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Abstract
Following the goal of using active particles as targeted cargo carriers aimed, for example, to deliver
drugs towards cancer cells, the quest for the control of individual active particles with external fields is
among themost explored topics in activematter.Here, we provide a scheme allowing to control
collective behaviour in activematter, focusing on thefluctuating band patterns naturally occurring
e.g. in theVicsekmodel.We show that exposing these patterns to a travellingwave potential tames
them, yet in a remarkably nontrivial way: the bands, which initially pin to the potential and comove
with it, upon subsequent collisions, self-organize into amacroband, featuring a predictable transport
against the direction ofmotion of the travelling potential. Our results provide a route to
simultaneously control transport and structure, i.e.micro- versusmacrophase separation, in polar
activematter.

1. Introduction

Activematter contains self-propelled particles like bacteria, algae, or synthetic autophoretic Janus colloids
whose properties can be designed on demand [1–3]. As one of theirmain characteristics, these systems are
intrinsically out of equilibrium allowing them to self-organize into new ordered and even functional structures.
In synthetic active systems, such structures include dynamic clusters which dynamically form and break-up in
lowdensity Janus colloids [4–8] as well as laser driven colloids which spontaneously start tomove ballistically
(self-propel)when binding together [9–11]. Likewise, biologicalmicroswimmers formpatterns such as vortices
in bacterial turbulence [12–15], or swirls andmicroflock patterns in chiral activematter like curved polymers or
sperm [16–19].

Much ofwhat we know about active systems and the patterns they form roots in explorations ofminimal
models which to some extend represent broader classes of active systems showing the same symmetries. The
pioneering example of such aminimalmodel is theVicsekmodel describing polar self-propelled particles such
as actin-fibresmixedwithmotor proteins [20, 21], certainmicroorganisms [22], self-propelled rods [23, 24] or
‘birds’ [22, 25]which only see their neighbours and have a tendency to alignwith them, in competitionwith
noise.While forbidden in equilibrium [26] theVicsekmodel shows true long-range order in two dimensions
[25], meaning that activitymakes orientational correlations robust against noise over arbitrarily long distances.
The phase transition from the disordered phasewhich occurs for strong noise to the long-range ordered Toner–
Tuphase is now known to be discontinuous [27] and features a remarkably large coexistence region [28, 29]
where high-density bands of comoving polarized particles spontaneously emerge and traverse through a
background of a low-density disordered gas-like phase. These bands behave highly randomly; theymergewhen
collidingwith each other but also split up frequently, rendering an irregular pattern of sharply localized and
strongly polarizedmoving bands. The latter choose their direction ofmotion spontaneously depending on
initial state and fluctuatingmolecular environment (noise realization); thus, when averaging overmany
realizations, there is no netmotion. This randomness is unfortunate in view of potential key applications of
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activematter, e.g. for targeted drug delivery, crucially requiring schemes to control active particles. Here, while
single particle guidancewith external fields is among themost explored problems in activematter [5, 30–37] and
there is amoderate knowledge on interacting particles in external fields (complex environments) [38–43] and
their control [44–48], surprisingly little is known about the controllability of polar active particles and the band
patterns they naturally form.

In the present workwe ask for a scheme to tame band patterns, i.e. if we can force the bands in theVicsek
model to settle down into a pattern featuring a predictable and externally controllable direction ofmotion. To
achieve this, we apply a ‘travellingwave potential’ (also called travelling potential ratchet [49]) to theVicsek
model.Wefind that such an external field does in fact allow to control the late time direction ofmotion of
particle ensembles in polar activematter, yet, in a remarkably nontrivial way. In our simulations, for appropriate
parameter regimes, we see the formation of bands that at early times pin to theminima of the travelling potential
and comovewith it.When time proceeds, one of the bands suddenly unpins and starts counterpropagating in
the travelling potential. Upon subsequent collisions the band swells towards amacroband containingmost
particles in the system. Thismacroband emerges representatively in a large parameter window and shows a
predictablemotion against the travelling direction of the potential. Our results show that amoving (or tilted, see
figure 1) substrate tames the collective behaviour of polar active particles and can be used to control the
transition frommicrophase separation (band patterns) to amacrophase separated statewhich does show
predictable transport. In the following, we specify these results and analyze themechanismunderlying the
emergence of a counterpropagatingmacroband.

