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Within a simple model of attractive active Brownian particles, we predict flocking behavior and
challenge the widespread idea that alignment interactions are necessary to observe this collective
phenomenon. Here, we show that even nonaligning attractive interactions can lead to a flocking state.
Monitoring the velocity polarization as the order parameter, we reveal the onset of a first-order transition
from a disordered phase, characterized by several small clusters, to a flocking phase, where a single
flocking cluster is emerging. The scenario is confirmed by studying the spatial connected correlation
function of particle velocities, which reveals scale-free behavior in flocking states and exponential-like
decay for nonflocking configurations. Our predictions can be tested in microscopic and macroscopic
experiments showing flocking, such as animals, migrating cells, and active colloids.
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Several biological and physical systems are, nowadays,
classified as “active” or “self-propelled” [1–3] because of
their ability to extract energy from the environment and
convert it into directed motion [4]. They exhibit a plethora
of fascinating collective phenomena, starting from the
collective motion shown by groups of animals at the
macroscopic scale [5]: fish display schooling in the ocean
[6], birds flock in the sky [7] while several insects swarm
together in large clouds [8]. Flocking motion is also typical
of inanimate macroscopic systems, such as active granular
rods [9]. At the micron scale, similar phenomena have been
observed in systems of migrating cells [10], known as
flowing liquids and solids [11], as well as in the swarming
of highly dense bacteria [12] even confined in circular
geometry [13]. Last but not least, flocking is shown by
systems of self-propelled colloids, such as rolling ferro-
magnetic microparticles [14] and aligning Quincke rollers
[15,16].
From a theoretical side, the seminal work of Vicsek [17]

provided a microscopic model suitable to reproduce the
flocking phenomena, through a nonequilibrium phase
transition characterized by traveling ordered bands [18]
and periodic density waves [19]. Alternatively, hydrody-
namic theories, originally formulated by Toner and Tu [20],
tackle the problem from a hydrodynamic (e.g., macro-
scopic) perspective [21]. In both cases, the common
approach was to explicitly include a mechanism in the
microscopic dynamics or in the hydrodynamic equations
responsible for the alignment of the particle velocities
and the expected collective motion. Successively, models
accounting both for excluded volume effects and effective
alignment interactions have been investigated, revealing a
rich scenario displaying phase separation, even character-
ized by fluid clusters and fast particle turnover [22],
flocking clusters [23–27], and bands [28]. Even if

alignment was already codified in the model, Vicsek-like
models [29] or variants [30], such as the inertial spin model
[31] or chiral Vicsek models [32], have been successfully
employed to show flocking states, and reproduce experi-
ments based on animals [33].
In the absence of alignment interactions, it is known that

spherical repulsive active particles are able to show
clustering [34] and phase coexistence [35,36], now termed
motility induced phase separation (MIPS) [37–39] even in
the absence of attractive interactions. This class of collec-
tive phenomena differs from that shown by Vicsek models
because of the absence of global polar order. At the first
level of comprehension, the interplay between persistent
active forces and pure repulsive interactions generates
effective attractions [40,41] between the particles respon-
sible for their aggregation. Further theoretical explanations
have been formulated by introducing a modified Maxwell
construction [42,43] for an effective free-energy and
supplemented with Cahn-Hilliard equations [44]. In spite
of this equilibriumlike interpretations, MIPS is character-
ized by a plethora of genuine nonequilibrium properties
with no equilibrium counterpart, such as a temperature
difference between dense and dilute phases [45], negative
interfacial tension [46–48], short-range spatial velocity
correlations in the dense phase [49,50], as well as hexatic
phase inside the cluster [51,52], and even microphase
separation [53,54]. The dense phase in MIPS does not
show global polar order [39,55], e.g., does not flock, except
if particles have an elongated shape [56] or if explicit and
implicit alignment interactions are included in the micro-
scopic dynamics [57,58].
In this Letter, we challenge the widespread idea that

flocking behaviors in spherical particles can be observed
only in the presence of alignment mechanisms. As
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the combination of persistent self-propulsion and pure
repulsive interactions generates effective attractions and
clustering, we discover that the interplay between persistent
active forces and attractive interactions produces strong
effective alignment between particles’ velocities that can
induce a flocking transition. A table with a schematic
representation of collective effects in passive and active
particles is summarized in Fig. 1 where the results for both
repulsive [Figs. 1(a) and 1(b)] and attractive [Figs. 1(c) and
1(d)] interactions are reported. As a consequence, this
Letter shows that the phenomenology of attractive active
particles is rather different from that of self-propelled
repulsive or passive attractive particles [59], being

characterized by a flocking phenomenon that goes beyond
the scenario shown in previous studies [60–65] based on
coarsening [66,67] and phase coexistence with reentrant
behavior [68–70].
We consider a system of N interacting self-propelled

