of the geometry of the spherical surface: in the stable glass phase, the angular 
velocity of a particle at the pole will anti-correlate with itself after half a period of rotation, while a particle at the 
equator will have a constant angular velocity. The total particle average as a function of time, assuming homogeneous 
coverage of the sphere, is then ∫ π π= − − − + = +C t T dv v t T v t T( / ) [(2 1) cos(2 / ) (2 1) 1] [ cos(2 / ) 2]s 0

1 2 2 1
3

, 
where T is the total period of rotation. As can be seen in Fig. 2(b), this analytical result is in perfect agreement with 
our numerical results. For the coherent correlator C(t), however, the curvature and topology of the confining geome-
try do not play any role, since the total angular velocity ωtot is constant in the glassy state. Hence the normalized 

Figure 2.  Angular velocities in the self-spinning glass phase. (a) Snapshots of the particle orientations ûi (blue 
arrows), instantaneous velocities vi (red arrows), and normalized angular velocities ω̂i (purple arrows) for an 
arbitrary glassy configuration of N = 800 particles with aspect ratio a = 2 at packing fraction φ = 0.5. (b) 
Corresponding time correlation functions Cs(t) and C(t), probing the self- and collective parts of the angular-
velocity autocorrelation, respectively. The solid purple line indicates the analytical prediction of Cs(t) for a 
rotation period of T = 14410τ.
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collective autocorrelation function will always be 1 in this case. Overall, these result confirm that the self-spinning 
glass state is a highly robust phase that continues to spin indefinitely in an arbitrary but fixed direction.

Melting and revitrification dynamics.  We now turn our attention to the dynamics that emerges upon 
melting and revitrification of the spinning glass phase. The relevant control parameter that drives the glass tran-
sition in our system is the packing fraction, and hence the active glass can be melted by increasing the size of the 
confining sphere while keeping the particle number N constant. The revitrification process may subsequently 
be induced by compressing the sphere to a smaller radius, thus effectively increasing the packing fraction again. 
In order to systematically study the effect of fluctuations in the packing fraction, we introduce a “breathing pro-
tocol” whereby the sphere is periodically inflated and deflated to a certain upper and lower radius, respectively, 
allowing us to switch repeatedly between the ergodic active-fluid phase and the dense glassy state. Figure 3(a) 
illustrates the protocol for three consecutive cycles that switch between packing fractions φ = 0.5 and φ = 0.1, and 
Fig. 3(b) shows typical snapshots of particle configurations during one cycle (also see Supplementary Movies S6 
and S7). In general, a single breathing cycle starts at a packing fraction φinit, and is then diluted to φbr < φinit by 
linearly increasing the sphere radius R in 30 steps. The system is subsequently re-densified toward φinit by linearly 
decreasing R in 30 steps, followed by a final stage in which we keep the packing fraction constant at φ = φinit (see 
Methods). We note that this protocol is somewhat reminiscent of other periodic driving schemes that are com-
monly applied to passive glasses, such as oscillatory shearing60 and thermal cycling61, 62. However, our breathing 
protocol amounts to a periodic change in density, while shearing and thermal cycling keep the density constant.

Let us investigate the dynamics of the system as a function of the number of applied breathing cycles. To this 
end, we introduce a time-dependent angular-velocity correlation function
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which now depends explicitly on the waiting time tw. Here, ω̂tot is the normalized total angular velocity and the 
brackets denote an average over different independent configurations (also see Methods). For convenience, we 
will quantify tw in units of the applied number of cycles, with each cycle representing a time span of 900τ. 
Interestingly, we find a distinctly different behavior of C(t, tw) depending on the magnitude of the fluctuations in 
the packing fraction. Figure 4 compares the dynamics in a system of N = 400 particles (a = 2) for different breath-
ing amplitudes of φbr = 0.38, 0.40, and 0.42, all starting from a glassy phase at φinit = 0.5. For the largest expansion 
amplitude considered, φbr = 0.38, it can be seen that C(t, tw) rapidly decays to zero if tw = 0 (i.e., before applying 
any expansion-compression cycle), but builds up an increasingly large nonzero long-time limit as the number of 
applied cycles increases. This signifies that the total angular velocity in the glassy state becomes increasingly more 