2.Model

WeconsiderN=5000 active overdamped particles in a quasi-1D-potentialV(x, y, t), which is uniform in y-
direction and represents a travellingwave in x-direction; i.e. it is periodicallymodulated andmoves with
constant speed vL=ω/k in x-direction, whereω, k are the frequency andwave vector of the travelling potential
(figure 1(b)). Such a potential has previously been considered for active point particles [42] and disks [50] and
can be realized e.g. by amicropatterned ferrite garnetfilm substrate [51], by optical lattices traversing at speeds of
a fewμ/s, or effectively (see figure 1(c)), simply by a tiltedwashboard potential [52–54]. Note here that in the
comoving frame (movingwith a constant velocity vL) the dynamics translates intomotion of a particle in a static
tiltedwashboard potential (seefigures 1(b), (c) and section 4).

Besides experiencing the external potential, the active particles also self-propel, a fact effectively described by
a self-propulsion force γv0piwhere i Np e ecos sin ; 1 ,..,i i x i yq q= + = are the self-propulsion directions of
the particles and γ is the Stokes drag coefficient. In bulk, the particles wouldmovewith a constant speed v0. As in
theVicsekmodel, we assume that the particles alignwith each other.We define the dynamics of the particles by

Figure 1. (a)Cartoon of the polar active particles (a) in a travellingwave potential (b), with a velocity vL=ω/k. Here vv pi i0= is the
self-propulsion velocity of the ith particle, aligningwith adjacent partices (red circle). AGalilei transformation to the comoving frame
turns the travellingwave potential (panel (b)) into a static, tilted periodic potential (panel (c)). Thus,motion in the travellingwave
potential (b) is equivalent tomotion in a static tilted lattice in the comoving framewhich displaces through space (relative to the
laboratory frame)with a constant speed vL (panel (c)). The pinned state, where particles comovewith the travellingwave corresponds
to particles resting around aminimumof the tilted lattice in (c).Wefind that in the lab frame, for certain values of the parameters,
polar active particles canmove faster down the tilted lattice (to the left) than the lattice displaces through space (see section 4). The
dynamical pathway to achieve this sliding state involves a controllable transition frommicrophase separation (band patterns) to
macrophase separation (counterpropagatingmacroband).
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the following equations ofmotion3:
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Here, g controls the strength of alignment of a particle with its neighbours within a rangeR and the sum is
performed over all these neighbours (see figure 1(a)). Alignment competes with rotational Brownian diffusion,
occurringwith a rateDr; ηi represents Gaussianwhite noise of zeromean and unit variance. The force due to the
substrate reads

U u kx tF ecos 2 , 2i i x0g p w- = -≔ ( ( )) ( )

where u0 is the strength of the external force.Here, in all of our results we express lengths and times in units of
μmand s respectively, i.e. we introduce parameters D D s g g s, mr r

2m¢ = ¢ =· · etc and omit primes for
simplicity, allowing thus for a straightforward comparisonwith potential experiments. Nevertheless, the actual
dimensionless parameters of our setup can also be easily extracted on demand4.

We now study the dynamics of the describedmodel using Brownian dynamics simulations and an elongated
simulation box of size Lx×Ly=500×5,fixing the density to ρ=2, as well as randombut uniformly
distributed initial particle positions and orientations. Usingmore quadratic boxes or different system sizes leads
to qualitatively similar phenomena (see supplementary video 1 available online at stacks.iop.org/NJP/21/
013023/mmedia for the case of amore quadratic box). Also the specific value of the overall particle density ρ
seems to be rather unimportant as long as the system stays in the large parameter regimewhere band patterns
emerge.

3. Counterpropagatingmacroband

In the absence of a lattice, our simulations reveal the usual phenomenology of theVicsekmodel [27–29]: for a
given alignment strength (g=0.07) and comparatively strong noise D D 0.15r r

c> » (or high temperatures),
wefind a disordered uniformphase (figures 2 (a) and (b)), whereas noise values D Dr r

c< lead to a polarized
phase (figures 2 (c) and (d)). In the latter phase, particles self-organize into polarized bands of high density which
movewith a speed∼v0 and coexist with gas-like unpolarized regions in between the bands. The bands occur at
seemingly irregular distances to each other. As time proceeds, they occasionally split up (for D 0r ¹ ) and
typicallymergewhen they collidewith each other; overall, the number and size of the bands changes dynamically
(see supplementary video 2).