(active) particles in two dimensions, described by under-
damped equations of motion for their positions, xi, and
velocities, vi ¼ _xi, with i ¼ 1;…; N. Each particle is in
contact with a thermal bath at temperature T and subject to
a friction force γvi, through the friction coefficient γ. The
active force is included in the dynamics as a stochastic
force, fai , which provides to each particle a constant swim
velocity, v0, and an orientation vector, ni, of components
ðcos θi; sin θiÞ. According to the active Brownian particle
(ABP) model [3,71], the orientational angles, θi, evolve as
independent Brownian processes (no alignment inter-
actions), so that the dynamics reads

m_vi ¼ −γvi þ Fi þ γv0ni þ
ffiffiffiffiffiffiffiffi
2Tγ

p
ηi ð1aÞ

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξi; ð1bÞ

whereDr is the rotational diffusion coefficient and ξi and ηi
are white noises with zero average and unit variance.
Particles interact through the force Fi ¼ −∇iUtot, with
Utot ¼

P
i<j UðjrijjÞ and rij ¼ xi − xj. The shape of the

interacting potential UðrÞ is chosen as an attractive
Lennard-Jones potential UðrÞ ¼ 4ϵ½ðσ=rÞ12 − ðσ=rÞ6�, for
r ≤ 3σ and zero otherwise. The constant σ represents the
nominal particle diameter while ϵ is the energy scale of the
interactions. The system is characterized by two main
timescales, the inertial time τI ¼ m=γ and the persistence
time τ ¼ 1=Dr, which determines the time needed by active
particles to randomize their orientations. It is worth
mentioning that v0ni can strongly differ from vi in dense
configurations.
We consider a box of size L with periodic boundary

conditions and integrate the dynamics (1) with packing
fraction ϕ ¼ 0.3 by using an Euler integration scheme.
Positions and time are rescaled by the nominal particle
diameter σ and by the persistence time τ, respectively. The
resulting dynamics is characterized by several dimension-
less parameters: (i) the Péclet number Pe ¼ v0τ=σ, quanti-
fying the activity strength that can be also viewed as the
ratio between persistence length and particle size, (ii) the
reduced inertial time, i.e., the ratio between inertial time
and persistence time, τI=τ, (iii) the translational noise
strength τ2T=ðmσ2Þ, and (iv) the reduced potential strength,
ϵτ2=ðmσ2Þ. The latter parameter is set ≫ 1 so that the
particles are strongly attractive while the rescaled thermal
temperature is chosen ≪ 1, to neglect the effect of the
thermal noise. Finally, τI=τ ≪ 1 to explore the strongly
overdamped case and evaluate large persistence regimes. In
this Letter, we mainly focus on the dependence on Pe and
keep fixed the other dimensionless parameters. We let the

FIG. 1. Scheme of typical passive and active collective phe-
nomena with repulsive and attractive interactions. In each case, a
snapshot configuration of the system is reported, where particles
are colored according to their velocity polarization, i.e., the angle
formed by their velocity with respect to the x axis. The first
column displays the passive case with repulsive (a) and attractive
interactions (b), as a reference. (a) shows a homogeneous phase
while (c) an ordered hexagonal cluster. In both cases, velocities
are spatially uncorrelated (random colors). The second column
shows the active case with repulsive (b) and attractive interactions
(d). (b) The clustering typical of active particles (phase coexist-
ence) is characterized by a vanishing polar order (several colors).
(d) A compact cluster, with a structure similar to that obtained in
(c), is reported in this work. The cluster displays a nonvanishing
velocity-polar order (same color), i.e., the cluster flocks. Flocking
principle revealed by a collision of two particles: repulsion gives
rise to scattering (e), while attraction leads to a stable pair with the
same joint velocity (f).
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system evolve for a long time until the coarsening process
is achieved and a large cluster containing all the particles is
formed as shown in Fig. 1(d). The bulk of the cluster
displays a highly ordered configuration, characterized by
an almost perfect hexagonal order similar to that achieved
in MIPS with purely repulsive interactions [72]. At vari-
ance with MIPS, where particles leave and join the cluster,
attractions make the cluster boundaries more “stable” so
that particles cannot easily escape and a single dense phase
is observed.
In a typical overdamped configuration in the large