Figure 3.  Breathing protocol to induce melting and revitrification of the glass phase. (a) Protocol for three 
consecutive breathing cycles of periodic inflation and deflation of the sphere. A single breathing cycle consists 
of three stages: first we dilute the system from a packing fraction φinit to φbr by linearly increasing the sphere 
radius R in 30 steps, allowing the system to briefly equilibrate at every new R-value for a duration of 10τ. We 
subsequently re-densify the system to the original packing fraction φinit by a stepwise linear decrease in R over 
a time period of 30 × 10τ, and finally we allow the system to re-equilibrate at φ = φinit during a time interval 
of 300τ. In this example we have φinit = 0.5 and φbr = 0.1, as indicated by the green dashed lines. (b) Particle 
snapshots for a single breathing cycle with φinit = 0.5 and φbr = 0.2 (also see Supplementary Movies S6 and S7). 
Blue arrows indicate immobile particles whose centers of mass have moved less than a distance 0.2λ within a 
time frame of 20τ, while red arrows indicate mobile particles that have moved more that 0.2λ during the same 
time interval. Notice that at low densities the system melts and almost all particles undergo large displacements, 
while at high densities the system locks into a glassy phase in which, aside from the overall spinning motion, no 
particles rearrange.
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correlated to that of all future revitrified configurations. Applying a breathing protocol with a slightly smaller 
change in density, e.g. φbr = 0.40, enhances this effect. In view of this marked dependence on waiting time, which 
we observe both in N = 400 and N = 800 systems under moderately small breathing amplitudes, we assert that our 
system is aging.

It is important to realize that the particles’ inherent activity is a crucial ingredient for the aging process; an 
equilibrated passive system without self-propulsion will–in the absence of noise–remain in the same configu-
ration indefinitely, regardless of breathing amplitude and waiting time tw. Indeed, as shown for comparison for 
φbr = 0.38 in Fig. 4(a), a strictly passive reference system rapidly yields a constant correlation value C(t, tw) = 1, 
exhibiting only a marginal decorrelation effect at very short times (also see Supplementary Movie S8). This stark 
contrast between the active and passive time-dependent dynamics confirms that the observed aging phenomenon 
is indeed activity-induced.

The degree of aging is, however, sensitive to the relative amplitude of the breathing motion. Under the mildest 
breathing protocol considered here, φbr = 0.42, the correlator C(t, tw) already attains its maximal value of 1 after 
40 full cycles, and hence no more aging dynamics can be observed for all longer waiting times tw > 40. In the 
extreme limit of φbr = φinit, the system remains frozen in its original spinning-glass configuration for all times t 
and tw, thus causing the aging effect to vanish completely. As a final case, let us consider the opposite limit of 
φbr → 0, which allows the system to melt into a dilute fluid phase during every cycle (also see Supplementary 
Movie S6). For such large-amplitude breathing, C(t, tw) will rapidly decay to zero, independent of the number of 
cycles tw. That is, the re-solidification stage from the melt at φbr to φinit will always yield a new glassy configuration 
that is completely uncorrelated to the orientation of ωtot at the beginning of the cycle. In analogy to the phenom-
enology in oscillatory-sheared passive systems63, we will refer to such a process as rejuvenation: each full breath-
ing cycle will wash away any possible memory of the original glassy state and produce a new self-spinning glass 
with an entirely new ωtot.

Activity-induced aging mechanism.  We now seek to gain more insight into the physical mechanism that 
underlies the observed activity-induced aging dynamics. Upon inspection of the particle trajectories for φinit = 0.5 
and φ ≈ .0 4br , we find that the system generally does not melt completely, but rather exhibits a limited amount of 
cooperative particle rearrangements–strongly reminiscent of the dynamically heterogeneous dynamics observed 
in normal glass-forming liquids. As the aging process further evolves, the average number of rearranging particles 

Figure 4.  Aging dynamics in the active glass phase upon melting and re-vitrification. Time correlation function 
of the total angular velocity, C(t, tw), for different waiting times tw and different breathing amplitudes φbr: (a) 
φbr = 0.38, (b) φbr = 0.40, and (c) φbr = 0.42, all starting from the active glass phase at φinit = 0.5. The data were 
collected for N = 400 particles with a = 2, averaged over 100 independent equilibrated starting configurations. 
As a reference, we also show the results for a passive system without any self-propulsion, plotted as dashed lines 
in panel (a) for φbr = 0.38.
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tends to decrease and ultimately the system locks into a new configuration in which all relative particle motion 
has ceased. That is, the system has seemingly reached a glassy state that is sufficiently stable to sustain a breathing 
amplitude of φbr, and consequently remains in this stable state indefinitely (see Supplementary Movie S7).