In the presence of the travellingwave (moving lattice) and at weak noise (weused D D3 10r
4

r
c= ´ <- ) the

behaviour of the bandsmay change dramatically.While very steep lattices of course pin the particles
permanently to the latticeminima, leading to a state where all particles comovewith the lattice, shallow lattices
have little impact on the behaviour of the system and its tendency to formbands. In this latter regime, the lattice
exerts a periodic force which essentially averages out before the particlesmovemuch. Thus, we here focus on
moderate lattice depth (u0=0.3) and lattice speeds comparable to that of the particles (v0=vL=0.2), so that
the particles can occasionally overcome the potentialmaxima. In this regime, for sufficiently weak noise (here
D D3 10r

4
r
c= ´ <- ), particles formquickly bands,most of which are pinned to the lattice and thus co-move

with it (figures 2(e), (g), (h), supplementary video 3). Note that the polarization of such bands
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is almost unity even for small times andmaintains this very high value during the time evolution (figures 2(g)
and (h)). Occasionally, we observe that a band, assisted by the existing noise, changes direction and
counterpropagates; it then soon collides with another band (see figures 2(g) and (h) insets for such collision
events). Here, the two bandsmerge and formone larger bandwhich in some cases becomes pinned and in other
cases slides, still against the direction ofmotion of the lattice. In the latter case, the band soon encounters further

3
Consider the dynamics of free, not fully overdamped particles m vr r pï i i0g g+ =˙ yielding the solution t vr p 1 ei i

t
0 m= - -

g
˙ ( ) ( ), i.e. the

timescale onwhich a particle reaches the velocity v pi0 is m»
g
.We assume here that this time scale ismuch shorter than all other time scales in

the system, including those applied by the travellingwave potential.
4
Choosing length and time units as xu=R, tu=1/Dr shows that the parameter space hasfive essential dimensions: the Peclet number

v0/(DrR)measuring the persistence length of the active particles (in bulk) in units of the particle radius, the reduced alignment rate
g R D2

rp( ), comparing the typical alignment rate of the particles with the Brownian decay of alignment, the reduced lattice depth u0/(γRDr)
and the reduced frequencyω/Dr andwave vector kR of the lattice (and the density ρR2=2). Themass unit is implicitly fixed asmu=Dr/γ
yielding an energy unit of E m x t kTD R D kT3 4u u u

2
u
2

r
2= = = , wherewe have used the Einstein and the Stokes–Einstein–Debye

relation.
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bands and can in each case, either stopmoving (get pinned to the lattice) or continue sliding. Onemight expect
that this seemingly random result of the collision processes should ultimately lead back to a pinned state.
Strikingly, however, inmany simulationswe observe cases where a band counterpropagates through the entire
lattice and systematically consumes all other bands. The result is onemacrobandwhich containsmost of theN
particles and counterpropagates against the direction of latticemotion (figures 2(f), (h), supplementary video 4).
Since the particles counterpropagate, evenwhen viewed from the laboratory frame, with respect to the forces
acting on a pinned particle in aminimumof the lattice, they feature an absolute negativemobility. Thus, we

Figure 2. (a)–(d) Snapshots of (a) the disordered uniformphase and (c) the bands formed in the ordered phase in the absence of the
lattice from sample simulations atDr=0.151 andDr=0.003 respectively. The corresponding zoomed-infigures (b), (d)
demonstrate the direction of the particles’motion. (e), (f) Snapshots of the two different ordered phases: (e) pinned phase and (f)
sliding phase in the presence of a lattice from sample simulations atDr=0.0003.Note that the shown ‘sinewave’ illustrates the lattice
focusing on its wavelength. In all the above cases (a)–(f) the colours denote the polarization of each particle along the xdirection
p cosx i i, q= . (g), (h)The polarization Pn of the formed bands (equation (3)), depicted by colour, as a function of the time and the x
coordinate for sample simulations of (g) the pinned phase and (h) the sliding phase atDr=0.0003. The insets provide zooms of some
special events during dynamics featuring band collisions. (i)–(k)Time evolution of (i) the average polarization Pá ñ, (j) the average
cosine of the particles p cosx q=⟨ ⟩ ⟨ ⟩ and (k) the average particle velocity xá ñ˙ for the pinned (dark orange line) and the sliding phase
(blue line) of (g), (h). In the above cases the parameters of our setup read g D N L0.07, 0.15, 5000, 500xr

