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Abstract

With the rapid advent of biomedical and biotechnological innovations, a deep understanding of the nature
of interaction between nanomaterials and cell membranes, tissues, and organs, has become increasingly
important. Active penetration of nanoparticles through cell membranes is a fascinating phenomenon that
may have important implications in various biomedical and clinical applications. Using a fully analytical
theory supplemented by particle-based computer simulations, the penetration process of an active particle
through a planar two-dimensional elastic membrane is studied. The membrane is modeled as a self-
assembled sheet of particles, uniformly arranged on a square lattice. A coarse-grained model is introduced
to describe the mutual interactions between the membrane particles. The active penetrating particle is
assumed to interact sterically with the membrane particles. State diagrams are presented to fully
characterize the system behavior as functions of the relevant control parameters governing the transition
between different dynamical states. Three distinct scenarios are identified. These compromise trapping of
the active particle, penetration through the membrane with subsequent self-healing, in addition to
penetration with permanent disruption of the membrane. The latter scenario may be accompanied by a
partial fragmentation of the membrane into bunches of isolated or clustered particles and creation of a hole
of a size exceeding the interaction range of the membrane components. It is further demonstrated that the
capability of penetration is strongly influenced by the size of the approaching particle relative to that of the
membrane particles. Accordingly, active particles with larger size are more likely to remain trapped at the
membrane for the same propulsion speed. Such behavior is in line with experimental observations. Our
analytical theory is based on a combination of a perturbative expansion technique and a discrete-to-
continuum formulation. It well describes the system behavior in the small-deformation regime.
Particularly, the theory allows to determine the membrane displacement of the particles in the trapping
state. Our approach might be helpful for the prediction of the transition threshold between the trapping
and penetration in real-space experiments involving motile swimming bacteria or artificial active particles.

1. Introduction

As one of the most fundamental components in biological systems, the cell membrane defines and protects the cell
and is selectively permeable for ions and organic molecules, allowing to control the movement of required chemicals
into the cell and of unwanted products out of the cell. It is now possible not only to reassemble cell membranes
artificially [1], but also to design synthetic membranes with properties tailored to the needs of 21st centuries societies
[2—4]. In fact, synthetic membranes are now routinely used already for applications from water purification [5, 6] to
dialysis [7, 8] and can be regarded as a paradigmatic success of biomimetics [9-11]. Future perspectives for the usage
of synthetic membranes involve problems like targeted gene and drug delivery to (cancer) cells [12—24] or, more
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generally, the delivery of cargo to the interior of synthetic droplets, requiring a precise understanding of the
interaction of motile particles with synthetic and biological membranes. Evidence from previous studies has shown
that the physical uptake by living cells is strongly affected by the particle and membrane physicochemical and
functional properties [25-31].

While membranes comprising active inclusions, e.g. in the form of embedded proteins creating a stress on
the membrane, have been studied for decades [32—34], the penetration of active particles through the membrane
isless explored [ 14, 35] with the few existing studies focusing on nano- and biotechnology perspectives. In
particular, penetration of nanoparticles through a membrane has been studied using dissipative particle
dynamics simulations, focusing on effects of particle shape [ 14] and surface-structure [36]. In addition,
molecular dynamics simulations have been employed to investigate the penetration of fullerens through lipid
membranes [37]. Recent studies have also explored interactions of active particles with membranes, from a more
physical point of view, but did not focus on particle penetration [38—40]. For a 1D membrane, we have recently
performed a corresponding investigation [41].

Conversely to most of the above works, here we explore the penetration of an active particle through a2D
synthetic membrane from a physics perspective, aiming at predicting overall properties such as the membrane
shape or the parameter domain leading to penetration starting from coarse microscopic details. We focus on a
minimal model membrane that can be realized in principle using as building blocks microparticles interacting
via elastic forces [42—48]. Other types of interactions, such as dipolar interactions may be considered as well to
model self-assembled chains and sheets [49-61]. To predict the state diagram, informing us about the parameter
domains where particles can penetrate through the membrane and where they cannot, we systematically derive a
continuum description of the membrane. We compare our results with particle-based computer simulations,
finding close quantitative agreement regarding the transition between trapping and penetrating states,
membrane shape and dynamics. Our analytical closed-form expressions might help to predict the properties of
synthetic membranes, e.g. regarding the speed and size of particles which will be able to penetrate through them.