In order to quantify the emergent stability of the particle configurations during aging, we use the total number 
of rearranging particles Nr as a metric and determine at which packing fraction a given configuration will become 
unstable such that Nr > 0. Here we define particle rearrangement using a Lindemann-like criterion for melting, as 
described in the Methods section. Figure 5 shows the results of our stability analysis for a single aging trajectory 
of N = 800 active particles undergoing 16 consecutive breathing cycles between φinit = 0.5 and φbr = 0.42. The 
stability was measured for every configuration at the end of a full cycle. Let us first point out two general observa-
tions with respect to Fig. 5: first of all, there need not exist any value of φ for which a given configuration is stable. 
Indeed, configuration numbers 2 and 6 in Fig. 5 are unstable for all possible packing fractions. Secondly, if there 
exists a range of φ values for which an active configuration is stable, the stability range will be bounded both from 
above and from below. Figure 5 shows these upper and lower packing fractions–denoted as φmax and φmin, respec-
tively–for all the remaining configurations of the trajectory. The reason for this boundedness is as follows: at high 
packing fractions φ > φmax, the particles are forced to rearrange in order to avoid unphysical overlaps due to the 
short-range repulsive interactions. For low packing fractions φ < φmin, the distance between particles becomes 
sufficiently large to facilitate quasi-ergodic particle motion, causing the system to ultimately melt into an active 
fluid phase. It is important to note that the latter lower bound does not exist for passive systems: particles with 
zero self-propulsion will become completely immobile (Nr = 0) in the limit of φ → 0, thus rendering them strictly 
stable in our definition. We will expand upon this point in the Discussion section.

Let us now return to the activity-induced aging phenomenon. Figure 5 reveals that the stability of the config-
urations formed during a single breathing trajectory does not monotonically increase with time; on the contrary, 
we observe an erratically varying pattern of stabilities, including intermittent states (after cycle 2 and 6) that are 
strictly unstable for all φ. After 13 cycles, however, the system reaches a configuration whose stability range spans 
the entire amplitude of the breathing motion, i.e., φmax > φinit and φmin < φbr. Once this stable state is reached, 
the applied breathing protocol can no longer destabilize the configuration, consequently prohibiting the system 
to explore any other configurations in the remaining cycles. In close analogy to work on periodically driven 
systems64, we thus conclude that our system has undergone an irreversible, random self-organization process 
toward an “absorbing state” in which all particle fluctuations have vanished. It is this mechanism that underlies 
the observed aging: the system continues to explore many different configurations until it spontaneously reaches 
a stable state from which it can no longer escape.

We can define the absorbing state more generally as the firstly formed configuration with stability bounds 
φmax ≥ φinit and φmin ≤ φbr; note that this state is principally one of infinitely many possible configurations. For 
moderately breathing amplitudes, such a stable state may always be reached provided that the waiting time is 
sufficiently long, as can be seen from Fig. 4. Conversely, for a strictly passive system with zero self-propulsion, 

Figure 5.  Stability of the active-particle configurations formed during aging. Stability analysis of the 
configurations obtained from a single trajectory for N = 800 active particles with self-propulsion strength F = 1, 
undergoing 20 consecutive breathing cycles for φinit = 0.5 and φbr = 0.42. The stability was measured for the 
final configuration after every cycle. The purple lines indicate the maximum packing fraction, φmax, at which a 
configuration is still stable; for φ > φmax the system will undergoing particle rearrangements to avoid unphysical 
particle overlaps. The blue lines indicate the minimum packing fraction, φmin, at which a configuration is still 
stable; for φ < φmin the system will melt into an active fluid phase. Note that after 13 cycles, the system locks 
into a configuration that is stable at all φbr < φ < φinit, and hence remains in this configuration for all remaining 
cycles (shaded yellow region).
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any configuration in which the particles do not overlap too strongly can act as an absorbing state, and hence we 
observe no notable aging dynamics in the passive case.