persistence regime, such that τI=τ ≪ 1, and moderate
Pe, the cluster shows flocking behavior despite the absence
of any alignment interactions between velocities or self-
propulsions. In other words, even if all the active particles
have active forces pointing randomly in space, their
velocities are aligned and, as a consequence, the cluster
spontaneously displays a net motion. This phenomenon is
shown in Fig. 1(d), where a snapshot configuration of a
flocking cluster is reported. Particles are colored according
to the direction of their velocity and even a single snapshot
shows a directional symmetry breaking (the whole cluster
has the same color). To observe the flocking of clusters, it is
crucial that τ2T=ðmσ2Þ ≪ 1 and τI=τ ≪ 1, otherwise the
phenomenon is suppressed (see SM [73]). This flocking
cluster is due to the interplay between active forces and
attractive interactions, while it does not occur in repulsive
ABPs displaying MIPS where the particle velocities in the
cluster are only exponentially correlated in space [49]. The
two different behaviors can be understood by looking at a
collision of a particle pair (see also SM [73]): Pairs of
repulsive ABPs break when the active force reorients
[Fig. 1(e)], while pairs of attractive ABPs remain stable
thanks to the attractions and show the same joint velocity
[Fig. 1(f)].
To quantify the collective motion of the cluster and

systematically study the transition towards a flocking state,
we consider the velocity polarization as an order parameter,
defined as

pc ¼
1

N

�����
XN
i¼0

vi
jvij

����
�
; ð2Þ

that reads 1 if all the particles move in the same direction
and 0 if the directions of the particle velocities are random.
The mean velocity polarization pc is plotted in Fig. 2 as a
function of Pe and reveals the onset of a first-order phase
transition from a flocking state, characterized by pc ∼ 1, to
a nonflocking state such that pc ∼ 0. This conclusion is
supported by our analysis for different system sizes N: the
larger N, the sharper the transition. For small values of N,
when Pe is increased, the system is not able to easily reach
the nonflocking state and the transition is rather smooth.
This occurs because the nonflocking state displays multiple
small (and unstable) clusters reminiscent of the “traveling

crystals” [Fig. 1(c)] observed experimentally [34] and
numerically [74]. Only for large values of N, one can
observe a sufficiently large number of small clusters (all
with different velocity directions) such that pc ∼ 0 and the
system reaches a vanishing order in the velocity polariza-
tion. The transition line occurs for the value of Pe (v0)
needed to overcome the maximal force exerted by neigh-
boring particles, that is Fm ≈ 2.4ϵ for our choice of UðrÞ.
The critical value Pec in Fig. 2(a) is calculated by
comparing the dimensionless parameters in front of the
active force and the maximal force in Eq. (1a), so that Pec ≈
2.4ϵτ=ðγσ2Þ (see also SM [73]).
To confirm the onset of a flocking transition [5], we

study the connected correlation function of the velocities,
CðrÞ, defined as

CðrÞ ¼
�P

N
i;j δvi · δvjδðr − rijÞP

N
i;j δðr − rijÞ

�
; ð3Þ

where rij ¼ jxi − xjj represents the distance between
particle i and j and δvi ¼ vi −

P
N
j¼0 vj=N measures the

fluctuation of vi around the spatial average velocity. The
profiles of CðrÞ are shown in Fig. 3 for several Pe
[Fig. 3(a)] and system sizes N at fixed Pe [Fig. 3(b)].
For Pe corresponding to flocking states, CðrÞ decays as a
power law, crosses zero, and approaches negative values, as
expected in systems showing a flocking transition [33]. In
this case, CðrÞ does not depend on Pe and it is purely
determined by the system size, N, as reported in Fig. 3(b),
where the collapse of CðrÞ for several Pe is shown as the
position is rescaled by the cluster size λ ∼

ffiffiffiffi
N

p
σ. In other

(a) (b)