Below, we first define our model (section 2), followed by a brief discussion of the relevant parameters and of
the 2D membrane dynamics as induced by the active particle approaching it (section 3). Here, besides a trapping
state in which the membrane is deformed in the final state and does not allow the particle to pass, we find two
scenarios of penetration. The first of these corresponds to the particle breaking through the membrane, followed
by a complete self-healing of the membrane, which might be the desired behavior when delivering cargo towards
asynthetic droplet or a healthy cell. The second scenario of penetration occurs mainly for larger particles,
creating a hole in the membrane with a size exceeding the interaction range of the membrane components. This
situation is accompanied by a partial fragmentation of the membrane structure into isolated particles. Following
this qualitative discussion, we systematically explore the corresponding state diagram using numerical
simulations, showing for which parameter combinations which of these three states prevails, and we develop a
detailed analytical theory (section 4). The latter is able to predict essentially the entire state diagram as well as the
shape and the dynamics of the membrane, in close quantitative agreement with our simulations. Interestingly,
the transition between self-healing and non-healing states is sharp, suggesting that there is a critical size for
particles that pass a membrane by causing significant damage. This also suggests that if one were to permanently
damage the membrane in our minimal model (and perhaps similarly in practice to treat cancer cells), one needs
to use particles with a certain minimal size. Finally, concluding remarks summarizing our findings are contained
in section 5.

2. System setup

We examine the penetration mechanism of a non-fluctuating membrane by an active particle moving under the
action of a constant propulsion force Fy. We assume that the persistence length of the self-propelling active
particle is larger than the distance initially separating the particle from the membrane. Correspondingly, we
focus on the limiting case of vanishing rotational diffusion. This implies that the particle essentially moves along
astraight trajectory without changing its orientation [62—73]. The active particle may represent a swimming
microorganism [74—79] or an artificial microrobot that can be manipulated by controlled external fields
[80-83].

In our model, the membrane is composed of N identical spherical beads (or vertices) of radius a, uniformly
arranged on a squarelattice of size L x L, rotated by 45° around the zaxis, the latter directed normal to the
membrane, as schematically illustrated in figure 1. We denote by h the lattice spacing after initialization. The
membrane is immersed in a Newtonian fluid, characterized by a constant dynamic viscosity 1. We support the
membrane at its periphery (the particle displacements are zero for x, y = +L/2) and assume periodic boundary
conditions in the transverse directions (x, y). Moreover, we suppose that the mutual interactions between the
membrane particles are pairwise additive and described by forces that depend only on the difference of
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Figure 1. Graphical illustration of the system setup. (a) An active particle of radius R moving through an effective driving force F,
toward a two-dimensional membrane composed of N particles of radius a. The membrane particles are initially arranged on a square
lattice of dimension L x Land spacing h, rotated by 45° around the z axis, the latter oriented normal to the plane of the membrane.
The membrane is centered about the origin and clamped at its periphery. Periodic boundary conditions are imposed in both x and y
directions. We assume that the membrane particles are subject to steric and elastic pairwise interactions. The system is fully immersed
in a Newtonian viscous fluid of shear viscosity 7. (b) Schematic illustration of the lattice structure composing the model membrane.
For future reference, the eight nearest neighbors of the particle at the center of the lattice are identified by numbers (1-8). Elastic
springs are also inserted along the lattice diagonals but are not displayed here for reasons of clarity.

coordinates of each two neighboring particles. Representing the membrane as a collection of spherical beads
arranged on vertices has extensively been employed as a coarse-grained model for cell membranes, see, for
instance [42—-48].

Typically, various types of interactions may occur among membrane particles including steric and elastic
interactions. For instance, steric interactions can be imposed by membrane phospholipids chains and other
biomolecules [84—86], whereas intermolecular coupling between the lipid bilayer and the cytoskeleton network
gives rise to elastic interactions [87—90]. Accordingly, the total potential energy of the membrane here is written
asa sum of two distinct contributions as

