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Previous particle-based computer simulations have revealed a significantly more pronounced tendency
of spontaneous global polar ordering in puller (contractile) microswimmer suspensions than in pusher
(extensile) suspensions. We here evaluate a microscopic statistical theory to investigate the emergence
of such an order through a linear instability of the disordered state. For this purpose, input concerning
the orientation-dependent pair-distribution function is needed, and we discuss the corresponding
approaches, particularly a heuristic variant of the Percus test-particle method applied to active systems.
Our theory identifies an inherent evolution of polar order in planar systems of puller microswimmers, if
mutual alignment due to hydrodynamic interactions overcomes the thermal dealignment by rotational
diffusion. In our theory, the cause of orientational ordering can be traced back to the actively induced
hydrodynamic rotation–translation coupling between the swimmers. Conversely, disordered pusher
suspensions remain linearly stable against homogeneous polar orientational ordering. We expect that
our results can be confirmed in experiments on (semi-)dilute active microswimmer suspensions,
based, for instance, on biological pusher- and puller-type swimmers. Published by AIP Publishing.
https://doi.org/10.1063/1.5048304

I. INTRODUCTION

Microswimmers1–6—both biological7–11 and artifi-
cial12–15—have been studied widely and can be considered
as an archetype of active soft matter.16–18 Since these self-
propelled particles are inherently in non-equilibrium with their
surroundings, their study has led to rather unexpected findings,
e.g., motility-induced phase separation,19–26 laning,27–31 vari-
ous kinds of “taxes”32 by implicit steering,33–38 and bacterial
turbulence.27,39–43 Establishing a physical description of the
observed collective phenomena calls for the development of
new methods in statistical physics.44–51 Furthermore, there is a
huge amount of biological and medical problems for which the
knowledge about microswimmers and their physical behav-
ior is key,33,34,52–57 warranting strong research interest in this
topic.

Approaching the scientific field of microswimmers as an
extension of the study of colloidal suspensions58 allows both
experimentalists and theoreticians to carry over methods and
ideas. An important example is hydrodynamics: microswim-
mers typically operate in low-Reynolds-number regimes.1 In
this context, a whole apparatus of physical theory58–60 is
at hand as a toolkit for, e.g., the investigation of hydrody-
namic interactions between swimmers and the influence of
these interactions on the collective behavior of microswimmer
suspensions.

As a consequence of the swimming at low Reynolds num-
bers, no net force may be exerted by a model microswimmer

a)Electronic mail: christian.hoell@uni-duesseldorf.de
b)Electronic mail: menzel@hhu.de

on its environment.1,45 To the lowest order, the induced flow
field of a typical swimmer in general can thus be described as
generated by a force dipole (we here disregard “neutral-type”
swimmers with a vanishing averaged force-dipole contribution
to the flow field like, e.g., the famous Najafi-Golestanian three-
sphere swimmer61–64). Depending on the orientation of the
forces (outwards/inwards) of that dipole, one can distinguish
“pusher” (also called extensile) microswimmers—for which
fluid is pushed outwards along the axis of motion and sucked
in from the transverse axes—and “puller” (also termed con-
tractile) microswimmers—for which the inverse is true.65,66

Since the direction of swimming is given by the orientation of
the swimmer, interactions affecting the rotational degrees of
freedom are of utmost interest.

A breakthrough in the study of orientational self-
organization of self-propelled particles has been the Vicsek
model, introducing simple effective local alignment rules.
They can lead to emergent long-range orientational order in
these active systems, even in two spatial dimensions.67–72

Such an effective alignment mechanism can be interpreted
either as being social in nature, e.g., when applied to flocks
of birds,67,68,70 or as a coarse-grained model represent-
ing underlying physical interactions, e.g., steric alignment
interactions.73 In the present work, we focus on the ques-
tion, to which extent hydrodynamic interactions can provide
sufficient alignment to result in polarly ordered collective
motion.

Previously, corresponding computer simulations have
found that indeed hydrodynamic interactions between
microswimmers can lead to collective alignment in pure puller
microswimmer suspensions,74 also when doped with pusher
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microswimmers.75 Typically, the degree of observed orienta-
tional order in pure pusher suspensions is notably lower.74,75

In the current work, we analyze a microscopic statistical
theory to understand reasons for these differences in polar
ordering observed for pushers and pullers. For this purpose,
we extend our previously developed dynamical density func-
tional theory (DDFT) of microswimmers,76,77 built on the
force-dipole-based minimal swimmer model introduced in
Refs. 75–77.

A brief recapitulation of the theoretical background fol-
lows in Sec. II. The theory is then applied to a (semi-)dilute
swimmer configuration confined to a plane in Sec. III. Next,
to theoretically analyze the emergence of collective polar
alignment from hydrodynamic interactions, some microscopic
details of the (orientation-dependent) pair distribution func-
tion are needed as an input. A reasonable approximation
for this pair distribution function is discussed in Sec. IV.
As the central step, a linear stability analysis probing the
emergence of collective alignment out of the isotropic dis-
ordered state is performed in Sec. V. There, indeed we find
that hydrodynamic interactions can induce polar ordering in
(semi-)dilute suspensions of sufficiently strong puller
microswimmers. In contrast to that, a linear stability of dis-
order is found for the corresponding spatially homogeneous
pusher suspensions. Finally, a short conclusion and outlook
are given in Sec. VI.

