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Abstract
Bacteria and other self-propelling microorganisms produce and respond to signaling molecules to
communicate with each other (quorum sensing) and to direct their collective behavior. Here, we
explore agents (active particles) which communicate with each other to coordinate their collective
dynamics for maximizing nutrient consumption. Using reinforcement learning and neural
networks, we identify three different strategies: a ‘clustering strategy’, where the agents accumulate
in regions of high nutrient concentration; a ‘spreading strategy’, where particles stay away from
each other to avoid competing for sparse resources; and an ‘adaptive strategy’, where the agents
adaptively decide to either follow or stay away from others. Our work exemplifies the idea that
machine learning can be used to determine parameters that are evolutionarily optimized in
biological systems but often occur as unknown parameters in mathematical models describing
their dynamics.

1. Introduction

Bacteria and other self-propelling microorganisms have the ability to navigate in chemical concentration
gradients, which is crucial for their survival. This ability, called chemotaxis, allows them to sense and
respond to concentration gradients in their environment, which they use to find food and to avoid toxins [1,
2]. Interestingly, some microorganisms can produce the chemicals to which they respond themselves, which
they use to communicate with each other (quorum sensing) and to coordinate their collective behavior.
Examples are E. coli bacteria that use autoinducer II molecules for quorum sensing [3, 4] and Dictyostelium
cells, which produce and respond to cAMP molecules [2, 5]. It is now known that besides biological
microorganisms also self-propelling synthetic active particles communicate with each other via
self-produced chemical fields. These particles catalyze a certain chemical reaction on part of their surface and
respond to the resulting reagent/product concentration gradient by diffusiophoresis [6] or a similar
mechanism. Here, the concentration gradients decay slowly in space and cause (long-ranged) chemical
cross-interactions, providing a synthetic analog to microbial communication [7–11]. While this form of
communication in synthetic active systems is essentially determined by particle design, recent progress in the
development of feedback-controlled synthetic active particles [12–15] allows it to realize almost arbitrary
communication rules. For example, there are now realizations of synthetic active particle systems [16], that
have been equipped with artificial visual perception [14] and certain quorum sensing rules [13].

However, despite this progress in the realization of communicating active particles, to date, models and
experiments have treated the communication rules simply as ‘novel couplings’ (interactions) that lead to a
range of interesting new phenomena [10, 13, 14, 17–20], but that do not have a purpose. In contrast, in
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Figure 1. Illustration of the characteristic motion patterns that result from the learned communication strategies for gathering
nutrients. Red dots show the agents and black arrows indicate their direction of motion. Panel (a) shows the clustering strategy,
where all agents aggregate in regions of high nutrient concentration. Panel (b) shows the adaptive strategy where agents at low
concentration move towards others (as for the clustering strategy) whereas agents at high concentration avoid others and tend to
move away from the cluster (oppositely to the clustering strategy). Panel (c) shows the spreading strategy where the agents behave
aversely and stay away from each other to avoid competing for food.

biological systems, communication rules can be evolutionarily optimized and help the agents approaching a
common goal that typically benefits their survival chances or reproduction success.

In the present work, we aim to close this gap in the literature. To this end, we explore the idea to use
machine learning to understand which communication rules are optimal for an ensemble of microorganisms
or synthetic active particles to approach a common goal, such as maximizing their access to nutrients in the
present case. To achieve this, we build on recent progress at the interface of active matter physics and artificial
intelligence [21, 22] which is presently used to equip feedback controlled colloids, small robots and other
active particles with the ability to learn from previous experience [23]. Recent examples comprise
microswimmers that learn a complex flow field [24–29], gliders navigating in turbulent flow [30, 31], active
particles swimming at low Reynolds number [32], learning chemotaxis [33, 34], flocking of a collection of
agents [35] or navigating optimal paths in flow [36–39], motility fields [40], or force fields [41–43].