(c)

FIG. 2. Flocking transition. (a) Spatial average polarization, pc,
defined in Eq. (2), as a function of the Péclet number, Pe, for
different system size (number of particles), N. The vertical black
line indicates the transition, separating flocking states (pink
background) and nonflocking states (gray background) obtained
for Pec ≈ 2.4ϵτ=ðγσ2Þ ≈ 120. (b),(c) Snapshot configurations of
the system in the steady state. Particles are colored according to
each velocity polarization, i.e., according to the angle formed by
each velocity vector with the x direction. (b) and (c) correspond to
Pe ¼ 75, 175, respectively, while N ¼ 1809 in both panels. In
all cases, errors are smaller than the point size. The other para-
meters of the simulations in (a), (b), and (c) are τI=τ ¼ 10−2,
τ2T=ðmσ2Þ ¼ 10−3, ϵτ2=ðmσ2Þ ¼ 5 × 103, and ϕ ¼ 0.3.
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words, CðrÞ is scale-free, as expected in flocking configu-
rations and in experiments based on birds [5]. Instead, for
values of Pe showing nonflocking states, CðrÞ has an
exponential-like shape and displays a rapid decrease
towards zero which becomes faster as Pe is increased
[Fig. 3(a)]. In this case, the system size plays a marginal
role as expected (not shown).
Following Cavagna and Giardina [33], one can define the

correlation length, ξ, as the distance such that Cðr ¼ ξÞ ¼
1=e for exponentially decaying CðrÞ (nonflocking), and as
the distance, ξ ¼ r0=3, such that Cðr ¼ r0Þ ¼ 0 for alge-
braically decaying CðrÞ (flocking states). See also Ref. [75]
for further details on this definition. In Fig. 3(c), such a
correlation length is shown as a function of the system size
N for three values of Pe corresponding to flocking states,
confirming that ξ does not depend on Pe and uniquely
scales as the cluster size, ∼λ ¼ σ

ffiffiffiffi
N

p
. In Fig. 3(d), ξ is

plotted as a function of Pe for three different N, in the case
of nonflocking configurations (large values of Pe), where ξ
increases as Pe is decreased. This occurs because the
increase of Pe leads to clusters with smaller sizes: particles
belonging to different clusters cannot have correlated
velocities. In this case, the correlation length depends
consistently on N only when the system is near the flocking

transition: The larger N, the larger ξ. This behavior for the
correlation length is reminiscent of the typical scenario of a
first-order phase transition.
To further support the message of the Letter, we derive an

analytical prediction that will shed light on the underlying
mechanism of the flocking behavior. In the mean-field
approximation, wewill show that the system is governed by
an effective Hamiltonian reminiscent of that introduced for
the inertial spin model to describe the behavior of flocks of
birds [31]. At first, we exactly map Eq. (1) onto a new
dynamics by introducing the particle acceleration, si ¼ _vi,
in the limit of vanishing T—a choice supported by several
experiments [3]. We obtain [see Supplemental Material
(SM) [73] ]

_vi ¼ si ð4aÞ

_si ¼
Fi

mτ
−
�
1þ τI

τ

�
si
τI
−

vi
τIτ

−
∇2

ijU

m
vj þ wi ð4bÞ

where wi ¼ ðv0=τIÞð
ffiffiffi
2

p
=

ffiffiffi
τ

p Þξi × ni and ξi ¼ ð0; 0; ξiÞ.
The dynamics (4) could be reminiscent of an inertial spin
model [31]. Both are characterized by an evolution equa-
tion for the second derivative of the velocity and by an
effective alignment term ∼∇2

ijUvj (see SM [73]). However,
the two models do not coincide because the inertial spin
model is defined on the lattice and conserves the modulus
of the velocity.
To proceed further, we assume that particles are placed in