II. THEORY

As just mentioned, this section repeats the central parts of
the statistical theory of microswimmers developed in our previ-
ous studies.76,77 At the end of the section, a dynamical equation
for the one-swimmer density (as defined below) is listed. It
is the starting point for our investigation of possibly emerg-
ing polar ordering in planar (semi-)dilute microswimmer
configurations in Secs. III–V.

We consider a suspension of N (identical) axially symmet-
ric microswimmers in a volume V. Inertial effects are neglected
in the investigated low-Reynolds-number regime. The state of
each swimmer i = 1, . . ., N is characterized by a phase space
coordinate Xi = (ri, n̂i) that comprises its spatial position ri

and its orientation, described by the unit vector n̂i. We recur
to the minimal swimmer model introduced in Ref. 76, see
Fig. 1.

There, two opposing force centers, exerting forces
±f B ±f n̂ on the fluid, rigidly move and rotate together
with a spherical swimmer body of hydrodynamic radius a.
In terms of the swimmer coordinates, the force centers are
located at positions r+

i B ri + αLn̂ and r−i B ri − (1 − α)Ln̂,
respectively, with a/L < α ≤ 1/2 a positive number and L
the fixed distance between the two force centers. The rigid
spherical swimmer body of no-slip surface condition is located
at position ri in the generated flow of the surrounding fluid.
This configuration of the sphere and the two force centers
is treated as a rigid entity that translates and rotates as one.
For α , 1/2, net self-propulsion in the direction of sign(f )n̂
results. Accordingly, a pusher (puller) microswimmer66 is con-
structed for f > 0 (f < 0). Furthermore, a steric interaction
potential between different swimmers with sufficiently large

FIG. 1. Minimal microswimmer model, as introduced in Ref. 76. A sphere
of radius a constitutes a no-slip boundary for the flow of the surrounding fluid
and represents the hydrodynamic swimmer body. Two force centers exerting
opposite forces ±f = ±f n̂ of equal magnitude on the fluid are placed nearby
in an axially symmetric configuration. They generate the flow indicated by
the small arrows, which propels the swimmer. This force-sphere combination
is rigidly kept in its internal (body-frame) configuration. (a) For f > 0, a
pusher microswimmer is created, while (b) a puller microswimmer results
for f < 0. Other swimmers are exposed to the flow, too, but are kept at a
distance by a repulsive interaction potential of characteristic range σ. The
resulting effective steric extension of the swimmer is indicated by the dashed
line.

effective diameter σ is introduced to counteract unphysical
overlap. By construction, no net force and no net torque are
exerted by the swimmer on the fluid, a necessary condition for
microswimmers.1,45

In the following, a statistical description of the
microswimmer suspension is employed. We start our approach
from the (time-dependent) microstate probability density
P = P(XN , t) to find the system in microstate XN at time t,
with XN = {X1, . . ., XN}. For our overdamped low-Reynolds-
number system,1,58 the dynamical evolution of P is described
by the many-body Smoluchowski equation

∂P
∂t
= −

N∑
i=1

[
∇ri · (viP) +

(
n̂i × ∇n̂i

)
· (ωiP)

]
, (1)

where vi is the velocity of swimmer i and ωi is its angular
velocity, both of which generally depend on the configuration
XN of the system.

We only take into account pairwise additive hydrody-
namic interactions between the swimmers on the Rotne-Prager
level.58 Neglecting many-body hydrodynamic interactions is
a good approximation at low to intermediate densities78–82 as
regarded here. Thus, in the discrete particle picture, vi and ωi
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of swimmer i follow from the forces Fj and torques Tj acting
on all swimmers j via76,77



vi

ωi


=

N∑
j=1

( 
µtt

ij µtr
ij

µrt
ij µrr

ij


·



Fj

Tj



+


Λtt
ij 0

Λrt
ij 0


·



f n̂j

0



)
, (2)

i = 1, . . ., N, exploiting the linearity of the underlying Stokes
equation in the low-Reynolds-number regime.58 The viscosity
η of the background fluid is assumed to be constant, and the
well-known hydrodynamic mobility expressions for passive
rigid spheres on the Rotne-Prager level83,84 are used. This way,
the self mobilities are given by

µtt
ii = µ

t1, µrr
ii = µ

r1, µtr
ii = µ

rt
ii = 0, (3)

with 1 denoting the identity matrix and

µt = 1/(6πηa), µr = 1/(8πηa3), (4)

while the pair mobilities (j , i) read

µtt
ij = µ

t
( 3a

4rij

(
1 + r̂ij r̂ij

)
+

1
2

( a
rij

)3 (
1 − 3r̂ij r̂ij

))
, (5)

µrr
ij = − µ

r 1
2

(
a
rij

)3 (
1 − 3r̂ij r̂ij

)
, (6)

µtr
ij = µ

rt
ij = µ

r
(

a
rij

)3

rij×, (7)

with the distance vector rij = rj − ri, rij = |rij | its absolute
value, and r̂ij = rij/rij. The additional contributions due to
the presence of the active force centers (derived from the pre-
viously introduced minimal microswimmer model) are given
by76,77

Λtt
ij = µ

tt+
ij − µ

tt−
ij , (8)

Λrt
ij = µ

rt+
ij − µ

rt−
ij , (9)

with

µtt±
ij =

1
8πηr±ij

(
1 + r̂±ij r̂

±
ij

)
+

a2

24πη
(
r±ij

)3

(
1 − 3r̂±ij r̂

±
ij

)
, (10)