In the following, we formulate a minimal model describing communicating active particles and use
reinforcement learning (RL) and neural networks (Deep Q-networks) to optimize their nutrient
consumption. Notably, we find that the agents use their ability to communicate with each other to coordinate
their collective behavior in a way that resembles characteristic food hunting strategies that can be observed
for groups of animals or microorganisms in nature. In particular, we find that when the overall nutrient
concentration is high (or when the consumption rate of the agents is low) the agents self-organize in a cluster
and accumulate in regions of high local food concentration (figure 1(a)). Here, agents basically follow others
that have already discovered regions of high food concentration. At lower nutrient concentration we observe
a different strategy which we call ‘spreading strategy’. Here, the agents stay away from each other to avoid
competing for nutrients (figure 1(c)). In between these two strategies, the agents follow an adaptive strategy,
where some agents (temporarily) aggregate while others stay away from them and hunt for food individually
(figure 1(b)), resembling liquid–gas phase coexistence. These predictions can be tested in state of the art
experiments with feedback controlled colloidal microswimmers [13] or with programmable robots [44]. In
addition, interestingly, similar hunting strategies have been observed in various animals [45]. For instance,
Pharaoh’s ant, Monomorium pharaonis, lay pheromone trails to share information about the location of
food sources and accumulate there [46], i.e. they essentially show the ‘clustering strategy’. Similarly, when a
honeybee has identified the location of a nectar or pollen, it often performs the famous ‘waggle dance’ to
inform others about the location of the food source, which then also accumulate there [47]. Other works
suggest that for certain birds and other animals at low nutrient concentration, the community is structured
by competition and foraging agents tend to avoid each other [48, 49], similarly as for the spreading strategy.

Overall, the present work shows that machine learning can be used to optimize the communication rules
and the resulting collective behavior of active systems, similarly as evolution optimizes the behavior of
biological systems. (Note that in both cases the meaning of optimality is of course context dependent and the
optimization process may lead to some ‘local’ optimum.) Our results can be used in the future for example to
determine how synthetic active particles need to interact with each other and with their environment to
efficiently collect certain targets, as relevant e.g. for decontaminating polluted water [50] or to collect passive
colloidal particles, such as microplastics [51]. In addition, our results might also be useful in the formulation
of mathematical models for the collective dynamics of biological systems. While such models normally
involve free parameters that are optimized in the underlying biological system, the present work shows how
machine learning can be used to determine such parameters to reduce the number of free parameters.
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Figure 2. Schematic of the model and the learning approach. The active particles (red dots) move in a concentration field
(background color indicates nutrient concentration) and communicate with each other by producing quorum sensing molecules
(white circles illustrate iso-concentration lines of the signaling molecules due to each agent). We feed the nutrient concentration
at the position of each agent into a neural network and use RL to predict the functional form of the sensitivity functions
α(c),β(c). These functions determine the response of the agents to the nutrient concentration (determined by α(c)) and the
signaling molecule concentration (β(c)).

2. Methods

2.1. Model
We consider an ensemble of N overdamped particles representing artificial or biological agents located in a
Gaussian random nutrient field c(r, t) with values ∈ [0, cmax]. The particles have position and orientation
vectors ri, pi = (cosθi, sinθi), where i = 1,2, . . .,N. They move with a constant self-propulsion speed v0 in a
two-dimensional quadratic simulation box of size L and with periodic boundary conditions. All agents are
randomly placed in the simulation box and are subject to a nutrient concentration field c(r, t) that we
initialize as a Gaussian random field, created via the power spectrum realization method [52–54] with a
power spectrum of ⟨̃c(k)̃c(−k)⟩ ∝ k−3 (where k= |k|) and a grid discretization that is small compared to all
other relevant length scales in the system (see background of figure 2, left panel, for an exemplary
realization). Here, c̃(k) is the Fourier transform of the reduced concentration field c(r, t= 0)/cmax. We
choose the numerical proportionality coefficient in the above expression for the power spectrum such that
c(r, t= 0) ∈ [−cmax/2, cmax/2] and finally shift c(r, t= 0)→ c(r, t= 0)+ cmax/2 ∈ [0, cmax].

For simplicity, we assume that the particles consume nutrients only at their present location (the nearest
grid point) and that the nutrients are somewhat sparse so that the agents consume them with a rate kdc(ri, t)
that is proportional to the local nutrient concentration. The nutrient concentration field evolves diffusively,
with diffusion coefficient Dc, and an additional sink term describing the nutrient consumption due to the
agents at their instantaneous positions. There are many different models for the form of the (nutrient)
consumption term in the literature; here we assume that nutrients are sparse, and the consumption is
proportional to the local concentration (see e.g. [11, 55–57] and references therein for similar models):

ċ(r, t) = Dc∆c(r, t)− kd

N∑
i=1

c(ri, t)δ (r− ri) . (1)

Here we are mainly interested in the situation where the nutrient field changes only due to consumption.
Still, we explicitly model the dynamics of c, with a very small Dc, to smoothen the gradients created by the
consuming agents, i.e. for technical reasons.

