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Abstract

Following the goal of using active particles as targeted cargo carriers aimed, for example, to deliver
drugs towards cancer cells, the quest for the control of individual active particles with external fields is
among the most explored topics in active matter. Here, we provide a scheme allowing to control
collective behaviour in active matter, focusing on the fluctuating band patterns naturally occurring
e.g. in the Vicsek model. We show that exposing these patterns to a travelling wave potential tames
them, yet in a remarkably nontrivial way: the bands, which initially pin to the potential and comove
with it, upon subsequent collisions, self-organize into a macroband, featuring a predictable transport
against the direction of motion of the travelling potential. Our results provide a route to
simultaneously control transport and structure, i.e. micro- versus macrophase separation, in polar
active matter.

1. Introduction

Active matter contains self-propelled particles like bacteria, algae, or synthetic autophoretic Janus colloids
whose properties can be designed on demand [1-3]. As one of their main characteristics, these systems are
intrinsically out of equilibrium allowing them to self-organize into new ordered and even functional structures.
In synthetic active systems, such structures include dynamic clusters which dynamically form and break-up in
low density Janus colloids [4—8] as well as laser driven colloids which spontaneously start to move ballistically
(self-propel) when binding together [9-11]. Likewise, biological microswimmers form patterns such as vortices
in bacterial turbulence [12—15], or swirls and microflock patterns in chiral active matter like curved polymers or
sperm [16—19].

Much of what we know about active systems and the patterns they form roots in explorations of minimal
models which to some extend represent broader classes of active systems showing the same symmetries. The
pioneering example of such a minimal model is the Vicsek model describing polar self-propelled particles such
as actin-fibres mixed with motor proteins [20, 21], certain microorganisms [22], self-propelled rods [23, 24] or
‘birds’ [22, 25] which only see their neighbours and have a tendency to align with them, in competition with
noise. While forbidden in equilibrium [26] the Vicsek model shows true long-range order in two dimensions
[25], meaning that activity makes orientational correlations robust against noise over arbitrarily long distances.
The phase transition from the disordered phase which occurs for strong noise to the long-range ordered Toner—
Tu phase is now known to be discontinuous [27] and features a remarkably large coexistence region [28, 29]
where high-density bands of comoving polarized particles spontaneously emerge and traverse through a
background of a low-density disordered gas-like phase. These bands behave highly randomly; they merge when
colliding with each other but also split up frequently, rendering an irregular pattern of sharply localized and
strongly polarized moving bands. The latter choose their direction of motion spontaneously depending on
initial state and fluctuating molecular environment (noise realization); thus, when averaging over many
realizations, there is no net motion. This randomness is unfortunate in view of potential key applications of
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Figure 1. (a) Cartoon of the polar active particles (a) in a travelling wave potential (b), with a velocity v, = w/k. Here v; = v,p; is the
self-propulsion velocity of the ith particle, aligning with adjacent partices (red circle). A Galilei transformation to the comoving frame
turns the travelling wave potential (panel (b)) into a static, tilted periodic potential (panel (c)). Thus, motion in the travelling wave
potential (b) is equivalent to motion in a static tilted lattice in the comoving frame which displaces through space (relative to the
laboratory frame) with a constant speed v, (panel (c)). The pinned state, where particles comove with the travelling wave corresponds
to particles resting around a minimum of the tilted lattice in (c). We find that in the lab frame, for certain values of the parameters,
polar active particles can move faster down the tilted lattice (to the left) than the lattice displaces through space (see section 4). The
dynamical pathway to achieve this sliding state involves a controllable transition from microphase separation (band patterns) to
macrophase separation (counterpropagating macroband).

active matter, e.g. for targeted drug delivery, crucially requiring schemes to control active particles. Here, while
single particle guidance with external fields is among the most explored problems in active matter [5, 30-37] and
there is a moderate knowledge on interacting particles in external fields (complex environments) [38—43] and
their control [44—48], surprisingly little is known about the controllability of polar active particles and the band
patterns they naturally form.