µrt±
ij =

1

8πη
(
r±ij

)3
r±ij×, (11)

and

r+
ij = rij + αLn̂j, (12)

r−ij = rij − (1 − α)Ln̂j. (13)

We neglect the distortion of the self-induced flow field that
would result from the presence of the rigid spheres.60,85,86

Next, we specify the forces on the sphere representing the
passive body of swimmer j as

Fj = − ∇rj uext(rj) − ∇rj

∑
k,j

u(rj, rk) − kBT ∇rj ln P, (14)

where uext(r) may include the effect of an external poten-
tial, u(rj, rk) is a pairwise additive interaction potential, and
the last term constitutes an entropic force that eventually
leads to the correct diffusional parts of our statistical descrip-
tion. As usual, kB denotes the Boltzmann constant and T
denotes the temperature. The corresponding passive torques
read

Tj = − kBT n̂j × ∇n̂j ln P, (15)

consisting of only an entropic part, which likewise in the end
correctly reproduces (rotational) diffusion.

To reduce the multi-dimensional nature of the probability
density P containing all N swimmer coordinates Xi, we intend
to derive a dynamical equation only involving the reduced
n-swimmer densities,

ρ(n)(Xn, t) =
N!

(N − n)!

∫
dXn+1 . . . dXN P(XN , t). (16)

Particularly, we are interested in a dynamical equation for the
one-swimmer density ρ(1)(X, t). As the swimmers are identical
and, e.g., X in ρ(1)(X, t) stands for the coordinate of “one swim-
mer” and not of “swimmer 1”, the enumeration X, X′, X′′, . . .
is used throughout this work when discussing arguments of
n-swimmer densities.

Integrating out the degrees of freedom Xi for all swimmers
but one in Eq. (1), we obtain76,77

∂ρ(1)(X, t)
∂t

= − ∇r · (J tt + J tr + J ta)

− (n̂ × ∇n̂) · (J rt + J rr + J ra), (17)

with current densities76,77

J tt = − µt
(
kBT∇r ρ

(1)(X, t) + ρ(1)(X, t)∇r uext(r) +
∫

dX′ρ(2)(X, X′, t)∇ru(r, r′)
)

−

∫
dX′ µtt

r,r′ ·

(
kBT∇r′ ρ

(2)(X, X′, t) + ρ(2)(X, X′, t)∇r′uext(r′)

+ ρ(2)(X, X′, t)∇r′u(r, r′) +
∫

dX′′ρ(3)(X, X′, X′′, t)∇r′u(r′, r′′)
)
, (18)

J tr = −

∫
dX′ kBTµ tr

r,r′(n̂
′
× ∇n̂′)ρ

(2)(X, X′, t), (19)
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J ta = f

(
Λtt

r,r · n̂ρ
(1)(X, t) +

∫
dX′Λtt

r,X′ · n̂
′ρ(2)(X, X′, t)

)
, (20)

J rt = −

∫
dX′µrt

r,r′

(
kBT∇r′ ρ

(2)(X, X′, t) + ρ(2)(X, X′, t)∇r′uext(r′)

+ ρ(2)(X, X′, t)∇r′u(r, r′) +
∫

dX′′ρ(3)(X, X′, X′′, t)∇r′u(r′, r′′)
)
, (21)

J rr = − kBT µrn̂ × ∇n̂ρ
(1)(X, t) −

∫
dX′ kBTµrr

r,r′ · (n̂
′
× ∇n′)ρ

(2)(X, X′, t), (22)

J ra = f
∫

dX′Λrt
r,X′ n̂

′ρ(2)(X, X′, t). (23)

It is important to keep in mind that Eqs. (17)–(23) form
a non-closed set of equations, as the unknown higher order
densities ρ(2) and ρ(3) are needed as an input. When a similar
procedure is applied to Eq. (1) to find dynamical equations
for, e.g., the two-swimmer density ρ(2), next-higher orders
appear, constituting an escalating loop typical for BBGKY-
like hierarchies of equations.87 Therefore, a closure is needed
by expressing the interaction terms in Eqs. (18)–(23) con-
taining the two- and three-swimmer densities as functionals
of only the one-swimmer density. Dynamical density func-
tional theory (DDFT)88–97 provides a well-established means
for this purpose, where an approach for the present system was
outlined in previous studies.76,77

Yet, our previous mean-field approach76,77 seems not
to be sufficient to address the question below, namely, the
question under which circumstances the swimmers develop
collective polar orientational order. Particularly, the interplay
between the hydrodynamic interactions and the two-swimmer
density in the equations above appears to be insufficiently
resolved at the level of our previous mean-field- and Onsager-
type formulation. Thus, a more refined version is needed, see
below.

III. APPLICATION TO MICROSWIMMERS
CONFINED TO A PLANE

In the following, we consider microswimmers in suspen-
sion, yet with their positions ri and orientations n̂i, i = 1,
. . ., N, confined to the flat xy-plane. The surrounding fluid
is still treated as three-dimensional. Then, the orientation of
each swimmer in Eqs. (17)–(23) can be fully described by
one angle φi, and the orientational gradient operator becomes
n̂ × ∇n̂ = ẑ∂φ . Such a system could possibly be realized, e.g.,
by using optical trapping fields or by placing the swimmers
at the interface between two immiscible fluids of identical
viscosity.