Finally, let us investigate how the stability of the formed configurations–and thus the nature of the absorbing 
state–is affected by the magnitude of the self-propulsion force F. As a proof-of-principle study, we have measured 
the stability of the 13 unique particle configurations considered in Fig. 5 for different values of F, thereby keeping 
the initial particle positions and orientations the same as for the F = 1 reference case (see Methods). The results 
are shown in Fig. 6. Clearly, the stability dependence for a given configuration on F is highly non-monotonic: the 
upper (φmax) and lower (φmin) stability bounds can both increase or decrease with increasing F, and also the total 
width of the stability range, i.e. φmax − φmin, depends strongly on the exact configuration and value of F. In view 
of these results, we conclude that the set of possible absorbing states will generally be different for different values 
of the self-propulsion strength. This may also be rationalized by considering that the stability in our active glassy 
system arises from a delicate balance between the intrinsic self-propulsion and repulsive pair-interaction forces 
on the particles; changing the magnitude of the active forces will generally alter the force balance across the entire 
disordered network, giving rise to either reduced or enhanced local stability in the system. Consequently, the first 
absorbing state that a system finds is sensitively dependent on the exact value of F.

Discussion
As discussed earlier, the observed aging dynamics occurs only for inherently active systems with a nonzero 
self-propulsion strength F > 0. Let us now compare this novel activity-induced aging mechanism with conven-
tional aging in passive glass-forming systems. A key paradigm in the phenomenology of non-active glasses is the 
potential energy landscape65–67–a generally highly complex and rugged surface that describes the total potential 
energy of the system as a function of the 3N-dimensional configuration space [see Fig. 7(a)]. Within this land-
scape picture, aging and rejuvenation are understood as out-of-equilibrium processes whereby the system visits 
deeper or shallower local energy minima, respectively. The energy barriers separating these minima may be sur-
mounted due to thermal fluctuations; if the system is prepared at a temperature T, the typical barrier height that 
can be crossed is on the order of kBT, with kB denoting the Boltzmann constant. This passive energy-landscape 
scenario is illustrated schematically in Fig. 7(a). Note that here the global energy minimum corresponds to the 
crystalline state, and the lowest minimum for a disordered configuration is referred to as the ideal glass state. 
For inherently active systems, however, the total potential energy is not neccessarily a useful metric, since the 
self-propulsion of the particles requires a constant (implicit) source of energy. Indeed, we also find that the total 
potential energy of our active system is generally not minimized during aging, implying that the aging process in 
passive glasses is not equivalent to our active-matter case.

Instead, we argue that the observed active aging and rejuvenation dynamics can be associated with a rug-
ged “stability landscape” that quantifies the mechanical stability of all possible particle configurations. Such a 
landscape is essentially the 3N-dimensional generalization of Fig. 5 discussed in the previous section, where we 
have defined stability in terms of a Lindemann-like melting criterion. Let us first consider the passive version of 
this landscape. Since a configuration with F = 0 (in the absence of noise) will always be stable such that Nr = 0 in 
the dilute limit φ → 0, we have a rigorous minimum stability bound φmin = 0 and a maximum bound φmax that 
depends on the exact configuration. Figure 7(b) shows a schematic representation of this passive scenario. Note 
that the global maximum of φmax is, by definition, the close-packing configuration, and for disordered systems the 
maximum attainable value of φmax is at random close-packing.

For an active system with F > 0, however, the shape and properties of the stability landscape become decidedly 
different: first of all, all active configurations must melt at sufficiently low density, so that φmin > 0. Moreover, 
activity may both enhance and reduce the stability of a given configuration, and hence the positions of local 