c= = = = ,
L v5, 0.2y 0= = and inmost cases u0=0.3,ω=0.02, k=0.1 (vL=0.2).
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observe a spontaneous reversal from a comoving statewheremost particles have followed the lattice to a
counterpropagating state.

The striking difference between afinally pinned (figures 2(e) and (g)) and afinally sliding state (figures 2(f)
and (h)) featuring a current reversal is further illustrated infigures 2(i)–(k). Herewe observe that themean

polarization (averaged over all particles) P cos sin2 2q qá ñ = á ñ + á ñ increases from the pinned state at short
times to a value of almost one for the slidingmacroband (figure 2(i)). It turns out (figure 2 (j)) that
p cos 1x qá ñ = á ñ » - , meaning that the particles collectively self-propel against the direction of the lattice
motion (still in the laboratory frame), i.e. along ex- . The average velocity of the particles is x v 0.2Lá ñ » =˙ (see
also equation (1a)) for the pinned state (figure 2(k)) and acquires a negative value oscillating in time for the case
of the slidingmacroband.

4. Pinned and sliding solutions

Wecan get somefirst insight into themechanismunderlying the surprising counterpropagation of the bands by
examining the single-particle dynamics in the zero noise limit.When projected to the x-axis equation (1a)
reduces to

x v u xcos , 4x 0= +˜̇ ˜ ˜ ˜ ( )

where theGalilean transformation to the comoving frame x kx t2p w= -˜ ( ) is used, with
v k v p v2x x0 Lp= -˜ ( ), p1 cos 1x q- = and u ku20 0p=˜ . This equation is well known as the overdamped
limit of the equations ofmotion of e.g. the forced nonlinear pendulum [55], the driven Frenkel–Kontorova
model [56] and the resistively shunted junctionmodel of Josephson junctions [57]. It is known to attain two

different kinds of solutions depending on the value of v

u
x

0

˜
˜
. For 1v

u
x

0
˜

˜
the system is in the so-called pinned

phasewhere the particle cannot overcome the potential barrier u0˜ and remains therefore trappedwithin one of
its wells x 0t ¥(⟨ ⟩ ), yielding an asymptotic time averaged velocity x v kt L wá ñ = =¥˙ . In the opposite case

1v

u
x

0
>˜

˜
, the particle is fast enough to overcome the potential barrier separating thewells (or in the example of

the pendulum to lead to a rotation) and thus the system exhibits a sliding phasewhere the particle permanently
moves (slides or rotates) in one and the same directionwith an oscillating velocity ẋ [58] of period T
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[58] and an asymptotic time averaged velocity
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For theN-particle system (equations (1a) and (1b)) the particles’ self-propulsion directions pi change due to
alignment interactions (equation (1b)) and noise (equation (1a)). Hence, the projection of the particle speed

onto the x-axis changes in time, so that the sliding condition 1v

u
x

0
>˜

˜
subsequentlymay andmay not be

fulfilled. In terms of pi, the sliding condition reads
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In the present parameter regime (v0=vL=0.2, u0=0.3) sliding occurs for pxi
1

2
< - , or , .i

2

3

4

3
q Î p p⎡⎣ ⎤⎦ Thus

roughly 1/3 of particles will initially be in the sliding phase. Importantly, all of these particles which can in
principle slide,move against the direction of latticemotion (negative pxi), i.e. sliding can only occur against the
direction of latticemotion, as observed infigures 2 (f), (h), (j) and (k). Themain effect of rotational diffusion

(noise in the particle orientations) consists in the smoothening of the pinned-to-sliding transition at 1v

u
x

0
=˜

˜
.