Several further assumptions are introduced. First, the
external potential shall vanish, i.e., uext = 0. Next, the system
is confined to a two-dimensional box of area A with periodic
boundary conditions, containing our N identical microswim-
mers. We further assume that the one-swimmer density
ρ(1)(X, t), now with X = (r, φ), is spatially homogeneous.98

Thus, only variations as a function of the orientation variable
φ are considered, i.e., ρ(1)(X, t) =: A−1ρ(1)(φ, t), where the
one-swimmer orientational density ρ(1)(φ, t) has been defined.

Equation (17) is now integrated over all spatial positions
r in the area A. Then the currents J tt, J tr, J ta disappear from
the equation, and the set of Eqs. (17)–(23) is simplified to

∂ρ(1)(φ, t)
∂t

= − ∂φ

∫
dr (ẑ · J rt + ẑ · J rr + ẑ · J ra). (24)

For spherical swimmer bodies, the integral term in Eq. (22)
vanishes77 so that only the direct rotational diffusional part
remains. Thus, Eq. (24) can be rewritten as

∂ρ(1)(φ, t)
∂t

= Dr∂2
φ ρ

(1)(φ, t) − f ∂φ

∫
dr

∫
dX′ ẑ

·
(
Λrt

r,X′ n̂
′
)
ρ(2)(X, X′, t) − ∂φ

∫
dr ẑ · J rt,

(25)

where the last term approximately vanishes as detailed in
Appendix A and Dr = kBT µr is the rotational diffusion constant
for passive particles.

The remaining task is to find a reasonable approxima-
tion for ρ(2)(X, X′, t). Generally, the two-swimmer density
is related to the one-swimmer density via ρ(2)(X, X′, t)
= ρ(1)(X, t) ρ(1)(X′, t) g(2)(X, X′, t), where g(2)(X, X′, t)
is the pair distribution function. Since we assume
that the one-swimmer density does not depend on
the spatial position, this simplifies to ρ(2)(X, X′, t)
= A−2ρ(1)(φ, t) ρ(1)(φ′, t) g(2)(X, X′, t). Furthermore, the
pair distribution function in a spatially homogeneous system
depends on only the relative distance vector between the two
particles, so that g(2)(X, X′, t) = g(2)(R, φ, φ′, t) holds, with
RB r′ − r denoting the distance vector. Thus, the second term
on the right-hand side of Eq. (25) becomes

I1 B −f ∂φ

∫
dr

∫
dr′

∫
dφ′ ẑ ·

(
Λrt

r,X′ n̂
′
)
ρ(2)(X, X′, t)

= −A−2f ∂φ
(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

∫
dr

∫
dR ẑ

·
(
Λrt

r,X′ n̂
′
)

g(2)(R, φ, φ′, t)
)
, (26)

where the spatial integral over r′ has been shifted to R.
To leading order in R−1, with R = |R| denoting the absolute

value of the distance vector, the approximation

ẑ ·
(
Λrt

r,X′ n̂
′
)
≈ −3µra3L cos(φ′ − θ) sin(φ′ − θ)R−3 (27)
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holds, where θ is the angle between R and x̂, i.e., R = R(cos θ,
sin θ). The orientation-dependent pair distribution function in
the isotropic disordered state features a global rotational sym-
metry; i.e., it stays the same when we rotate the system by
subtracting a common angle from all angles θ, φ, and φ′.
We select φ as that angle. In other words, following stan-
dard arguments, we may address the function in one particular
frame of reference,99 for which we now choose the frame of
φ = 0. In the following, ḡ(2)(R, θ − φ, φ′ − φ) denotes the
pair distribution function in this frame. Moreover, the integral

over r is now trivial, yielding the area A. In combination, this
leads to

I1 ≈
3µra3Lf

A
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

∫
dR

∫
dθ

×
cos(φ′ − θ) sin(φ′ − θ)

R2
ḡ(2) (R, θ − φ, φ′ − φ, t

))
. (28)

The starting point for all the following considerations is
thus the equation

∂ρ(1)(φ, t)
∂t

= Dr∂2
φ ρ

(1)(φ, t) +
3µra3Lf

A
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)

×

∫
dR

∫
dθ

cos(φ′ − θ) sin(φ′ − θ)

R2
ḡ(2) (R, θ − φ, φ′ − φ, t

))
=: Dr∂2

φ ρ
(1)(φ, t) − 3µra3Lf

ρ0

N
∂φ

(
ρ(1)(φ, t)

∫
dφ′ ρ(1)(φ′, t)K(φ − φ′, t)

)
, (29)

where we have introduced the global density ρ0 = N /A and
further defined the function

K(φ − φ′, t) B −
∫

dR
∫

dθ
cos(φ′ − θ) sin(φ′ − θ)

R2

× ḡ(2) (R, θ − φ, φ′ − φ, t
)
, (30)

which represents a weighted integral of the pair distribution
function over the distance vector. If ḡ(2)(R, θ − φ, φ′ − φ, t) is
known, K(φ − φ′, t) can be calculated. In case this input is
available, Eq. (29) can serve as the starting point of a sta-
bility analysis of the isotropic disordered state, see Sec. V
below.

From symmetry, it follows that the simplest guess g(2) ≡ 1
lets the second term on the right-hand side of Eq. (29) vanish
and is thus not sufficient to study the possible development of
alignment. As shown later, an ansatz only featuring a spatial
front–rear asymmetry, as previously used for a minimal math-
ematical description of motility-induced phase separation,21

also leads to a decay of any weak initial orientational order in a
linear stability analysis of the isotropic disordered state. Thus,
our next step is to address more carefully the pair distribution
and to find approximate expressions in order to investigate the
emergence of possible alignment.