Figure 6.  Stability of active configations as a function of self-propulsion strength. Stability analysis for the same 
configurations as in Fig. 5, but for different activities F. Dark-blue shaded areas enclose the regions of stability 
(φmin ≤ φ ≤ φmax). Note that in this specific example, configuration number 2 remains unstable for all possible 
values of F > 0 considered; such a configuration can only be stabilized for F = 0 in the non-interacting gas limit 
φ → 0. Configuration number 6, which is unstable for F = 1, becomes stable for 0.6 ≤ F ≤ 0.9.
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minima and maxima will generally shift with varying F. It must also be noted that certain configurations can 
become strictly unstable for all F > 0, as we found for e.g. configuration number 2 in Figs 5 and 6, giving rise 
to open voids in the stability landscape; however, in analogy to the inherent-structure formalism for passive 
glasses66–68, we assume that any instantaneous configuration can be quenched to a nearby state with a finite stabil-
ity range, and the landscape of such inherent structures will be devoid of voids. With this active-stability picture 
in mind, as illustrated in Fig. 7(c), we can interpret the aging process as follows: during a dynamics simulation 
with periodic breathing, the system will explore different regions of the landscape until it reaches an absorbing 
state that is characterized by φmax ≥ φinit and φmin ≤ φbr. Rejuvenation can occur by subsequently increasing the 
amplitude of breathing to φbr < φmin, inducing a (partial) melt to allow the system to explore new regions of con-
figuration space, until eventually a new absorbing state is reached with higher stability. We emphasize that this 
aging and rejuvenation analysis should apply generally to any active glassy system, regardless of the system size 
and topology, and is thus not limited to the spherical active-rod model of the present study.

As a final point, let us elaborate on the role of noise in the observed active aging dynamics. In the noise-free 
case, the aging process ceases as soon as the active system reaches an absorbing state; however, if noise is added 
by introducing fluctuations Δφ in the breathing amplitude, the system might be able to escape from an absorbing 
state and cross local barriers on the stability landscape whose heights are on the order of Δφ. Such fluctuations 
would essentially play the role of thermal fluctuations in the passive case, and would cause the active aging pro-
cess to continue indefinitely. Indeed, just as a passive thermal glass will age by visiting increasingly deeper energy 
minima, our active glass is expected to reach increasingly more stable states as it ages under a weakly fluctuating 
breathing motion. This barrier-crossing process is illustrated schematically in Fig. 7; note that for active glasses a 

Figure 7.  Schematic illustration of the landscape picture in glassy physics. The x-axis represents all 
configurational coordinates of an N-particle system. (a) The traditional potential-energy landscape of passive 
glass-forming systems, adapted from ref. 66, with a typical temperature T indicated by the dashed line. 
The global minimum of the energy is assumed to be the crystalline state, while the lowest energy state for a 
disordered configuration is the ideal glass. (b) Schematic stability landscape of passive (F = 0) glass-formers. 
The blue-shaded region marks the range of packing fractions for which the different configurations are stable, 
with stability defined here in terms of a Lindemann-like melting criterion. The global stability maximum 
is, by definition, the close-packing configuration, and for disordered systems the maximum corresponds to 
random close packing. (c) Schematic stability landscape of active (F > 0) glass-forming systems. Every active 
configuration will generally melt at sufficiently low density, and consequently the lower stability bound φmin 
must be larger than zero. The dashed lines in panels (b,c) indicate the range of packing fractions, φbr ≤ φ ≤ φinit, 
in which we prepare the system. The yellow arrows indicate typical barrier-crossing events to different parts of 
configuration space.
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stability barrier may exist both in φmax and φmin. In addition to this source of fluctuations, we may also consider 
thermal noise in our system, which can give rise to stochastic fluctuations in the particles’ centers of mass and ori-
entations. In such a case, we expect every absorbing state to be replaced by a basin of absorbing states, analogous 
to the passive potential-energy landscape picture where basins emerge as deep energy minima that are separated 
by relatively small barriers. Importantly, however, within the current stability-landscape picture, thermal noise 
can also act as a proxy for activity: a passive particle system will, in the presence of thermal fluctuations, melt at 
sufficiently low densities. Hence, the lower stability bound φmin will always become greater than zero, akin to the 
noise-free case of Fig. 7(c) for active systems. Finally, we note that the existence of noise may also provide oppor-
tunities for encoding memory into an active system, similar to recent studies on passive model glass-formers 
under oscillatory shear69.

In conclusion, we have explored the emergent dynamics in an active-matter system constrained to a spher-
ical manifold. In the absence of strong aligning forces, we find that active particles at sufficiently high density 
can undergo a glass transition towards a non-ergodic state that is characterized by persistent collective spin-
ning motion. Upon repeated melting and revitrification of such a self-spinning glass, we observe signatures 
of non-equilibrium aging and rejuvenation that occur solely for strictly active systems. We rationalize the 
activity-induced aging process in terms of a mechanical stability landscape: as the active system ages, it randomly 
explores different regions of configuration space until it reaches an absorbing state that is sufficiently stable to 
resist melting. We expect our results to hold generally for active systems that can form a glassy phase, regardless 
of system size and topology. Our findings may be experimentally verified in e.g. dense suspensions of biological 
or artificial microswimmers confined to a liquid droplet interface or hydrogel.