In the present work we ask for a scheme to tame band patterns, i.e. if we can force the bands in the Vicsek
model to settle down into a pattern featuring a predictable and externally controllable direction of motion. To
achieve this, we apply a ‘travelling wave potential’ (also called travelling potential ratchet [49]) to the Vicsek
model. We find that such an external field does in fact allow to control the late time direction of motion of
particle ensembles in polar active matter, yet, in a remarkably nontrivial way. In our simulations, for appropriate
parameter regimes, we see the formation of bands that at early times pin to the minima of the travelling potential
and comove with it. When time proceeds, one of the bands suddenly unpins and starts counterpropagating in
the travelling potential. Upon subsequent collisions the band swells towards a macroband containing most
particles in the system. This macroband emerges representatively in a large parameter window and shows a
predictable motion against the travelling direction of the potential. Our results show that a moving (or tilted, see
figure 1) substrate tames the collective behaviour of polar active particles and can be used to control the
transition from microphase separation (band patterns) to a macrophase separated state which does show
predictable transport. In the following, we specify these results and analyze the mechanism underlying the
emergence of a counterpropagating macroband.

2.Model

We consider N = 5000 active overdamped particles in a quasi-1D-potential V(x, y, f), which is uniform in y-
direction and represents a travelling wave in x-direction; i.e. it is periodically modulated and moves with
constant speed v, = w/kin x-direction, where w, k are the frequency and wave vector of the travelling potential
(figure 1(b)). Such a potential has previously been considered for active point particles [42] and disks [50] and
can be realized e.g. by a micropatterned ferrite garnet film substrate [51], by optical lattices traversing at speeds of
afew /s, or effectively (see figure 1(c)), simply by a tilted washboard potential [52—54]. Note here that in the
comoving frame (moving with a constant velocity v ) the dynamics translates into motion of a particle in a static
tilted washboard potential (see figures 1(b), (c) and section 4).

Besides experiencing the external potential, the active particles also self-propel, a fact effectively described by
aself-propulsion force yvop; where p; = cos f;e, + sinfe,; i = 1,..,N are the self-propulsion directions of
the particles and yis the Stokes drag coefficient. In bulk, the particles would move with a constant speed v,. As in
the Vicsek model, we assume that the particles align with each other. We define the dynamics of the particles by
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the following equations of motion™:

t; = vop; + Fi/y (1a)
N

0 = =5 " sin(0; — 6) + V2D, 1,0 (16)
7TR2 ]'elsi

Here, g controls the strength of alignment of a particle with its neighbours within a range R and the sum is
performed over all these neighbours (see figure 1(a)). Alignment competes with rotational Brownian diffusion,
occurring with a rate D,; 7); represents Gaussian white noise of zero mean and unit variance. The force due to the
substrate reads

F; := —VU = yugcos 2m(kx; — wt))ey, 2)

where 1y is the strength of the external force. Here, in all of our results we express lengths and times in units of
pm and s respectively, i.e. we introduce parameters D,’ = D, - s, g’ = g - s/um? etc and omit primes for
simplicity, allowing thus for a straightforward comparison with potential experiments. Nevertheless, the actual
dimensionless parameters of our setup can also be easily extracted on demand”.

We now study the dynamics of the described model using Brownian dynamics simulations and an elongated
simulation box of size L, X L, = 500 X 5, fixing the density to p = 2, as well as random but uniformly
distributed initial particle positions and orientations. Using more quadratic boxes or different system sizes leads
to qualitatively similar phenomena (see supplementary video 1 available online at stacks.iop.org/NJP/21/
013023 /mmedia for the case of a more quadratic box). Also the specific value of the overall particle density p
seems to be rather unimportant as long as the system stays in the large parameter regime where band patterns
emerge.

3. Counterpropagating macroband

In the absence of a lattice, our simulations reveal the usual phenomenology of the Vicsek model [27-29]: for a
given alignment strength (¢ = 0.07) and comparatively strong noise D, > Dy = 0.15 (or high temperatures),
we find a disordered uniform phase (figures 2 (a) and (b)), whereas noise values D, < Dy lead to a polarized
phase (figures 2 (c) and (d)). In the latter phase, particles self-organize into polarized bands of high density which
move with a speed ~v, and coexist with gas-like unpolarized regions in between the bands. The bands occur at
seemingly irregular distances to each other. As time proceeds, they occasionally split up (for D, = 0) and
typically merge when they collide with each other; overall, the number and size of the bands changes dynamically
(see supplementary video 2).