IV. APPROXIMATION OF THE PAIR DISTRIBUTION
FUNCTION IN THE ISOTROPIC DISORDERED
STATE: DDFT AND THE PERCUS METHOD

Our goal in this section is to identify a reasonable
approximation for the pair distribution function of microswim-
mers in an isotropic disordered suspension to enable our
subsequent study of the linear stability of the disordered
state in Sec. V. For this purpose, we here adapt the Percus
method,100 which is exact in equilibrium isotropic systems.
Yet, it should at least qualitatively hint at the basic shape of the
pair distribution in our inherently non-equilibrium system of
self-propelled microswimmers. Since a coarse knowledge of

the general shape is sufficient for our objective, as well as for
technical reasons detailed below, hydrodynamic interactions
are neglected throughout the present section for simplicity.
That is, approximations for the pair distribution function of
“dry” self-propelled particles are determined. For strong force
dipoles and in aligned systems, deviations from these reduced
expressions will occur.75

A. The Percus method

In the Percus method for fluids in equilibrium,100 one par-
ticle is declared a test particle and fixed in (phase) space, e.g.,
at position r. Then its effect on the remaining particles is effec-
tively described as an external potential. Percus showed that
in a homogeneous fluid the resulting inhomogeneous density
distribution of the other particles at positions r′ around the
first particle is connected to the pair distribution function via
the exact relation ρ(r′ − r) = ρ0g(2)(r′ − r), where ρ0 is the
(constant) overall density of the bulk fluid. This way, the pair
distribution function of a liquid equilibrium system can be
obtained.

A recent equilibrium classical density functional theory
study shows that employing the Percus method can lead to
good approximations of pair distribution functions, even if
using a simple mean-field approximation for the excess func-
tional.101 In the past, some studies have addressed dynamical
test-particle methods for passive particles.102,103 Nevertheless,
it is still an open question how good of an approximation this
method is for an active non-equilibrium system (as ours). This
should be examined in detail in future work and compared to
other approaches.104,105

For a reasonable description of the pair distribution func-
tion, we additionally need to account for the orientational
degree(s) of freedom and the self-propulsion of the test parti-
cle. The latter can be achieved by switching to the body frame
of the test particle and “streaming” all other particles oppo-
sitely to the (fixed) swimming direction of the test particle
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with its effective swimming speed vs. In a non-dilute system,
interactions between the “non-test” particles can be included
via DDFT.76,88–97 By definition, 0 < vs ≤ v0 holds in our “dry”
system, with v0 denoting the free swimming speed of an uncon-
stricted single swimmer. In very dense cases of swimming
being blocked by the presence of other particles, vs→ 0 is also
possible (over a certain interval, vs will decline approximately
linearly with increasing local density21,106).

We select the orientation of the fixed particle as φ = 0.
The sign of f then determines the angle ψ of swimming given
by ψ = φ for pushers and ψ = φ + π for pullers. Thus,
vstB− sign(f )vsx̂ is the additional velocity with which the
other particles are streamed against the first, fixed parti-
cle. Here, we choose vs = v0, which is appropriate for dilute
systems.

B. Evaluation using DDFT

Now we follow our previous studies76,77 for (numerically)
implementing the DDFT (neglecting hydrodynamic interac-
tions as mentioned above).107 Formally, this means that the
tensors µtt

r,r′ , µ
tr

r,r′ , Λ
tt
r,X′ , µ

rt
r,r′ , µ

rr
r,r′ , and Λrt

r,X′ in Eqs. (18)–
(23) are all set to zero. Without hydrodynamic interactions, the
only difference between pusher and puller microswimmers is
that a corresponding swimmer propels into the direction of n̂
or, respectively, − n̂, see Fig. 1. The steric interaction poten-
tial between swimmers i and j is now specified as the GEM-4
potential108,109 with

u(ri, rj) = V0 exp

(
−

( rij

σ

)4
)
, (31)

where V0 describes the strength of the potential.
Consequently, the potential u(0, r) following from

Eq. (31) is used as the external potential uext(r) in Eq. (18)
when evaluating our DDFT. It represents the fixed particle at
the origin used in the Percus method. Furthermore, the stream-
ing of all other swimmers, as described above, is enforced by
applying an additional constant force ∇ruext(r) = −vst/µt in
Eq. (18), which continuously drives the particle density against
the test particle and across the periodic boundaries. At this
point, it also becomes obvious why including the hydrody-
namic interactions in this method would lead to challenging
problems. If hydrodynamic interactions were present, simply
including the streaming velocity vst as indicated above would
neglect the hydrodynamic interactions resulting from the flow
fields that the test swimmer and the other swimmers gener-
ate during their active motion. Moreover, driving swimmers
toward each other by net forces to mimic their mutual approach
during self-propulsion would induce unphysical fluid flows.
The hydrodynamic interactions resulting from such net forces
(force monopoles) are different from the actual ones resulting
from force dipoles. Clearly, this opens the way for additional
studies in the future to address these issues. At our present
level of searching for the leading-order angular dependence
of the pair distribution function, neglecting the hydrodynamic
interactions appears viable, see below.

For consistency, the interaction strength V0 must be suf-
ficiently high to hinder other particles from swimming or
being streamed through the fixed particle. Repeating the choice

of our previous studies, again the mean-field functional is
employed to specify the corresponding excess free energy in
the DDFT. Then, the DDFT equations are solved numerically
using a finite-volume method solver110 until a steady state is
reached. This steady state describes the orientation-dependent
particle distribution function (with φ = 0) that we searched
for.