We now equip the agents with the ability to communicate with each other and task them to use this ability
to autonomously coordinate their self-propulsion directions such that all agents together deplete the nutrient
field as efficiently as possible. To choose their self-propulsion direction, the agents try to find the best
possible compromise between greedily swimming up the local concentration gradient (chemotaxis) and a
direction which is suggested by communication with the other agents (quorum-sensing). To model the latter
influence, we assume that each agent produces the chemicals which are relevant for communication with a
rate λ and that all other agents respond to the resulting concentration field ρ(r, t). Like the nutrient field, the
concentration field of the signaling molecules evolves diffusively, with diffusion coefficient Dρ [11, 55–57].
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We model the production due to each agent as a point source with a constant production rate λ and assume
that the agents consume the molecules (degradation) with a rate µ (see [11, 55–57] for similar models):

ρ̇(r, t) = Dρ∆ρ(r, t)+λ
N∑

i=1

δ (r− ri)−µρ(r, t) . (2)

We assume that the diffusion of the signaling molecules is fast; i.e. we solve equation (2) in steady state
(ρ̇= 0) yielding in two-dimensions:

ρ=
λ

Dρ
K0 (κr) . (3)

Here, K0(x) is the modified Bessel function of second kind and κ=
√

µ
Dρ

. We deliberately use the solution in

two dimensions to get the same results as when solving equation (2) explicitly in the steady state. Note that
solving the simulation model including equations (1) and (2) in three dimensions would not qualitatively
change our results [18].

The following equations describe the dynamics of the particles depending on the nutrient concentration
field c(r, t) as well as the field of quorum sensing molecules ρ(r, t)

ṙi (t) = v0pi (4)

θ̇i (t) = αpi ×∇ρ+βpi ×∇c, (5)

where a× b= a1b2 − a2b1 is the two-dimensional cross product and α, β represent the alignment rate of the
self-propulsion direction of the agents with the local quorum sensing and nutrient fields, respectively. The
particles move up (down) the local concentration gradient of signaling molecules when α> 0 (α< 0) and
always move up the food concentration gradient (β > 0).

As further discussed below, we consider α(c), β(c) as parameter functions that the agents can optimize.
Accordingly, in equation (5), the values of α,β depend on the current position of the agents, i.e.
α= α(c(ri(t))), and β = β(c(ri(t))).

Considering α,β as parameter functions that will be fixed by RL later, our model has 8 parameters
(cmax,Dc,kd,Dρ,λ,µ,v0 and the agent density N/L2). Choosing time and lengths units as t0 =

1
λ and l0 =

1
κ ,

we are formally left with 6 dimensionless parameters [58]. In the following we consider the agent density
Nl20/L

2 = N/(κ2L2) and the consumption rate kdt0/l20 = kdκ2/λ as our key control parameters which we vary
in the following. The following other dimensionless parameters are kept fixed in our simulations:
Dρ

l02/t0
= µ

λ = 10−3, v0
l0/t0

= v0κ
λ = 10−3, cmaxl20 =

cmax
κ2 = 104 and finally Dc

l02/t0
= Dcκ

2

λ = 10−8 has been chosen

smaller than all other parameters to make equation (1) quasi-stationary.

2.2. Learning approach
We use RL [59] combined with a neural network to optimize the functions α(c) and β(c). To achieve this, in
short, we iteratively propagate the particles and update the neural network which essentially represents a
mapping from a c-value to a probability distribution for α(c),β(c) (where high probabilities represent α,β
values that are likely to lead to a high nutrient consumption in the future). While moving through space, the
agents dynamically feed the c-values at their momentaneous position into the neural network and select α,β
values from the probability distribution, according to some policy. (In the simplest case, each agent chooses
the α,β values with the highest probability.) As opposed to methods from classical optimal control theory
[60] and tabular RL methods, the key advantage of the deep RL method which we use, is that it can handle an
enhanced complexity, as required here to optimize the dynamics of many interacting agents.