In the presence of the travelling wave (moving lattice) and at weak noise (we used D, = 3 x 10~* < Df)the
behaviour of the bands may change dramatically. While very steep lattices of course pin the particles
permanently to the lattice minima, leading to a state where all particles comove with the lattice, shallow lattices
have little impact on the behaviour of the system and its tendency to form bands. In this latter regime, the lattice
exerts a periodic force which essentially averages out before the particles move much. Thus, we here focus on
moderate lattice depth (4, = 0.3) and lattice speeds comparable to that of the particles (vy = v;, = 0.2), so that
the particles can occasionally overcome the potential maxima. In this regime, for sufficiently weak noise (here
D, =3 x 107* < DY), particles form quickly bands, most of which are pinned to the lattice and thus co-move
with it (figures 2(e), (g), (h), supplementary video 3). Note that the polarization of such bands

2 2
P, = ( > cos@i] +( > sin@i) 3)

i€band n i€band n

is almost unity even for small times and maintains this very high value during the time evolution (figures 2(g)
and (h)). Occasionally, we observe that aband, assisted by the existing noise, changes direction and
counterpropagates; it then soon collides with another band (see figures 2(g) and (h) insets for such collision
events). Here, the two bands merge and form one larger band which in some cases becomes pinned and in other
cases slides, still against the direction of motion of the lattice. In the latter case, the band soon encounters further

Consider the dynamics of free, not fully overdamped particles mi; + ¥; = v, p; yielding the solution i;(¢) = vop;(1 — e’%’), i.e.the
timescale on which a particle reaches the velocity v, p; is == We assume here that this time scale is much shorter than all other time scales in

the system, including those applied by the travelling wave potential.

4 Choosinglength and time unitsas x, = R, t, = 1/D, shows that the parameter space has five essential dimensions: the Peclet number
vo/(D;R) measuring the persistence length of the active particles (in bulk) in units of the particle radius, the reduced alignment rate

g/ (wR?Dy), comparing the typical alignment rate of the particles with the Brownian decay of alignment, the reduced lattice depth 1,/ (yRD,)
and the reduced frequency w/ D, and wave vector kR of the lattice (and the density pR* = 2). The mass unit is implicitly fixed as m, = D,/
yielding an energy unit of E, = m,x2/t2 = kTD,R?>/D = 3kT /4, where we have used the Einstein and the Stokes-Einstein-Debye
relation.
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Figure 2. (a)-(d) Snapshots of (a) the disordered uniform phase and (c) the bands formed in the ordered phase in the absence of the
lattice from sample simulations at D, = 0.151 and D, = 0.003 respectively. The corresponding zoomed-in figures (b), (d)
demonstrate the direction of the particles’ motion. (e), (f) Snapshots of the two different ordered phases: (e) pinned phase and (f)
sliding phase in the presence of a lattice from sample simulations at D, = 0.0003. Note that the shown ‘sine wave’ illustrates the lattice
focusing on its wavelength. In all the above cases (a)—(f) the colours denote the polarization of each particle along the x direction

p.; = c0s0;.(g), (h) The polarization P, of the formed bands (equation (3)), depicted by colour, as a function of the time and the x
coordinate for sample simulations of (g) the pinned phase and (h) the sliding phase at D, = 0.0003. The insets provide zooms of some
special events during dynamics featuring band collisions. (i)—(k) Time evolution of (i) the average polarization (P), (j) the average
cosine of the particles (p,) = ( cos ) and (k) the average particle velocity (x) for the pinned (dark orange line) and the sliding phase
(blueline) of (g), (h). In the above cases the parameters of our setup read g = 0.07, D = 0.15, N = 5000, L, = 500,

L, = 5, vy = 0.2 and in most cases ty = 0.3,w = 0.02,k = 0.1 (v, = 0.2).