C. Resulting functional form

Figure 2(a) shows a typical pair distribution function
obtained in this way for non-hydrodynamically interacting
pushers in the isotropic disordered state. We find qualita-
tive agreement with previous (orientationally averaged) pair
distribution functions of self-propelled agents determined by
particle-based computer simulations,21,75 e.g., concerning the

FIG. 2. (a) Swimmer–swimmer orientation-dependent pair distribution func-
tion, obtained via DDFT in combination with our adapted Percus test-particle
method for active agents as described in the main text. Brighter colors indi-
cate a higher magnitude of the pair distribution function integrated over all
orientations; i.e., we define g̃(2)(R, θ − φ) B ∫ dφ′ḡ(2)(R, θ − φ,φ′ − φ).
Thus, brighter colors imply a higher probability to find a nearby swimmer.
White arrows mark the average orientations of nearby swimmers, calculated
from ∫ dφ′n̂′(φ′ −φ)ḡ(2)(R, θ −φ,φ′ −φ). The large arrow at the center dis-
plays the orientation n̂(φ = 0) of the fixed particle. Parameter values are set to
ρ0 = 0.0313σ−2, L = 1.5σ, a = 0.5σ,α = 0.4, V0 = 20kBT, and f = 50kBT /σ.
The dimension of the square simulation box here is 8σ × 8σ, and the DDFT
equations are solved on a 128 × 128 × 16 numerical grid for the discretiza-
tion of x, y, and φ coordinates, respectively. Periodic boundary conditions
were applied in all directions. (b) Extracted function K(φ − φ′), defined
in Eq. (30), for the same parameters as in (a). Fitting with the function C
sin(φ − φ′) (dashed line) here leads to C ≈ 1.11 × 10−4σ−1.
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front–rear asymmetry. The extracted function K(φ − φ′) is
displayed in Fig. 2(b). For pullers of identical |f |, an anal-
ogous picture is found (as mentioned above, hydrodynamic
interactions are not taken into account at the moment). In the
end, an identical K(φ − φ′) is obtained.

Figure 2(b), determined in this way, demonstrates a dom-
inant sinusoidal first-harmonic contribution in K(φ − φ′). We
thus approximate K(φ − φ′) to lowest order as

K(φ − φ′) ≈ C sin(φ − φ′), with C > 0. (32)

The amplitude C has the dimension of inverse length and
depends in a non-trivial way on vs, ρ0, and the microscopic
parameters in the swimmer model.

Since the anisotropy of the pair distribution function is
most pronounced near the surface of the fixed particle, see
Fig. 2(a), this angular dependence of K(φ − φ′) seems to
be effectively caused by the short-range steric interaction.
Thus, point particles may not show the type of behavior
identified in Sec. V below.111 A corresponding dominance
of the steric interactions at least supports neglecting the
hydrodynamic interactions in the treatment above to lowest
order.

Moreover, the functional form of K(φ− φ′) in Eq. (32) can
also be motivated in a different way for dilute systems as ours,
see Appendix B. Accordingly, our result above is supported by
an independent approach. A further confirmation of the form
in Eq. (32) is given in Appendix C.

V. LINEAR STABILITY ANALYSIS

Finally, we now test for the linear instability of the
isotropic disordered microswimmer system. For this purpose,
we turn back to Eqs. (17)–(29) that explicitly include hydro-
dynamic interactions via the hydrodynamic mobility tensors.
Nevertheless, in the absence of a more sophisticated approxi-
mation, we assume the functional form in Eq. (32) found for
neglected hydrodynamic interactions and use it as an input
to these equations to check whether collective orientational
order spontaneously arises from a linear instability of the state
of absent orientational order.

As further elucidated in Appendix D, the static uniform
distribution ρ(φ, t) = N(2π)−1 is always a solution of Eq. (29).
However, as shown in the following, it is either linearly sta-
ble or unstable, depending on the system parameters. If it is
linearly stable, the system remains in the isotropic disordered
state for that set of parameter values, at least in the absence of
larger fluctuations, perturbations, and spatial inhomogeneities.
If it is linearly unstable, it will develop a different state, e.g.,
one of collective polar order. To test for linear stability, a small
harmonic fluctuation is superimposed onto the uniform distri-
bution, i.e., ρ(φ, t) = N(2π)−1 + ε(t) cos(φ − φ0), with small
ε(t)� N(2π)−1 and arbitrary φ0.

This ansatz is inserted into Eq. (29). Through Eq. (32), two
terms vanish due to symmetry upon performing the integration,
one term can be neglected via ε2(t) � ε(t), and we arrive
at

ε̇(t) cos(φ − φ0) = − Drε(t) cos(φ − φ0) + Ĩ1ε(t) (33)

with a dot denoting a time derivative and

Ĩ1 B −
3µra3Lf ρ0

2π
∂φ

(∫
dφ′ cos(φ′ − φ0)K(φ − φ′)

)
. (34)

Using Eq. (32), this simplifies to

Ĩ1 = −
3
2
µra3LCf ρ0 cos(φ − φ0). (35)

Combining Eqs. (33) and (35) leads to the ordinary differential
equation

ε̇(t) =

(
−Dr −

3
2
µra3LCρ0f

)
ε(t). (36)

Its solution for the amplitude ε(t) of the perturbation is an
exponential function that decays in time when the bracketed
term is negative, and grows otherwise. For pushers (f > 0), the
fluctuation thus always decays (µr, a, L, C, ρ0 are all positive).
In contrast to that, strong pullers with

fL < −
2
3

Dr

µra3ρ0C
= −

2
3

kBT

a3ρ0C
(37)

show exponential growth of fluctuations involving polar ori-
entational order; i.e., the isotropic disordered state is linearly
unstable against initial polar ordering.