5. Collisions ofVicsek bands

Wenow exploit these considerations regarding pinned and sliding states for single particles to understand the
dynamics of the polarized bands in the lattice. In our simulations, shortly after their formation, themagnitude of
the polarization of the individual bands quickly approaches a value close to one (figures 2(g) and (h)), i.e.most
bands aremovingwith almost constant individual velocities relative to the lattice. Thus, in the absence of
collisions, the bands essentially behave like single particles and are either pinned or slide through the lattice. To
study band collisions, it is useful to assign effective ‘masses’mn to the bands representing the number of particles
contained in the band.When two bandswith polarization angles θ1, θ2 andmassesm1,m2 collide, they usually
merge into a larger band of totalmassm1,2=m1+m2 (figure 3(a)) and average their polarizations. (Formally,
there are twofixpoints of the orientational dynamics when two bandsmerge: one reads θ1,2=Θ0 with
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m m

m m0
1 1 2 2

1 2
Q = q q+

+
, the other one 2 ;m

m m1,2 0
1

1 2
q p= Q -

+
here the one lyingwithin the smaller arc between θ1 and

θ2 is stable and thus observed, the other one is unstable.)
In our simulations, the polarization direction of an isolated band can freely rotate (Goldstonemode); noise

therefore creates a randomdynamics of the band polarization direction. Once the polarization angle of an

initially pinned band reaches a value ,1
2

3

4

3
q Î p p( ) the bandwillmove over a lattice barrier in the direction

opposite to the latticemotion (figures 3(d), (e), (g) and (h)). Since themotion of the band towards an adjacent
lattice site occurs on timescales which are short compared to the time noise needs to significantly change θ1, the
bandwill typically feature an angle close to 2π/3 or 4π/3when it encounters another pinned band.Depending
on its relative orientation to the band it encounters, after the collision, its anglemay either be out of the sliding
interval (figure 3(b)), or, similarly likely, may be deeper in the sliding interval (figure 3(c)). In the latter case, the
band continues counterpropagating through the lattice. Statistically, further collisions with other bands can be
essentially viewed as a randomwalk of the band’s polarization direction.Here, however, the effectivemass of the
band increases within each collision, corresponding to a decrease of the stepsize after each step.Hence, when the
polarization of a band after afirst few collisions is deeply in the sliding regime, i.e. θ≈π, the sliding of the band
is highly robust against further collisions. This is whywe have observed the emergence of a counterpropagating
macroband consuming all other bands (figures 2(f) and (h)).

To understand the broadwidth of the counterpropagatingmacroband, it is instructive to resolve the
collisions slightly further.When sliding bands collide, the positions of the contained particles do not fullymix
up; rather, the resulting band features a substructure ofmicrobands stacked one behind the other (figure 3(i)).
This fact is responsible for the largewidth of the observedmacroband (figure 2(f)) in the case offinally sliding
states. This is because successive collisions typically result in amacrobandwith an average polarization close to

Figure 3. (a) Schematic illustration of themechanism ofmerging for two bandswith angles θ1 and θ2 andmassesm1,m2 leading to the
formation of a large bandwith angle θ1,2 (stable) or 1,2q̃ (unstable). (b)Time evolution of the angles θ of two colliding bandswhich
after theirmerging become pinned in the lattice (see also subfigures (d)–(f)). (c)Time evolution of the angles θ of five bands colliding
successively with each other, leading to the formation of a large sliding band (see also subfigures (g)–(i)). (d)Time evolution of the x
coordinate of two bandswhich after theirmerging become pinned in the lattice. Figures (e) and (f) provide corresponding snapshots
before and after the collision, respectively. (g)Time evolution of the x coordinate of five bandswhich successively collide andmerge,
initiating the formation of the large sliding band. Figures (h) and (i) provide corresponding snapshots before thefirst and after thefinal
collision, respectively. In the above cases the parameters of our setup read g D N L0.07, 0.15, 5000, 500xr

c= = = = , Ly=5,
v0=0.2,Dr=3×10−4, u0=0.3,ω=0.02, k=0.1 (vL=0.2).
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π, which is the centre of the sliding interval ,2

3

4

3

p p⎡⎣ ⎤⎦. Thus after the collisions the involved particlesmove in the

negative x directionwith p ei x» - (see figure 3(i)), a fact that prohibits them frommixing along the y direction.
Conversely, band collisions leading to pinning do not induce a pronounced substructure. Here, the involved
particlesmove significantly in the y-direction and therefore tend tomix in the course of the dynamics
(figure 3(f)).