bands and can in each case, either stop moving (get pinned to the lattice) or continue sliding. One might expect
that this seemingly random result of the collision processes should ultimately lead back to a pinned state.
Strikingly, however, in many simulations we observe cases where a band counterpropagates through the entire
lattice and systematically consumes all other bands. The result is one macroband which contains most of the N
particles and counterpropagates against the direction of lattice motion (figures 2(f), (h), supplementary video 4).
Since the particles counterpropagate, even when viewed from the laboratory frame, with respect to the forces
acting on a pinned particle in a minimum of the lattice, they feature an absolute negative mobility. Thus, we
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observe a spontaneous reversal from a comoving state where most particles have followed the lattice to a
counterpropagating state.

The striking difference between a finally pinned (figures 2(e) and (g)) and a finally sliding state (figures 2(f)
and (h)) featuring a current reversal is further illustrated in figures 2(i)—(k). Here we observe that the mean
polarization (averaged over all particles) (P) = \/ (cos0)? + (sinf)? increases from the pinned state at short
times to a value of almost one for the sliding macroband (figure 2(i)). It turns out (figure 2 (j)) that
(p.) = (cosf) ~ —1, meaning that the particles collectively self-propel against the direction of the lattice
motion (still in the laboratory frame), i.e. along —e,. The average velocity of the particlesis (x) ~ v = 0.2 (see
also equation (1a)) for the pinned state (figure 2(k)) and acquires a negative value oscillating in time for the case
of the sliding macroband.

4. Pinned and sliding solutions

We can get some first insight into the mechanism underlying the surprising counterpropagation of the bands by
examining the single-particle dynamics in the zero noise limit. When projected to the x-axis equation (1a)
reduces to

% = ¥ + figcos X, (4)

where the Galilean transformation to the comoving frame ¥ = 27 (kx — wt) is used, with

% = 2wk (vop, — v1), —1 < p, = cosf < land ily = 2mku,. This equation is well known as the overdamped
limit of the equations of motion of e.g. the forced nonlinear pendulum [55], the driven Frenkel-Kontorova
model [56] and the resistively shunted junction model of Josephson junctions [57]. It is known to attain two

different kinds of solutions depending on the value of :—X For < 1the system is in the so-called pinned
0

i

o

phase where the particle cannot overcome the potential barrier i and remains therefore trapped within one of

its wells ((X)7° — 0), yielding an asymptotic time averaged velocity (x);° = v = w/k. In the opposite case

‘ Z—‘ ‘ > 1, the particle is fast enough to overcome the potential barrier separating the wells (or in the example of
0

the pendulum to lead to a rotation) and thus the system exhibits a sliding phase where the particle permanently

moves (slides or rotates) in one and the same direction with an oscillating velocity x [58] of period T = — 2277 —
72— il
[58] and an asymptotic time averaged velocity
(%) = sgn(vop, — VL)\/(V()px —v)? —ug + v (5)

For the N-particle system (equations (1) and (1b)) the particles’ self-propulsion directions p, change due to
alignment interactions (equation (1)) and noise (equation (1a)). Hence, the projection of the particle speed

onto the x-axis changes in time, so that the sliding condition ’ :—*
0

> 1subsequently may and may not be
fulfilled. In terms of p;, the sliding condition reads
— up

v
71<pxi:cos(9,»<LV7 or 1>p,> »
0 0

VL + Uy

(6)

In the present parameter regime (vo = vy = 0.2, uy = 0.3) sliding occurs for p,; < — %, orf; € [ZTT, %ﬂ] Thus
roughly 1/3 of particles will initially be in the sliding phase. Importantly, all of these particles which can in
principle slide, move against the direction of lattice motion (negative p, ), i.e. sliding can only occur against the
direction of lattice motion, as observed in figures 2 (f), (h), (j) and (k). The main effect of rotational diffusion

(noise in the particle orientations) consists in the smoothening of the pinned-to-sliding transition at ‘ :—" =1
0