We remark that, while an increased density ρ0 in Eq. (37)
seems to support the emergence of orientational order, it is to be
noted that C heavily depends on the system parameters, includ-
ing ρ0, and can overshadow that effect. For instance, at high
densities, the swimmers may mutually disturb and block their
motion. Then, the global orientational dependence of the pair
distribution function should change, possibly implying C→ 0.
This would counteract the emergence of a global polar order-
ing via the mechanism described in this work. However, spatial
variations would then certainly become important and should
be included into the theoretical consideration as a possible
future extension.

VI. CONCLUSIONS

In summary, we have presented a microscopic statistical
approach to describing and predicting the emergence of col-
lective polar ordering in (semi-)dilute suspensions of active
force-dipole microswimmers. We found that such a polar order
can arise in systems of pullers of strong enough activity to
overcome thermal dealignment caused by rotational diffu-
sion. Our statistical approach traces back the self-ordering of
the system to the actively induced hydrodynamic rotation–
translation coupling between the swimmers. To find a rea-
sonable approximation for the involved pair distribution func-
tion, a technique combining DDFT and the Percus method
(pinning one swimmer and treating it as an obstacle for the
other swimmers) for an active system has been proposed, as
well as intuitive arguments of broken symmetry. As the cen-
tral result, disordered suspensions of pushers in our approach
were always found to be linearly stable against initial devel-
opment of collective polar orientational order. In contrast to
that, suspensions of strong pullers were observed to be linearly
unstable against polar orientational ordering. It will be inter-
esting to further challenge our adapted test-particle method
by quantitative comparison with simulations or other theo-
retical methods21,75,104,105,112 in the future. Additionally, it
would be intriguing to test the applicability of our approach
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and results as an input for further studies on the mesoscale
hydrodynamic behavior of microswimmer suspensions, pos-
sibly even concerning mesoscale turbulence.113,114

We wish to remark that our system when taken to the
thermodynamic limit (N →∞ and A→∞, while the average
density is kept constant) might still develop overall orienta-
tional order, against the Mermin-Wagner theorem.115 This is
because of its inherently non-equilibrium nature.68,116 Never-
theless, additional spatially resolved investigations would be
very interesting as they could be able to discern between local
and global ordering and show their interplay.

Furthermore, the theory can also be generalized to binary
mixtures of different swimmer species, resulting in two cou-
pled equations similar to Eq. (29). Each of them contains an
additional coupling term including the one-swimmer density
of the other swimmer species. The results could then be com-
pared with previous particle-based computer simulations of
binary pusher–puller mixtures.75 Apart from that, an exten-
sion to systems of hydrodynamically interacting self-propelled
rods117 is conceivable as well.

ACKNOWLEDGMENTS

The authors thank Giorgio Pessot for helpful discussions.
Support of this work by the Deutsche Forschungsgemein-
schaft through the priority program SPP 1726 on microswim-
mers, Grant Nos. LO 418/17-2 and ME 3571/2-2, is gratefully
acknowledged.

APPENDIX A: FURTHER DETAILS ON EVALUATING
THE LAST TERM IN EQ. (25)

In this appendix, we briefly demonstrate that the last
term in Eq. (25) vanishes approximately. Regarding the cur-
rent density J rt defined in Eq. (21), the second contribution
drops out because we here set uext = 0. The third contribution
vanishes for all isotropic central-force interaction potentials
u(r, r′) = u(|r′ −r|) because the gradient of such a potential is
parallel to the distance vector. However, µrt

r,r′ in Eq. (21) intro-
duces the vector product with this distance vector, see Eq. (7),
which then vanishes. Finally, the contribution containing
ρ(3)(X, X′, X′′, t) in Eq. (21) is neglected for sufficiently dilute
systems as it scales with a higher order in ρ0 than the other
contributions. Together, this reduces the last term of Eq. (25)
to

I2 B −∂φ

∫
dr ẑ · J rt ≈ kBT∂φ

∫
dr

∫
dX′ ẑ

·

(
µrt

r,r′∇r′ ρ
(2)(X, X′, t)

)
, (A1)

which vanishes as is shown in the following.
Using ρ(2)(X, X′, t) = ρ(1)(X, t) ρ(1)(X′, t) g(2)(X, X′, t)

and ρ(1)(X, t) = A−1ρ(1)(φ, t) as before, Eq. (A1) can be
rewritten as

I2 ≈
kBT

A2
∂φ

(
ρ(1)(φ, t)

∫
dr

∫
dφ′ρ(1)(φ′, t)

×

∫
dr′µra3 |r′ − r|−3 ẑ

·
(
(r′ − r) × ∇r′−r g(2)(r′ − r, φ, φ′, t)

))
. (A2)

The inner spatial integral is then transformed into the
polar coordinates (R, θ), with R = r′ − r =: R(cos θ, sin θ),
yielding

I2 ≈
Dra3

A2
∂φ

(
ρ(1)(φ, t)

∫
dr

∫
dφ′ρ(1)(φ′, t)

∫
dR R−2

×

∫
dθ ẑ ·

(
R × ∇R g(2)(R, θ, φ, φ′, t)

))
. (A3)

Through the relation ẑ · (R × ∇R) = ∂θ and the inherent peri-
odicity of the pair distribution function with respect to the
angular variables, the integral over θ leads to I2 ≈ 0.