6 6
g g

N
U=4ed Nil|=|||—| -1 + 1 +EZ > (i — &roi)? 1)
=\ )\ 4] 25 iENn
j<i j<i
wherein r;; = |r;| is the distance between particlesiand j,and r;; = r; — r;. Inaddition, € is an energy scale
associated with the Weeks—Chandler—Andersen (WCA) pair-potential [91], 0 = 2ais the diameter of the
particles, N;j = H (rc — r;;), with H (-) denoting the Heaviside step function, and ¢ = 2V is a finite cutoff
distance beyond which the steric interactions energy vanishes. Furthermore, k is the elastic constant of the
harmonic springs coupling each particle to its four nearest and four next-nearest neighbors, ;; is the rest length
of the springs, and £ € (0, 1] is a prestress parameter. Here, we use the notation N(i) to denote the set of nearest
and next-nearest neighbors of the ith membrane particle. For real cell membranes, the lattice spacing h may, for
instance, be viewed as an average distance between cytoskeleton-bilayer connection sites. In addition, the elastic
constant k may be connected to the shear modulus of the cytoskeleton network, the order of magnitude of which
isabout 10 °*N'm™".
For the sake of simplicity, we neglect all possible hydrodynamic interactions between particles. Moreover,
we assume that the particles are small enough or sufficiently matched in density to the surrounding fluid for the
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influence of gravity to be neglected, and large enough for the effect of thermal fluctuations to be neglected. In
addition, we assume throughout this work that the size of the active particle is comparable to or larger than that
of the membrane particles.

The corresponding interaction force acting on the ith membrane particle is obtained by differentiating the
potential energy described by equation (1) with respect to the particle position [92] as F; = —0lU/ Or;.
Accordingly,

N Nij( o ((o) 1 R R
Fi:48€z_ — —| — E rij + k Z (fTOij - ri,-)rij, 2)

=1 Tij \ Tij fij jEN)
j=i

where 7;; = r;; /r;; is a unit distance vector.

At small length scales, aqueous systems are characterized by small Reynolds numbers, so that viscous forces
dominate over inertial forces. The resulting overdamped dynamics can therefore be adequately described within
the framework of linear hydrodynamics [93, 94]. Accordingly, the translational velocity of the membrane
particles V; is linearly coupled to the forces acting on their surfaces via the hydrodynamic mobility functions
[95-98]. The latter are second-order tensors, which simply reduce to scalar quantities when considering motion
in an unbounded medium and neglecting the fluid-mediated hydrodynamic interactions between the particles.
Specifically,

= R, 3
dt

where 1 denotes the translational self-mobility functions of the membrane particles. This is given by the usual
Stokes formula for an isolated sphere in an infinite fluid domain as = 1/(67na). In addition, Ff™ represent the
external force exerted by the active particle due to the steric interactions with the membrane particles. These pair
interactions are modeled via a soft repulsive WCA potential as in equation (1) for whichc = R + a,with R
denoting the radius of the active particle.

We introduce at this point an additional cutoff length # beyond which the elastic interactions are set to zero.
Accordingly, the elastic potentials are also shifted to this cutoff length, so as to ensure that the resulting potentials
are continuous.

3. Trapping, penetration, and self-healing

Having introduced a model for our membrane and derived the corresponding equations governing the
translational dynamics of the particles composing the membrane, we next study in detail the dynamical states
emerging from the interaction between an active particle propelling toward the membrane. For that purpose, we
solve numerically the set of ordinary differential equations in time given by equations (2) and (3) using a
standard Euler scheme with adaptive time stepping [99]. Before the active particle starts to interact with the
membrane particles, we assume that the lattice spacing  is identical to the cutoff length scale 7 associated with
the WCA pair potential. In addition, we assume that the rest length of the elastic springs is equal to the initial
interparticle separation, i.e. 1oij = h for the pairs of particles located along the lattice axes, and Toij = J2 h for the
pairs along the diagonal. Under these conditions, the membrane is initially at equilibrium, on account of the
periodic boundary conditions imposed along the transverse directions (x, y). We further mention that requiring
h = 1 is equivalent to considering a constant ratio 1/a = 27/°. Unless stated otherwise, we consider
throughout the present article a membrane composed of N = 450 particles and set the prestress parameter
as& = 0.9.

We now introduce the reduced activity

aF()
E=— > (4)
€
which represents a balance between the magnitude of the active driving force Fy and the steric forces at particle

contact. Further, we define the reduced stiffness

akh
R=-— (5 )
2e
which quantifies the importance of the elastic forces relative to the steric forces. The prefactor one half follows
from theoretical considerations as will be shown in the sequel. In addition, we introduce the size ratio

5:5 (6)

a
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Table 1. Dimensionless numbers characterizing the system in the
trapping and penetrating states.