5. Collisions of Vicsek bands

We now exploit these considerations regarding pinned and sliding states for single particles to understand the
dynamics of the polarized bands in the lattice. In our simulations, shortly after their formation, the magnitude of
the polarization of the individual bands quickly approaches a value close to one (figures 2(g) and (h)), i.e. most
bands are moving with almost constant individual velocities relative to the lattice. Thus, in the absence of
collisions, the bands essentially behave like single particles and are either pinned or slide through the lattice. To
study band collisions, it is useful to assign effective ‘masses’ m,, to the bands representing the number of particles
contained in the band. When two bands with polarization angles 6, 6, and masses 1, m, collide, they usually
merge into a larger band of total mass m; , = m; + m, (figure 3(a)) and average their polarizations. (Formally,
there are two fixpoints of the orientational dynamics when two bands merge: onereads 0; , = O, with
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Figure 3. (a) Schematic illustration of the mechanism of merging for two bands with angles 6, and 6, and masses m,, m, leading to the
formation of alarge band with angle 6, , (stable) or 91,2 (unstable). (b) Time evolution of the angles 6 of two colliding bands which
after their merging become pinned in the lattice (see also subfigures (d)—(f)). (c) Time evolution of the angles 6 of five bands colliding
successively with each other, leading to the formation of a large sliding band (see also subfigures (g)—(i)). (d) Time evolution of the x
coordinate of two bands which after their merging become pinned in the lattice. Figures (e) and (f) provide corresponding snapshots
before and after the collision, respectively. (g) Time evolution of the x coordinate of five bands which successively collide and merge,
initiating the formation of the large sliding band. Figures (h) and (i) provide corresponding snapshots before the first and after the final
collision, respectively. In the above cases the parameters of our setup read g = 0.07, Dy = 0.15, N = 5000, L, = 500, L, = 5,
vo=02D, =3 x 10%uy = 0.3,w = 0.02,k = 0.1 (v = 0.2).

0, = Mmhtmb: the other one 01, =0 — Zﬂﬁ; here the one lying within the smaller arc between 6, and
1 2

my - my
0, is stable and thus observed, the other one is unstable.)
In our simulations, the polarization direction of an isolated band can freely rotate (Goldstone mode); noise

therefore creates a random dynamics of the band polarization direction. Once the polarization angle of an

initially pinned band reaches a value 6, € %ﬂ, 4%) the band will move over a lattice barrier in the direction

opposite to the lattice motion (figures 3(d), (e), (g) and (h)). Since the motion of the band towards an adjacent
lattice site occurs on timescales which are short compared to the time noise needs to significantly change 6,, the
band will typically feature an angle close to 27/3 or 47/3 when it encounters another pinned band. Depending
on its relative orientation to the band it encounters, after the collision, its angle may either be out of the sliding
interval (figure 3(b)), or, similarly likely, may be deeper in the sliding interval (figure 3(c)). In the latter case, the
band continues counterpropagating through the lattice. Statistically, further collisions with other bands can be
essentially viewed as a random walk of the band’s polarization direction. Here, however, the effective mass of the
band increases within each collision, corresponding to a decrease of the stepsize after each step. Hence, when the
polarization of a band after a first few collisions is deeply in the sliding regime, i.e. f ~ , the sliding of the band
is highly robust against further collisions. This is why we have observed the emergence of a counterpropagating
macroband consuming all other bands (figures 2(f) and (h)).

To understand the broad width of the counterpropagating macroband, it is instructive to resolve the
collisions slightly further. When sliding bands collide, the positions of the contained particles do not fully mix
up; rather, the resulting band features a substructure of microbands stacked one behind the other (figure 3(i)).
This fact is responsible for the large width of the observed macroband (figure 2(f)) in the case of finally sliding
states. This is because successive collisions typically result in a macroband with an average polarization close to
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Figure 4. (a) Ratio of the finally pinned states R, (lower bound) as a function of the particle velocity vo. (b) Ratio of the finally sliding
states R (lower bound) as a function of the particle velocity v,. (c) Average polarization of the bands in the finally sliding states (P); asa
function of vq. (d) Average cosine of the bands (p, ) in the finally sliding states as a function of v,. Here we have used

g = 0.07, Df = 0.15, N = 5000, L, = 500,L, = 5,D, = 3 X 107>, 4y = 0.3,w = 0.02,k = 0.1 (v, = 0.2). The dotted vertical
line marks the value of the velocity vy = 0.5 beyond which sliding in the positive direction is possible.

m, which is the centre of the sliding interval [2?7(, 4?"] Thus after the collisions the involved particles move in the

negative x direction with p, ~ —e, (see figure 3(i)), a fact that prohibits them from mixing along the y direction.
Conversely, band collisions leading to pinning do not induce a pronounced substructure. Here, the involved
particles move significantly in the y-direction and therefore tend to mix in the course of the dynamics

(figure 3(f)).