6. Effect of the particle speed

Having explored themechanism leading to the dynamical reversal of the direction ofmotion of the particles in
themoving lattice, we now ask how representative this scenario is. Here, we stay in the lownoise regime
(Dr=3×10−5) andwith our previous values for the lattice velocity vL=0.2 and height u0=0.3 but vary the
self-propulsion velocity of the particles. For v0�0.1, we have u0−vL³v0 and hence sliding is not possible,
whereas for v0>0.5, where v0>u0+vL, sliding can be achieved also in the positive direction (see
equation (6)). In the complete interval 0.1<v0�0.5 sliding is possible only against the latticemotion (negative
direction) as discussed above.Within this interval, larger values of v0 yield a larger interval of polarization angles
leading to sliding (figures 4(a) and (b)). To specify this, we simulate 50 particle ensembles for each value of v0 and
count the number (ratio) of ensemblesRs which have reached a sliding and counterpropagatingmacroband and
the corresponding ratio of ensemblesRp which have settled in an overall pinned configuration. Figure 4(b)
shows thatRs increasesmonotonically in v0, crossing from a regimewheremost of the bands are pinned, even at
late times (v0≈0.1) to a regime, whereRs≈1 (v0≈0.5). Thus, faster self-propulsion favours the emergence of
a current reversal. (Note that the values ofRp,Rs shown in figures 4(a) and (b) should be viewed as lower bounds
for the ratio of pinned and sliding states, as not all initial ensemblesmay have reached one or the other state at the
end of our simulations.)

Complementary information about the finally sliding states, featuring a current reversal, is provided by
figures 4(c) and (d). Thefinal average polarization of these states P sá ñ is for all v0 very close to 1 (figure 4(c)),
owing to the lownoise which results in particles clustering to amacrobandwith a certain alignment. In contrast,
the direction of this alignment, quantified by p cosx s sqá ñ = á ñ , is affected strongly by v0 (figure 4 (d)). For
0.1<v0�0.5we have p 0.95x sá ñ » - , indicating that within this interval the particles’ velocities are all
approximately aligned towards ex- (as infigure 3(i)) and thus the particles counterpropagate at roughly their
maximumvelocity. This picture changes when v0>0.5where a sliding also in the forward direction becomes
possible. Different realizations result infinally sliding states with a different alignment pi and thus their
ensemble average p 0x sá ñ  as v0 increases, recovering the isotropy in the direction of sliding bands of the
Vicsekmodel in the absence of a lattice.

7. Effect of the noise amplitude and the lattice wavelength

Rotational diffusion, whose strength is controlled byDr, is crucial to initiate the emergence of sliding states; on
the other hand, there is an upper critical noise strengthDr

c abovewhich theVicsekmodel does not showpolar

Figure 4. (a)Ratio of thefinally pinned statesRp (lower bound) as a function of the particle velocity v0. (b)Ratio of thefinally sliding
statesRs (lower bound) as a function of the particle velocity v0. (c)Average polarization of the bands in the finally sliding states P sá ñ as a
function of v0. (d)Average cosine of the bands px sá ñ in thefinally sliding states as a function of v0. Herewe have used
g D N L0.07, 0.15, 5000, 500xr

c= = = = , Ly=5,Dr=3×10−5, u0=0.3,ω=0.02, k=0.1 (vL=0.2). The dotted vertical
linemarks the value of the velocity v0 = 0.5 beyondwhich sliding in the positive direction is possible.
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order, but is in the isotropic phase.We now systematically explore how the transition to the counterpropagating
macroband is affectedwhen changingDr. For u0=0.3, v0=vL=0.2where sliding is possible only in the
negative x direction, the ratio of states which are pinned at the end of our simulationsRp decreases asDr increases
(figure 5(a)) andfinally approaches zero for D D0.1r r