Dimensionless number Expression Denomination

F ..
E = Reduced activity

€

kh .
K o Reduced stiffness
6 % Size ratio
A % Scaled cutoff distance
P, E_ 2R Admittance

K kh

to denote the radius of the active particle relative to that of the membrane particles. Finally, we define

A=t @
h
as a scaled cutoff distance beyond which the elastic interactions vanish. Unless otherwise stated, we set
X = 3/2 > /2, such that the pair-interactions between the membrane particles are restricted to the four
nearest and four next-nearest neighbors only.
An additional dimensionless parameter that we denominate as ‘admittance’, is introduced to quantify the
penetration capability of the active particle. It is defined based on the above definitions of Eand « and expresses

the ratio between active and elastic forces. Specifically,

E 2F,
Py===" 8
0= i (8)

Here, the admittance serves to quantify a criterion of whether or not the active particle passes through the
membrane. For ease of reference, the explicit expressions of the key dimensionless numbers characterizing the
states of the system are listed in table 1.

To get a first intuition of the possible membrane dynamics, we display the different observed scenarios in
figure 2. For low admittance (Py = 1, top row and movie S1 available online at stacks.iop.org/NJP/21/083014/
mmedia in the Supporting Information), the membrane starts to deform when the motile active particle comes
close, but only up to some point, reaching a steady state of constant membrane shape and fixed position of the
active particle (see figure 2, panels (c) and (d)). When increasing the admittance to Py = /10 (second row and
movie S2), the membrane no longer reaches a steady state, but the active particle breaks through the membrane,
leaving a hole that starts to self-heal once the particle has left the membrane particles behind. Here, the
membrane evolves back towards its original configuration, as it would be desired, e.g. when delivering cargo to
the inside of a healthy cell, the membrane of which we would want to remain intact. The membrane dynamics
qualitatively changes when using larger particles instead (6 = 7) and strongly enhancing the admittance to
Py = 100~/10 (third row and movie S3). In this situation, the particle breaks through the membrane and creates
apermanent hole. The four particles located around the center of the membrane in figure 2() remain isolated
because the range of the internal membrane interactions is shorter than the separation distance of these four
particles from the rest of the membrane. Such a behavior is even more pronounced for significantly larger
particles (6 = 13) (bottom row and movie S4) where the membrane is partially fragmented into four clusters of
particle triplets and four clusters of particle sextuplets (figure 2(p)), after the active particle has penetrated
through the membrane.

In figure 3, we present a state diagram indicating the system behavior in the parameter space (k, E). As
already mentioned, the membrane is composed of N = 450 particles. Here, we set & = 1. Depending on the
ratio between the control parameters x and E, we observe that the active particle either passes through the
membrane to reach the other side (red triangles) or remains trapped (blue rectangles). The transition between
the two states can be described by a linear hypothesis of the form Py = 1. Accordingly, penetration events occur
when the membrane restoring forces consisting of elastic contributions become weaker than the damaging force
resulting from the steric interactions with the active particle. After full penetration has occurred, the membrane
self-heals and relaxes back to its initial equilibrium configuration.

In figure 4, we show dynamical state diagrams in the planes of the control parameters (a) (6, E) for A = 3/2,
and (b) (6, \) for E = 1. To limit the parameter space, we set in both diagrams the reduced stiffness to s = 102,
We observe that the transition between the trapping and penetration states can also be enabled by varying the
size ratio ¢ (figure 4(a)). Accordingly, the penetration capability through a membrane is not only determined by
the system admittance, but also by the size of the active particle relative to that of the membrane particles. This is
in agreement with earlier experimental investigations indicating that particle size may strongly affect the uptake
efficiency and kinetics [100—104]. Consequently, an active particle with a size larger than that of the membrane
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Figure 2. Snapshots of particle-based computer simulations illustrating the membrane conformation in the trapping and penetration
states at different time intervals scaled by the unit simulation time 5 = nL’/e. Attime t = 0, the active particle begins interacting
with the membrane particles (cyan circles). Here, we set the reduced stiffness to x = 10 *in all these simulations. For clarity, the
membrane particles located in the planes x = 0and y = 0 within the interaction range of the elastic potentials are shown as blue disks
linked by dashed lines. The first row (panels (a)-(d)) displays the membrane dynamics in the trapping state, for asize ratio = 1anda
reduced activity E = 10~ 2. Since the driving force is not strong enough compared to the membrane restoring forces, the active
particle remains trapped near the membrane. The second row (panels (e)—(h)) represents the time frames during penetration with
subsequent self-healing, for § = 1and E = 10~ >, In this state, the membrane recovers its initial planar shape after the active particle
has passed through it. Next, the third row (panels (i)-(1)) contains the frame series during penetration without self-healing, for 6 = 7
and E = /10. The membrane remains permanently damaged after penetration as the mutual distance between the four depicted
fragmented particles becomes larger than the scaled cutoff distance \. The bottom row (panels (m)—(p)) further illustrates the
penetration state without self-healing, for § = 13and E = +/10. Due to the relatively large size of the active particle, the membrane is
partially fragmented around its center into four clusters of particle triplets and four clusters of particle sextuplets, the distance between
these particles and the remainder of the membrane being larger than the cutofflength £. The red disks represent the positions of the
active particle, which are out of the field of view in some panels. Because of the pronounced difference between the scales along the
lateral and normal directions, the particles and their shapes are not plotted to scale.