Methods
Model system and dynamics simulations.  Our active-matter system is composed of N interacting rods of 
length  that all experience a constant self-propulsion force with magnitude F along their longitudinal rod axis û. 
In order to mimic steric repulsion between the particles, we represent each rod i as a rigid chain of n spherical 
segments ( = ⌈ ⌉n 14 /8 ), and let every segment interact with all the segments of any other rod j through a repulsive 
Yukawa potential. The total interaction energy between a pair of rods is given by = ∑ ∑α β

λ
= =

− αβ

αβ
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where rij,αβ is the Euclidean distance between segment α of rod i and segment β of rod j, U0 is the strength of the 
potential, and the screening length λ can be interpreted as the effective diameter of the segments. Note that in 
terms of computational costs, our force-calculation routine is effectively that of an (N × n)-particle system, rather 
than N.

We simulate the active-particle dynamics by integrating the overdamped Brownian equations of motion for 
the center-of-mass coordinates ri and normalized orientation vector ûi of each particle i. Explicitly, we consider 
the dynamics within the local 2D plane tangential to the sphere at position ri, project all segment coordinates and 
ûi onto this plane, and solve
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where the dots denote time derivatives, = ∑ ≠U U(1/2) i j i ij, , and ∇ûi
 is the gradient on the unit circle. The matri-

ces DT and DR represent inverse translational and rotational friction tensors, respectively, defined as
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where D0 is the Stokesian diffusion coefficient, I is the 2 × 2 unit matrix, ⊗ is the dyadic product, and for the 
parameters D , ⊥D , and DR we use, as in refs 8 and 57, the standard expressions for rod-like macromolecules given 
in ref. 70,
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After every time step in the propagation of Eq. (4), we project the coordinates and orientation vector ûi onto the 
tangent plane at the particle’s new position ri. Finally, we note that the equations of motion (4) do not contain any 
stochastic terms, implying that the dynamics is fully deterministic and is governed solely by the repulsive pair 
interactions and self-propulsion forces.

Following ref. 57, we adopt characteristic units such that λ = 1, F = 1, and D0 = 1, implying that time is 
measured in units of τ = λ/(D0F). We fix the strength of the interaction potential to U0 = 250 and include only 
segment-segment interactions that fall within a cutoff radius rc = 6λ. For the remaining parameters in our simula-
tions, namely the total particle number N, the rod aspect ratio a, and packing fraction φ, we typically use values of 
N = 400 or 800, 1.5 ≤ a ≤ 16, and 0.01 ≤ φ ≤ 0.7. All simulations are performed using an Euler integration scheme 
with a discrete time step of 0.01τ.
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Independent starting configurations are produced by first placing all particles’ centers of mass randomly on a 
spherical surface with large radius λ π≥ .R N /(0 4 )0  (corresponding to dilute packing fractions φ ≤ 0.1), using 
spherical particle coordinates θ ϕ π≡ = −−r R x xr ( , , ) ( , cos (2 1), 2 )i i i 0

1
1 2 , where θi and ϕi are the polar and 

azimuthal angles of particle i, respectively. The variables x1 and x2 are drawn randomly from a uniform distribu-
tion on the interval (0, 1) to ensure approximately uniform coverage on the spherical surface. Similarly, we gen-
erate random particle orientations on the unit sphere, π= −  −ˆ x xu (1, cos (2 1), 2 )i

1
3 4 , where again x3 and x4 are 

random variates on (0, 1). We subsequently project these orientation vectors onto the local tangent plane at 
position ri and normalize such that =û 1i . In order to remove any unphysical overlaps between rods, we ran-
domly displace particles whose segment coordinates overlap to within a distance of λ. After generating such an 
overlap-free random configuration at very low density, we linearly decrease the sphere radius from R0 to the 
desired size R (corresponding to the desired packing fraction φinit) in 200 steps, thereby allowing the system to 
briefly equilibrate for a time duration of 1τ at every fixed radius. We then let the system equilibrate at φ = φinit for 
a duration of 2000τ, and subsequently collect data for analysis over a period of 60000τ.