6. Effect of the particle speed

Having explored the mechanism leading to the dynamical reversal of the direction of motion of the particles in
the moving lattice, we now ask how representative this scenario is. Here, we stay in the low noise regime

(D; = 3 x 10~°)and with our previous values for the lattice velocity v = 0.2 and height u, = 0.3 but vary the
self-propulsion velocity of the particles. For vy < 0.1, wehave uy — v > v, and hence sliding is not possible,
whereas for vy > 0.5, where vy > 1, + v, sliding can be achieved also in the positive direction (see

equation (6)). In the complete interval 0.1 < v, < 0.5sliding is possible only against the lattice motion (negative
direction) as discussed above. Within this interval, larger values of v, yield a larger interval of polarization angles
leading to sliding (figures 4(a) and (b)). To specify this, we simulate 50 particle ensembles for each value of v, and
count the number (ratio) of ensembles R, which have reached a sliding and counterpropagating macroband and
the corresponding ratio of ensembles R, which have settled in an overall pinned configuration. Figure 4(b)
shows that R, increases monotonically in vy, crossing from a regime where most of the bands are pinned, even at
late times (vy = 0.1) to aregime, where Ry = 1 (vy &~ 0.5). Thus, faster self-propulsion favours the emergence of
a current reversal. (Note that the values of R, Ry shown in figures 4(a) and (b) should be viewed as lower bounds
for the ratio of pinned and sliding states, as not all initial ensembles may have reached one or the other state at the
end of our simulations.)

Complementary information about the finally sliding states, featuring a current reversal, is provided by
figures 4(c) and (d). The final average polarization of these states ( P); is for all v very close to 1 (figure 4(c)),
owing to the low noise which results in particles clustering to a macroband with a certain alignment. In contrast,
the direction of this alignment, quantified by (p,); = (cos 0),, is affected strongly by v, (figure 4 (d)). For
0.1 < vy < 0.5wehave (p,); ~ —0.95, indicating that within this interval the particles’ velocities are all
approximately aligned towards —e,, (as in figure 3(i)) and thus the particles counterpropagate at roughly their
maximum velocity. This picture changes when v4 > 0.5 where a sliding also in the forward direction becomes
possible. Different realizations result in finally sliding states with a different alignment p; and thus their
ensemble average (p,); — 0 as vy increases, recovering the isotropy in the direction of sliding bands of the
Vicsek model in the absence of a lattice.

7. Effect of the noise amplitude and the lattice wavelength

Rotational diffusion, whose strength is controlled by D,, is crucial to initiate the emergence of sliding states; on
the other hand, there is an upper critical noise strength D; above which the Vicsek model does not show polar
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Figure 5. (a) Ratio of the finally pinned states R, (lower bound) as a function of the noise amplitude D, (in units of Df). (b) Ratio of the
finally sliding states R, (lower bound) as a function of the noise amplitude D, (in units of Df). (c) Average polarization of the bands in
the finally sliding states (P), as a function of D;. (d) Average cosine of the bands (p, ), in the finally sliding states as a function of D.
Here we have used ¢ = 0.07, Df = 0.15, N = 5000, L, = 500,L, = 5,vy = 0.2,y = 0.3,w = 0.02,k = 0.1 (v, = 0.2).