particles is more likely to remain trapped. It is worth noting that, in the considered range of parameters, the
transition has been found to only depend on the admittance P, for our simplistic 1D model membrane studied
ina previous work [41]. For large values of the size ratio and small scaled cutoff distance A, the penetration
process may also occur without subsequent self-healing of the membrane. This situation is accompanied by
partial fragmentation of the membrane, during which a number of particles around the center remain isolated
from the remainder of the membrane, creating a permanent hole in the membrane. The number of fragments
largely depends on the propulsion speed and the size ratio. Interestingly, the membrane was also observed to
become partially fragmented into clusters of four quadruplets for (6, E) = (9, 1) or acombination of four triplets
and four sextuplets of membrane particles for (§, E) = (13, +/10). This effect points to an interesting size effect
of the membrane behavior and shows that motile particles can be used to permanently damage the considered
type of membrane. For large scaled cutoff distances (figure 4(b)), the penetration capability decreases, yet the
transition between the trapping and penetration states is weakly dependent on the scaled cutoff distance A. In
these situations, the membrane self-heals after particle penetration because the displaced membrane particles
remain within the interaction range of the restoring elastic forces.

Having investigated the penetration mechanism of a single active particle self-propelling toward the
membrane it is worth commenting on the collective penetration of a large number of active particles. Depending
on the density and activity of the penetrating particles as well as on the physical properties of the membrane, the
penetration of a group of active particles may show a behavior different from the one observed for a single
particle. In order to probe this effect in some detail, we consider Np active particles initially arranged on a square

6
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Figure 3. State diagram of membrane penetration and trapping of an active particle in the parameter space (k, E). Symbols correspond
to the dynamical state resulting from numerically integrating the governing equations of motion stated by equations (2) and (3). Here,
we set the size ratio to § = 1. The solid line indicate an estimate of the transition between trapping (blue squares) and penetration (red
triangles), givenby Py = 1.

lattice around the center of the membrane. The orientation of this square lattice relative to that of the membrane
is determined by the number of active particles. The active particles move under the action of equal propulsion
forces and are initialized at the same vertical distance to the membrane. The initial Cartesian coordinates of the
active particles are listed in table 2 and illustrated for clarity in figure 5.

In figure 6, we present a state diagram in the parameter space (x, Np) for 6 = 1, A = 3/2,andE = 1. We
quantify the proportion of the active particles that pass through the membrane by the ratio r. Here, 7 = 0
corresponds to the situation in which all the active particle are fully trapped while r = 1 corresponds to the
penetration of all the particles. The latter scenario is always accompanied by a subsequent self-healing considering
the present set of parameters. We observe that, as the number of active particles gets larger, the penetration
capability increases. This behavior is justified by the fact that, as the number of active particles increases, the forces
damaging the membrane become larger than the elastic forces. Consequently, more active particles together are
able to break through the membrane even if a single particle would be trapped. In this context, Kaiser et al [64]
demonstrated that a chevron-shaped boundary represents an excellent trapping device for self-propelled active
particles. Accordingly, the deformation of the membrane induced by the active particles in the trapping state would
eventually trap other particles, thus resulting into an increased penetration capability.

4. Analytical theory

To rationalize our numerical results, we derive in the following an analytical theory based on a perturbative
expansion technique that describes the system behavior in the small-deformation regime considering one active
particle. Particularly, we are interested to determine theoretically the membrane displacement field of the
particles in the trapping state. Our analytical calculations proceed through the linearization of the governing
equations of motion, followed by prescribing the relevant fields using a discrete-to-continuum approach
[105,106].

4.1. Linearized equations of motion
In the following, we neglect for simplicity the steric interactions between the membrane particles and assume
that the mutual distance between neighboring particle is within the interaction range of the elastic forces, i.e. r;; €
[h,¢], with j € N(i),fori = 1,..,N.