c . The reason for this behaviour is probably that larger
noise turns the orientation of the polarization of initially pinned bands faster and therefore initiates sliding
earlier (andmore often). The respective ratio offinally sliding statesRs (figure 5(b)) increases only slightly asDr

increases from zero for D D0.05r r
c and afterwards decreases tending towards zero. Physically, whenDr is too

large, the polarization of a bandmay significantly change between each subsequent collisionwith other bands
andmay therefore leave the sliding regime before encountering another collision. Thus, for too strong noise, the
emergence of a transition to a counterpropagatingmacroband is rather unlikely. The generic behaviour of the
system for such high noise values is that of amixture of individual particles, both in the pinned and in the sliding
phase, whose polarization orientation changes fast in time, providing the picture of an overall disordered phase
modulated by the existing potential wells (figures 6(a) and (b)). There is however still a possibility of obtaining a
finally sliding state even in the high noise regime (figure 5(b)). Such states are significantly less polarized than the
ones in the lownoise regime (figures 5(c) and 6(c)) featuring also a larger variety in the direction of alignment,
quantified by px sá ñ (figures 5(d) and 6(d)). Furthermore, for such cases of high noise (e.g.Dr=0.3,Dr=0.95)
the time evolution of both pxá ñand Pá ñ ismuch slower (figures 6(e) and (f)) than the ones observed for lower
noise values (e.g.Dr=0.0003,Dr=0.003), indicating the diffusive character of the dynamics expected for
highly noisy systems.

Let us nowbriefly discuss the role played by thewavevector k of the travelling substrate, taken to be constant
k=0.1 so far.Wefind that increasing k (decrease of lattice wavelength) clearly favours sliding, whereas its
decrease increases the possibility of pinning, whichmay appear somewhat surprising as the angular-interval
leading to sliding is independent of k as shownby equation (6). One likely reason for this is that for large k, where
the lattice spacing is short, individual particles with appropriate orientationmay cross a barrier before having
enough time to alignwith the other particles in thewell. Therefore angular-averaging remains incomplete and
may lead to sliding of a small subband. In addition, once a sliding band has emerged, itmight bemore stable for
large k. This is because for large k the force exerted by the lattice onto a band varies rapidly in space and
essentially compactifies bands approaching amaximumof the lattice force. This enhances the density in the
band, a fact that improves the corresponding alignment. On the contrary, for small k, noise can interrupt sliding
relatively easily (particularly for cases of ‘stacked’ bands, discussed further above).

8. Conclusions

The present results provide a scheme allowing to control the typically highly irregular collective dynamics of
polar active particles. In particular, we have seen that the bands occurring in theVicsekmodel, which normally
move in unpredictable directions and irregularlymerge and split up can be tamed by applying a travellingwave-
shaped potential, as can be realized e.g. using amicropatternedmoving substrate or a traversing optical lattice.
Wefind that whilemost particles in the system self-organize into polarized bandswhich comovewith the lattice

Figure 5. (a)Ratio of thefinally pinned statesRp (lower bound) as a function of the noise amplitudeDr (in units ofDr
c). (b)Ratio of the

finally sliding statesRs (lower bound) as a function of the noise amplitudeDr (in units ofDr
c). (c)Average polarization of the bands in

the finally sliding states P sá ñ as a function ofDr. (d)Average cosine of the bands px sá ñ in thefinally sliding states as a function ofDr.
Herewe have used g D N L0.07, 0.15, 5000, 500xr

c= = = = , Ly=5, v0=0.2, u0=0.3,ω=0.02, k=0.1 (vL=0.2).
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at early times, they can later experience a remarkable reversal, initiated by the counterpropagation of a single
bandwhich subsequently consumes all other bands in the system. The asymptotic state is a strongly polarized
macrobandwhich predictablymoves opposite to the direction of themotion of the external substrate. This
behaviour is representative in a large parameter window and can be controlled e.g. by tuning the relative speed of
the active particles and the lattice.Here, it would be interesting to consider particle ensembles with a
characteristic velocity distribution rather than having identical velocities in the future. Ourworkmay inspire
further research of the interface between nonlinear dynamics and activematter and perhaps also applications
regarding collective targeted cargo delivery using polar activematter.
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