Melting and revitrification dynamics protocol.  A single breathing cycle starts at a packing fraction φinit, 
and is then diluted to φbr < φinit by linearly increasing the sphere radius R in 30 steps, allowing the system to 
briefly equilibrate at every new R-value for a duration of 10τ. The system is subsequently re-densified toward φinit 
by linearly decreasing R again over 30 × 10τ, followed by a final stage in which we keep the packing fraction con-
stant at φ = φinit during 300τ. Note that the time it would take a single free rod of length λ= 2  to swim its own 
length is 13.32τ, and the total cycle period thus offers a reasonable compromise between a quasi-static and sudden 
quench.

The autocorrelation functions of the angular velocity are calculated based on the angular velocities in the final 
configuration of every full breathing cycle. For the passive (F = 0) reference case for φbr = 0.38 [Fig. 4(a)], we find 
that all the instantaneous velocities vi are virtually zero, thus obscuring the calculation of the angular velocities 
ω = ×ˆ r v r v( )/i i i i i  with large numerical noise. In order to still probe any possible changes in the passive particle 
configuration, we have assumed = ˆv ui i in this case. As can be seen from the dashed lines in Fig. 4(a), we detect 
only very small displacements for passive particles (leading to a decorrelation of C(t, tw) from 1 to ≈0.97), and 
only at very short initial times (t < 5 cycles). Note that these marginal rearrangements are essentially a conse-
quence of the softness of the pair interaction; if the particles would interact through a strictly hard potential, an 
overlap-free configuration would–in the absence of activity and noise–rigorously yield C(t, tw) = 1.

Stability analysis.  In order to quantify the stability of the particle configurations during aging, we use the 
total number of displaced particles Nr as a metric. More specifically, for a given aging trajectory, we first place 
every configuration that is formed after a full breathing cycle onto a new sphere of varying radius Rs (R1 > Rs > R2), 
where Rs is varied linearly in 500 steps from R1 to R2. We choose these upper and lower bounds of the sphere 
radius such that they correspond to packing fractions 0.1 < φ < 1.0. For every possible value of Rs, we rescale all 
particle coordinates {ri} of the specific configuration such that |ri| = Rs and ensure that all rod orientations û{ }i  lie 
tangent to the sphere, and subsequently perform a dynamics simulation at fixed R = Rs for a total duration of 50τ. 
We then measure how many particles Nr have undergone a significant center-of-mass displacement Δr during 
any time interval Δt over the course of this simulation run. After some testing, we have found that a suitable sta-
bility criterion is Δr = 0.13λ and Δt = 10τ, which corresponds to a displacement of approximately 17% of a rod’s 
width during the time it would take a free rod with a = 2 to swim its own length ( λ= 2 ). We designate a config-
uration at a certain Rs and corresponding packing fraction φ as stable if and only if Nr = 0, and denote the lowest 
and highest possible packing fractions with Nr = 0 as φmin and φmax, respectively.

The dependence of the stability on the magnitude of the self-propulsion force, as shown in Fig. 6, was calcu-
lated by first performing a dynamics simulation of N = 800 particles with activity strength F = 1, undergoing 20 
consecutive breathing cycles for φinit = 0.5 and φbr = 0.42. As above, we placed every particle configuration formed 
after a full breathing cycle onto a new sphere with varying radius R1 > Rs > R2 by rescaling all particle coordinates 
to |ri| = Rs and projecting all orientation vectors û{ }i  to the locally tangent plane. For every such set of initial par-
ticle coordinates, we equipped each particle with a constant self-propulsion strength 0 < F < 2.0 and subsequently 
simulated the dynamics for a time span of 50τ. We used the same stability criterion as above, Δr = 0.13λ and 
Δt = 10τ, and deem the system stable if Nr = 0. Note that one could also introduce a more refined stability crite-
rion that is explicitly F-dependent; however, inspection by eye of the various trajectories for different F-values 
showed that our current criterion is reasonable for all cases considered. Furthermore, it may be seen from Fig. 6 
that the resulting stability bounds φmin and φmax vary non-monotonously with F–an important point that would 
still hold for a monotonously changing choice of Δr.

Data availability.  Data are available on request from the authors.
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