The dynamical equation governing the evolution of the ith membrane particle displacement field can be cast
in the form

#i = p(FF + F, €

wherein the superposed dot represents a temporal derivative, and F is the elastic force.
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Figure 4. State diagram in the parameter spaces (a) (6, E) for A = 3/2 and (b) (6, ) for E = 1, where, in both diagrams, k = 1072
Symbols represent the dynamical state resulting from numerical integration of the governing equations of motion given by
equations (2) and (3). In addition to trapping (blue squares) and penetration with healing (red triangles), penetration events without
subsequent healing (green symbols) occur in some parameter ranges for large values of the size ratio ¢ and reduced activity E for

A < 3/2. These penetration scenarios may be accompanied by the creation of a permanent hole of a size exceeding the interaction
range of the membrane particles in addition to the partial fragmentation of the membrane into isolated or clusters of particles.

Table 2. Initial Cartesian coordinates of the Np active
particles in the transverse plane.

Np Scaled initial positions (x, ) /(h~/2)

1 (0,0)
(£1/2, £1/2)
(£1/2, £1/2),(0, £1), (£1,0)
12 (£1/2, £1/2),(0, £1),(£1,0), (£1, £1)
24 (£1/2, £1/2),(0, £1),(£1,0), (£1, 1)
(£2,0),(0, £2),(£3/2, £1/2),(£1/2, £3/2)
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Figure 6. State diagram in the parameter space (k, Np) for 6 = 1, A = 3/2,and E = 1. Symbols represent the state resulting from
numerical integration of the governing equations of motion given by equations (2) and (3) for Np active particles initially placed on a
square lattice around the center of the membrane. The parameter r quantifies the fraction of the active particles that penetrate through

Assuming that the active particle has a radius comparable to that of the membrane particles, i.e. for 6 ~ 1, it
can readily be verified that the resistive force due to the steric interactions with the active particle vanishes except
for the four particles located near the center of the membrane, the initial coordinates of which are given in the
Cartesian coordinate system by (x, y) = (£+/2h/2, 0)and (x, y) = (0, =~/2h/2).

Following a linear elasticity theory approach [107, 108], we express the position vectors of each particle
relative to the laboratory frame as r; = (U; + u;)é, + (Vi + v;)é, + w;é,, fori = 1,..., N, where U;é, + Vié,
is the position vector in the undeformed state of reference, and u;é, + v;é, + w;é; is the displacement of the
membrane particles relative to the initial configuration. The linearized elastic force acting on the ith particle

reads
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Kh 2(P1 +P5) + @2 - E)Sp +2(1 — f)(P3 +P7) + f(qZ —q,+ g5 — qs)
Ff = | 6 — it b~ p) + 20— @+ ) + 2= S, + 2q; + ) | (10)

2(1 - f)(sr + Qr)

where we have defined p = (u; — uj)/h, q = v; — vj)/h, and rj = (w; — w;) /h to denote the displacement
gradients. Here, the numbersj = 1, ..., 8 appearing in subscript denote the index of a nearest or next-nearest-
neighbor particle on the lattice, as schematically illustrated in figure 1(b). Moreover, we have used the shorthand
notations S, = o, + a4 + o + agand Q, = a; + as + as + ay, fora € {p,q,7}.

Notably, the inplane components of the elastic forces involve gradients of the lateral displacements p;and g;.
In contrast to that, the normal components are found to depend on the displacement gradient ; only.
Consequently, a decoupling between the lateral and normal displacements is found for planar membranes, ina
way analogous to what has previously been observed for 2D elastic membranes that are modeled as a continuum
hyperelastic material featuring resistance toward shear and bending [109-113]. Particularly, for anon-
prestressed membrane (§ = 1), the elastic forces are purely tangential (oriented along the plane of the
membrane) and depend solely on the inplane displacement gradients p;and g;.

Having derived linearized expressions for the forces and torques governing the evolution of the membrane
particles, we next consider the dynamics of the active particle. The latter is subject to the active driving force
Fy = F, é, in addition to the repulsive steric forces resulting from the interaction with the nearby membrane
particles. In the overdamped regime, the translational motion of the active particle along the z direction is
governed by

67mNR zp = Fy — 4F cos av, (11)

wherein zp denotes the z-position of the active particle, F**' stands for the magnitude of the steric force exerted by
one of the four particles located around the membrane center, and « denotes the angle this force makes with the
vertical.