We now describe our procedure in detail. For each active particle (agent), we initially define a state s0 that
is given by the value of the nutrient concentration field at the agent’s position, i.e. for agent i we have
s0 = c(ri(0),0) ∈ [0, cmax]. Then we simulate the dynamics of all agents and of their environment
(equations (1)–(5)) for a time interval∆t= 100t0, after which we update the state of all agents, i.e. for agent i
we have s1 = c(ri(∆t),∆t), and then after iterating equations (1)–(5) for a time of∆t again, we update the
state to s2 = c(ri(2∆t),2∆t) and so on.

At each step n (corresponding to a time interval∆t), for each agent, we choose an individual action an
which corresponds to choosing a combination of ακ3/λ ∈ {−5× 10−6,−4× 10−6, . . .,5× 10−6} and
βκ3/λ ∈ [0,0.5× 10−6, . . .,5× 10−6], leading to 11× 11= 121 possible action choices for each agent. The
parameter intervals have been chosen such that the learned (optimal) values are just not at the edge of the
intervals (see figure 5), to achieve the best possible numerical efficiency without affecting the resulting
optimal values.
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To motivate the action choices, at each step, we assign a reward to each agent. When agent i transitions

from state sn to state sn+1, it receives an immediate reward of rn =
1

∆tcmax

´ (n+1)∆t
n∆t c(ri, t ′)dt ′ − 1. This reward

has been designed to be between zero, when the agent is at a location with the highest possible concentration
(c(r, t) = cmax), and negative at lower concentrations, with a minimum of−1, at locations where the local
concentration vanishes. The individual action choice (α,β) for each agent is then motivated by the attempt
to maximize the expected future reward, which we calculate for each agent individually and which is defined
as Rn =

∑nmax

n ′=n γ
n ′−nrn ′ = rn + γRn+1. Here, the sum runs over all nmax steps in an episode and the discount

factor γ= 0.9 weights the importance of future rewards compared to immediate ones. To estimate the value
Rn and hence to allow the agents choosing an action, we determine the so-called Q-function Q(s,a) that is
shared by all agents and that indicates the expected sum of discounted future rewards when taking action
an = a in state sn = s (and following policy π, discussed below). Before discussing how we determine the
Q-function in practice, we first note that it can be written as [59]

Q(s,a) =
∑
s ′,r

P(s ′, r|s,a)
∑
a ′

π (a ′|s ′) [r+ γQ(s ′,a ′)] . (6)

Here, P(s ′, r|s,a) denotes the probability that an agent which is in state s and chooses action a reaches state s′

and receives a ‘path-dependent’ reward r. The policy π(a|s) in turn represents the probability of taking action
a in state s. In Q-learning, after convergence, the optimal policy consists in always taking the action a with
the largest Q-value maxaQ(s,a). However, during training, to encourage exploration, the agents follow a
ϵ-greedy policy. This means that a random action is chosen with probability ϵ, while the action with the
highest Q-value is chosen with probability 1− ϵ.

The entire process of iteratively propagating the agents (equations (1)–(5)) and choosing actions (α,β) at
times∆t,2∆t. . ., until tmax = 2000t0 = 20∆tmakes up one episode. Overall we run 5000 episodes for each of
which we create a new random nutrient field and place the agents randomly in the simulation box. Within
the first 4000 episodes, ϵ is exponentially decreased from 1 to 0.01, while in the last 1000 episodes it is kept
constant at ϵ= 0.01.

Let us now discuss how we determine the Q-function. Since a direct iteration of the Q-function, as in
tabular Q-learning, leads to a non-managable numerical cost (Q would be a matrix of dimensions: number
of states times number of actions), we determine (approximate) the Q-values by an artificial neural network
Q(s,a;θ) (called deep Q-network (DQN)) [61]. Here θ describes the set of parameters of the neural network
(weights and biases) that are adjusted during training to minimize the difference between the DQN’s output
and the right-hand side of equation (6). This is achieved by storing the information of all transitions
{sn,an, sn+1, rn} during an episode (replay buffer) and using this information after an episode is finished to
update the parameters of the neural network. We use the mean squared error as a loss function, i.e. the mean
value of the difference (rn + γmaxaQ(sn+1,a;θ)−Q(sn,an;θ))2 is calculated over all transitions of an
episode. An Adam optimizer [62] with a learning rate of 0.01 and a learning rate decay of 0.05 is applied to
update the network parameters. The DQN is a fully connected network that has a single neuron as an input
layer. The network has two hidden layers, each with 256 neurons, using a ReLU activation function [63]. The
output layer consists of one output neuron for every action (i.e. we have 121 output neurons) with a linear
activation function. (Hyperparameters have been optimized based on the random search procedure.)
Overall, at each step, each agent feeds the concentration value at its current position into the network which
then provides a weight (probability) for each possible combination of α,β values. We trained the neural
network with the help of TensorFlow (version 2.6.0) [64]. We have performed our simulations on 23 nodes
of our local computer cluster where each node has two 4-core 2.4GHz Intel Xeon CPUs, and 24 GB of RAM.
Generating a single RL model takes about 3–10 h (depending on particle density). To improve the accuracy
of our predictions each data point in figure 4 is based on averages over at least 500 learned models.