a hexagonal ordered structure (a lattice) because of the
strong attracting interactions at play. This hypothesis is well
justified by numerical evidence and by the study of the pair
correlation function for instance. Freezing the particle
positions provides a fundamental simplification that allows
us to solve the problem under two main additional
simplifications. First, we approximate wi as a Gaussian
white noise, employing the mapping from the ABP
dynamics to the active Ornstein-Uhlenbeck model [76–
80], often used to achieve analytical results [81–84] in good
agreement with ABP simulations [85]. Second, we invoke a
mean-field approximation by replacing the coupling
between neighboring particles with their average in a
two-dimensional hexagonal lattice (see SM [73]). In this
way, we derive analytically the probability distribution of
the new dynamics

pm ∼ exp ð−Hf −HIÞ; ð5Þ
whereHf andHI are the effective free (single-particle) and
interaction “Hamiltonians,” respectively, that read

Hf ¼
X
i

�
τIτ

v20

s2i
2
þ τIτ

v20
K
v2i
2

	
; ð6aÞ

HI ¼ −
τIτ

v20

K
6

X�
ij

vi · vj
2

: ð6bÞ

(a) (b)

(c) (d)

FIG. 3. Connected correlation functions. (a) Connected corre-
lation function, CðrÞ=Cð0Þ, defined in Eq. (3), for different values
of the Péclet number, Pe (at N ¼ 1809). (b) Cðr=λÞ=Cð0Þ as a
function of the rescaled position r=λ where λ ¼ σ

ffiffiffiffi
N

p
, for several

system size N (at Pe ¼ 100). (c),(d) Correlation length ξ=σ as a
function of λ=σ (for several values of Pe) and Pe (for several
values of N), respectively. The dotted line in (c) is a guide for the
eyes plotting the scaling ∼

ffiffiffiffi
N

p
∼ λ. In (c), ξ has been calculated as

ξ ¼ r0=3, where r0 is the distance such that Cðr ¼ r0Þ ¼ 0,
while, in (d), as the distance such that Cðr ¼ ξÞ ¼ 1=e being e
the Euler constant. Here, errors are smaller than the point size.
The other parameters of the simulations are τI=τ ¼ 10−2,
τ2T=ðmσ2Þ ¼ 10−3, ϵτ2=ðmσ2Þ ¼ 5 × 103, and ϕ ¼ 0.3.
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The sum
P�

ij is restricted on the first neighbors and K ¼
3½U00ðσÞ þ U0ðσÞ=σ� depends on the interacting potential
through its derivatives. Hf has a Boltzmann shape both for
velocities and accelerations variables, which, thus, fluctuate
with zero average and an effective (kinetic) temperature
given by Teff ¼ v20=ðτIτKÞ. We note that also the inertial
spin model allows fluctuation of si (called spin variable in
that context) but it does not allow vi to fluctuate because of
the constraint jvij ¼ const. Finally, the termHI provides an
alignment effective Hamiltonian reminiscent of that
assumed in the theoretical description of the inertial spin
model [31]. This term is responsible for the effective
alignment interactions observed in the system and is
responsible for flocking configurations.
In conclusion, we have shown that alignment inter-

actions are not strictly necessary to achieve flocking in
spherical active particles: a minimal and simpler setup to
observe flocking clusters is provided by attractive self-
propelled particles subject to strongly persistent active
forces. A first-order transition from a nonflocking to a
flocking state is achieved through the Péclet number, in
regimes of large persistence times when thermal fluctua-
tions are small, and is quantitatively supported by the study
of the velocity polarization of the system, as an order
parameter, and connected correlation functions of the
velocity showing scale-free properties.
The contribution of attractions to flocking could be

relevant in macroscopic experiments on animals, for
instance midges [86] and fly larvae [87] that swarm without
large aligning interactions, as well as in microscopic
experiments with migrating cell monolayers on a substrate
[11,88] when the polarization in response to forces is small.
In several cases, these systems aggregate forming small-
size clusters with effective attractive interactions at play,
while the whole cluster could exhibit collective motion
similar to the one shown here. Finally, since strong
attractive van-der-Waals forces can occur for colloids that
are not index matched, experiments based on active
colloids with persistent self-propulsion [25,34,36,89] re-
present an ideal platform to verify our predictions.
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