order, but is in the isotropic phase. We now systematically explore how the transition to the counterpropagating
macroband is affected when changing D,. For uy = 0.3, v, = v, = 0.2 where sliding is possible only in the
negative x direction, the ratio of states which are pinned at the end of our simulations R,, decreases as D, increases
(figure 5(2)) and finally approaches zero for D, = 0.1Dy. The reason for this behaviour is probably that larger
noise turns the orientation of the polarization of initially pinned bands faster and therefore initiates sliding
earlier (and more often). The respective ratio of finally sliding states R, (figure 5(b)) increases only slightly as D,
increases from zero for D, < 0.05D; and afterwards decreases tending towards zero. Physically, when D, is too
large, the polarization of a band may significantly change between each subsequent collision with other bands
and may therefore leave the sliding regime before encountering another collision. Thus, for too strong noise, the
emergence of a transition to a counterpropagating macroband is rather unlikely. The generic behaviour of the
system for such high noise values is that of a mixture of individual particles, both in the pinned and in the sliding
phase, whose polarization orientation changes fast in time, providing the picture of an overall disordered phase
modulated by the existing potential wells (figures 6(a) and (b)). There is however still a possibility of obtaining a
finally sliding state even in the high noise regime (figure 5(b)). Such states are significantly less polarized than the
ones in the low noise regime (figures 5(c) and 6(¢)) featuring also a larger variety in the direction of alignment,
quantified by (p, ) (figures 5(d) and 6(d)). Furthermore, for such cases of high noise (e.g. D, = 0.3, D, = 0.95)
the time evolution of both (p, ) and (P) is much slower (figures 6(e) and (f)) than the ones observed for lower
noise values (e.g. D, = 0.0003, D, = 0.003), indicating the diffusive character of the dynamics expected for
highly noisy systems.

Let us now briefly discuss the role played by the wavevector k of the travelling substrate, taken to be constant
k=0.1 so far. We find that increasing k (decrease of lattice wavelength) clearly favours sliding, whereas its
decrease increases the possibility of pinning, which may appear somewhat surprising as the angular-interval
leading to sliding is independent of k as shown by equation (6). One likely reason for this is that for large k, where
the lattice spacing is short, individual particles with appropriate orientation may cross a barrier before having
enough time to align with the other particles in the well. Therefore angular-averaging remains incomplete and
may lead to sliding of a small subband. In addition, once a sliding band has emerged, it might be more stable for
large k. This is because for large k the force exerted by the lattice onto a band varies rapidly in space and
essentially compactifies bands approaching a maximum of the lattice force. This enhances the density in the
band, a fact that improves the corresponding alignment. On the contrary, for small k, noise can interrupt sliding
relatively easily (particularly for cases of ‘stacked’ bands, discussed further above).

8. Conclusions

The present results provide a scheme allowing to control the typically highly irregular collective dynamics of
polar active particles. In particular, we have seen that the bands occurring in the Vicsek model, which normally
move in unpredictable directions and irregularly merge and split up can be tamed by applying a travelling wave-
shaped potential, as can be realized e.g. using a micropatterned moving substrate or a traversing optical lattice.
We find that while most particles in the system self-organize into polarized bands which comove with the lattice
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Figure 6. (a), (b) Snapshot of the pinned phase in the presence of a lattice from a sample simulation at high noise D, = 0.95and a
zoomed figure showing the orientation of the particles. (c), (d) Snapshot of the sliding phase in the presence of a lattice from a sample
simulation at high noise D, = 0.3 and a zoomed figure showing the orientation of the particles. (e), (f) Time evolution of (a) the
average cosine (p,) and (b) the average polarization (P) for sample simulations leading to a finally sliding state for five different values
of D,. Note the difference of figures (c), (d) from figure 2(f).

at early times, they can later experience a remarkable reversal, initiated by the counterpropagation of a single
band which subsequently consumes all other bands in the system. The asymptotic state is a strongly polarized
macroband which predictably moves opposite to the direction of the motion of the external substrate. This
behaviour is representative in a large parameter window and can be controlled e.g. by tuning the relative speed of
the active particles and the lattice. Here, it would be interesting to consider particle ensembles with a
characteristic velocity distribution rather than having identical velocities in the future. Our work may inspire
further research of the interface between nonlinear dynamics and active matter and perhaps also applications
regarding collective targeted cargo delivery using polar active matter.
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