Equations (9) form N ordinary differential equations in the time variable for the unknown membrane
displacement field. These equations are subject to the initial conditions of vanishing membrane displacement, in
addition to vanishing displacement at the membrane periphery and periodic boundary conditions along the x
and y directions. In the steady state, the problem is equivalent to searching for the solution of linear recurrence
relations coupling the positions of all the membrane particles initially located on alattice. Due to the somewhat
complicated nature of the resulting equations, an analytical solution is far from being trivial. To handle this
difficulty and to obtain a quantitative insight into the system behavior in the small-deformation regime, we will
approach the problem differently. Our solution methodology will be based on a continuum description of the
linearized equations of motion as detailed below.

4.2. Continuum theory
The core idea of discrete-to-continuum analysis is to express the membrane displacements following the
standard approach as

Uitsitr u(x’ )/)
[Vi+5,i+r] = exp (h«/f(sDx + D) vix p) |, (12)
Wits,itr W(x, y)
where D, = 0/0a, a € {x, y} represents the differential operator and (s, r) € {0, +1/2, 41 }. Here, the
fractions at subscriptsi £ 1/2 refer to the nearest-neighboring particle on the lattice axes, namely, the ones
identified by even numbers in figure 1(b). The integer subscriptsi & 1 refer to the next-nearest-neighboring
particles located on the lattice diagonals.

The exponential argument in equation (12) can be expanded up to the second order in power series using a
two-dimensional Taylor expansion as [114]

exp (hv2 (sDyx + D)) = 1 + hy/2(sDx + D)) + h*(s’D + 2srD.D, + rsz) + (13)

Applying this transformation rule to equation (9), the partial differential equation governing the
translational degrees of freedom of the membrane particles can be rewritten in vector form as

Vil = — (6 - SS)V,xx + (6 - g)v,yy + Zé- U xy + hz(,uFO - 6ZP)‘5(x) y)éza (14)

[”,t] (6 — f)uxx + (6 — 5&)“,)/)/ + 26 V xy
Wit 6(1 - 5)(W,xx + W,yy)

where A = pkh? is a parameter having the dimension of a diffusion coefficient. Here, we have approximated the
steric force exerted on the particles near the center of the membrane by a two-dimensional Dirac delta function

Ox,y) = 8(x)0(y).

10
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We have checked that taking alternative forms for the steric force, such as a 2D rectangle function centered around the
origin, does not alter our results significantly. Therefore, a Dirac delta function has been adopted here for simplicity.
In the steady-state limit, equation (14) simplifies to

6 — f)u,xx + (6 — 76)”,)/)/
(6 =7V + (6 = OV, | + hPy6(x, y) €, = 0, (15)
6(1 - f)(w,xx + W,yy)

wherein Py = 2F,/(kh), is the system admittance defined above by equation (8). In equation (15), we explicitly
observe that P, controls how far the active particle can penetrate into the initial planar membrane andlead to a
deflection of the membrane. We note that the 2D Dirac delta function has the dimension of inverse length
squared. In the following, we attempt to obtain closed analytical expressions for the displacement field not only
for the steady state but also for transient dynamics situations.

4.3. Steady solution
Because of the already-mentioned decoupling between the lateral and normal displacements, the solution for
the in- and out-of-plane deformations can be obtained independently. Since the external force is exerted normal
to the plane of the membrane, deformation will predominantly occur along the z direction. In the following, we
assume that |w| < L, for our approximate equations of motion derived above to be valid.

By projecting equation (15) onto the zdirection, the normal displacement is governed by a second-order
partial differential equation of the form

6(1 — (W + w,yy) + hPy 6(x, y) = 0. (16)

To solve equation (16), we exploit periodicity of the system along the transverse directions by expressing the
membrane normal displacement w in terms of a Fourier series [115]. Then,

LSS i, D06 ()s (17)

T2
L S

w(x, y) =

with p,q = 1, 2, ... denoting the positive integers that set the coordinates in Fourier space. Here, we have defined
the basis function ¢, (x) = cos (H,x), where H, = (2p — 1)7/L, and analogously for ¢,(y). In addition, W (p, q)
denotes the Fourier coefficients of w, defined as

wov ) = [ [ wes a0 d dy. (18)

It is worth mentioning that the solution form given by equation (17) follows from the prescribed boundary
conditions, so as to ensure that w(x = £L/2, y) = w(x, y = £L/2) = 0. Moreover, the basis functions c,(x)
satisfy the orthogonality relation

L

[ () (x) dx = %5”,. (19)

By substituting equation (17) into (16) and making use of the orthogonality property given by equation (19),
we readily obtain
hPy
6(1 — (H; + Hy)

w(p, 9 = (20)

Finally, by writing the solution for the transverse displacements u(x, y) and v(x, y) in terms of Fourier series
in a way analogous to equation (17), it follows that u and v must vanish to satisfy the boundary conditions
imposed at the membrane extremities, considering the present approximate equations.