APPENDIX B: WEAK SCATTERING

Equation (32) can further be motivated for dilute systems
as ours via a “weak scattering” approach, effectively includ-
ing hydrodynamic interactions to an approximate extent. Here,
we suppose that two microswimmers are located at arbitrary
phase space positions X and X′. We disregard all diffusional
processes and any disturbing hydrodynamic interactions for
almost all times so that the swimmers move along straight
paths, with initial orientations n̂ and n̂′. In effect, their hydro-
dynamic interactions are considered to occur only once in time,
at the moment when they come closest to each other. Further-
more, we use the leading-order expansion of ẑ ·

(
Λrt

r,X′ n̂
′
)

as
given in Eq. (27). Then, the effective angular shift of the first
swimmer due to the mutual hydrodynamic interaction between
the swimmers is approximated as

δφ B −3µra3Lf |R0 |
−3δt cos(φ′ − θ0) sin(φ′ − θ0), (B1)

with a typical interaction time δt assumed to be the same for all
configurations. Additionally, R0 is the closest distance vector,
with R0 =: |R0|(cos θ0, sin θ0).

For this vector, R0 · (n̂′ − n̂) = 0 applies, which leads to
θ0 = (φ + φ′)/2. Inserting this relation into Eq. (B1) leads to

δφ =
3
2
µra3Lf δt |R0 |

−3 sin(φ − φ′), (B2)

which again implies mutual dealignment for pushers (f > 0)
and mutual alignment for pullers (f < 0). We remark that
Eq. (B2) is compatible with Eq. (32), i.e., with K(φ − φ′)
≈ C sin(φ − φ′), C > 0.

APPENDIX C: ADDITIONAL COMMENTS
ON APPROXIMATING THE PAIR
DISTRIBUTION FUNCTION

In the following, we consider some more aspects concern-
ing the angular dependence of the pair distribution function
ḡ(2)(R, θ − φ, φ′ − φ) in the regarded isotropic disordered state,
leading to Eq. (32). From Eq. (30), it is obvious that homoge-
neous terms in ḡ(2)(R, θ − φ, φ′ − φ) do not contribute to
K(φ − φ′). Moreover, since the hydrodynamic interactions
decrease with increasing swimmer–swimmer distance, atten-
tion is now focused on the high-density ring the radius of which
is approximately equal to the effective particle diameterσ, see
Fig. 2(a).

The pair distribution function shown in Fig. 2(a) features
a front–rear asymmetry in the spatial distribution, which can
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be phenomenologically addressed to lowest order by a term
∼cos(θ − ψ), where ψ denotes the angle of the swimming
direction as before. Furthermore, the orientational distribution
of nearby swimmers around the central swimmer seems to
point inward, see the innermost white arrows in Fig. 2(a). An
orientational distribution peaked at ψ ′ = θ + π would reflect
this and can be modeled by a contribution ∼−cos(ψ ′ − θ).
Eventually, we notice that in the high-density area at the front

of the central swimmer in Fig. 2(a), the surrounding swimmers
are preferably oriented in the propulsion direction of the cen-
tral swimmer. This can be represented by a term ∼cos(θ − ψ)
cos(ψ ′ − θ). At the rear of the central swimmer, this term still
maintains the preferred inward orientation of the surrounding
swimmers in Fig. 2(a).

Taking into account the different terms described above,
we investigate the ansatz

ḡ(2)(R, θ − φ, φ′ − φ) ≈ 1 + δ(R − σ)
(
c1 + c2 cos(θ − ψ) − c3 cos(ψ ′ − θ) + c4 cos(θ − ψ) cos(ψ ′ − θ)

)
, (C1)

with c1, c2, c3, c4 > 0. Inserting it into Eq. (30), only the
contribution ∼c4 does not vanish but indeed is in agreement
with Eq. (32) for K(φ − φ′).

APPENDIX D: THE UNIFORM DISTRIBUTION
AS A SOLUTION OF EQ. (29)

We here argue that the uniform distribution ρ(1)(φ, t)
= N /(2π) is indeed an exact solution of Eq. (29). For f = 0,
the equilibrium case of passive spherical particles is recov-
ered. It is readily seen that in this case ρ(1)(φ, t) = N /(2π)
solves Eq. (29). Otherwise, for f , 0, the only remaining term
in Eq. (29) is the activity-induced one stemming from J ra in
Eq. (23).

Evaluating this term in Eq. (29) for ρ(1)(φ, t) = ρ(1)(φ′, t)
= N(2π)−1 and disregarding all constants reduce our task to
show that

W B ∂φ

( ∫
dφ′

∫
dR

∫
dθ

cos(φ′ − θ) sin(φ′ − θ)

R2

× ḡ(2) (R, θ − φ, φ′ − φ
))

(D1)

vanishes. If the integrals over the angles φ′ and θ are now
shifted to the angles φ′ − φ and θ − φ, respectively, no formal
dependence on φ remains after integration. Thus, W indeed
vanishes. We remark that this result still holds when taking
into account all orders in R−1, e.g., starting from Eq. (26).
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