Figure 7 shows the steady-state variations of the normal displacement (scaled by the membrane size) versus
x/L.Results are shown in the plane of maximum deformation y = 0 for three different values of the reduced
activity E, while keeping the reduced elasticity to k = 1. Symbols indicate the numerical solution of the full
nonlinear problem given by equations (2) and (3) and solid lines are the analytical predictions obtained from the
solution of the continuum equations using finite Fourier transforms. Good agreement is found between the
theory and simulations. All in all, our predictive model requires no fitting parameters and thus can conveniently
be applied to describe the steady-state membrane displacement in the small-deformation regime
considered here.

4.4. Transient dynamics
Having investigated the system behavior in the steady trapping limit, we next turn our attention to the transient
dynamics under the action of the force exerted by an active particle pushing against the membrane. To be able to

11
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0.04 T

0.02

w/L

Figure 7. Membrane normal displacement versus scaled distance x/L calculated in the plane of maximum deformation y = 0.
Comparison is shown between analytical predictions (lines) and full numerical solution of equations (2) and (3) (symbols) in the
steady state of membrane trapping for various values of E, while keeping x = 1. Thus, the elastic interactions have essentially
comparable effects on the overall membrane behavior.

0.04
t/ts = 0.001 v

ot /ts = 0.005 ----

t/ts = 0.030 ——

0.02

w/L

Figure 8. Membrane normal displacement out of the plane of the undeformed membrane as functions of scaled distance x/L
calculated in the plane y = 0. Comparison is made between analytical predictions (lines) and full numerical simulations (symbols) for
the transient behavior before the trapping state at various scaled times where, again, ts = 7L’/ denotes the unit of simulation time.
Here, weset (k, E) = (1, 1).

make an analytical progress, we assume that 6zp < uFy, such that Fj is balanced by the steric interaction with
the membrane, not by friction with the fluid. Accordingly, we set zp = 0 in equation (14) for ¢ > 0.

The projected equation of motion governing the temporal evolution of the normal displacement field w
reads

B30 = Ot W)+ T2 503 ) @D

Using a similar solution procedure as for the steady dynamics that is based on Fourier transforms, we obtain

% = —3(1 — (H2 + H)w + hTP. (22)

Applying Laplace transforms [116] to equation (22) and solving for the unknown field #, we readily obtain

hPyA

: 23
25GA(L — OH; + H) + 9) )

w(p, q) =

The expression of the Fourier coefficient in the time domain follows forthwith by inverse Laplace transform
as

12
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where ., represents the steady normal displacement given by equation (20).

In figure 8, we present the transient evolution of the membrane normal displacement before reaching the
steady state at three scaled times, where ts = 1L’ /e denotes the simulation time. Here, curves are shown in the
plane y = 0 using the membrane parameters (s, E) = (1, 1). As time increases, the membrane deformation
exponentially approaches the steady-state value. Although the analytical theory involves no fitting parameters, very
good agreement is obtained between full numerical simulations (symbols) and analytical predictions (lines).

5. Conclusion

In the present work, we have discussed the interaction of an active particle with a minimal 2D membrane which
could be realized, e.g using synthetic particles of controlled interactions. We have identified three different
scenarios, one corresponding to a permanent trapping of the particle by the membrane and the remaining two
implying penetration of the particle through the membrane. The first type of penetration is characterized by a
complete subsequent healing of the membrane which relaxes towards its equilibrium configuration once the
particle has passed. In stark contrast, we have shown that much larger particles can create a hole in the membrane
that is large enough to prevent such a self-healing dynamics, resulting in a permanently damaged membrane. This
behavior is accompanied by the expulsion of membrane particles into isolated fragments. Our result suggests that if
one were to effectively damage a synthetic vesicle, or perhaps a cancer cell membrane, one would need to use
particles of a certain minimal size. Complementary to simulations, we here provide a detailed analytical theory
allowing to predict the entire state diagram, the shape and the dynamics of the membrane. Our approach might be
useful to predict transitions between trapping, penetration with and without self-healing in experiments.
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