Let us now exemplarily explore how the nutrient consumption rate of the agents evolves during training.
To this end, we define the relative performance as C/Crand − 1, where C is the total amount of nutrients that
have been consumed by all agents in the system in a given episode and Crand is the total amount of nutrients
that are consumed by the same number of randomly moving agents in the same time span. Figure 3 shows
that the relative performance of the agents before training (blue line at episode 0) corresponds to that of an
agent taking random actions, i.e. random values of α,β, leading to a random-walk-like dynamics (orange
line). The performance then systematically increases during training and, irrespective of fluctuations, it
finally converges to a constant value (yellow line). Importantly, this value is significantly larger than that of a
system of greedy agents (grey line), that use a constant βκ3/λ= 10−5 to always move up the local
concentration gradient but that do not communicate with each other (α= 0). This clearly shows that
communication allows the agents to enhance their performance.
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Figure 3. The relative performance of agents trained with the deep Q-networks algorithm (blue line) is shown as a function of the
number of training episodes in comparison with an agent performing random actions (orange line) and a maximally greedy agent
(grey line). Here, the relative performance is defined as the relative improvement compared to the agent taking random actions in
per cent. The yellow and the gray line have been obtained numerically. The yellow line shows the late-time average of the blue line.
The gray curve is an average over numerical simulations with a constant βκ3/λ= 10−5 such that the agent always moves up the
local concentration gradient but does not communicate with others (α= 0). Parameters: kdκ2/λ= 10−7, Nl20/L

2 = 60).

Figure 4. State diagram. The agents employ different strategies depending on the agent density N/(κ2L2) and the dimensionless
consumption rate kdκ2/λ. Clustering strategy: blue dots show regions where α(c) ⩾ 0 for all concentrations such that the agents
cluster, typically in regions of high nutrient concentration. Spreading strategy: red dots show regions where α< 0 for all nutrient
concentrations, such that the agents stay away from each other and try to individually reach regions of high nutrient
concentration. Adaptive strategy: green dots represent parameter combinations where α(c) ⩾ 0 for small concentrations and
where α(c)< 0 for large concentrations, such that the agents cluster at low concentration but avoid each other at higher
concentrations.

2.3. Results
We now apply the RL-approach to learn functions α(c), β(c) that optimize the nutrient consumption of the
agents depending on the reduced consumption rate kdκ2/λ and the agent density N/(κ2L2). We represent
the resulting spatiotemporal dynamics of the agents in a state diagram, figure 4, which contains three
qualitatively different functional forms of α(c) (see caption of figure 4 for a definition of the states).

For low consumption rates, we find a ‘clustering strategy’ (blue dots in figure 4), which represents states
where α(c)> 0 for all concentrations (figure 5), i.e. where the agents always align their orientation towards
higher particle concentration, leading to clustering of the agents. What is the advantage of clustering? It
allows an agent that is located at very low nutrient concentration to identify (remote) regions of higher
concentration by following other agents. This is often more efficient than only following the nutrient
concentration gradient which would bear the risk to end up in a tiny local maximum. Why does the
clustering strategy emerge at low food consumption rates only? This is because at high consumption rates,
clustered agents would rapidly deplete the available nutrients. In addition to this, the blue curves figure 5
provide additional information: they show that at low concentration the agents react stronger to other agents
than at large concentration (top panel), whereas their response to the local nutrient concentration behaves
oppositely. This behavior of α(c),β(c) is plausible since an agent that is located at very low nutrient
concentration will statistically benefit more from following others to identify regions of higher concentration
than an agent that is already in a favorable region. Conversely, at high concentration agents primarily focus
on staying at high nutrient concentrations and not to care too much about the others. It is interesting that
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Figure 5. Learned coefficients determining the sensitivity of the agents to the quorum sensing concentrations (top) and the
nutrient concentration (bottom). The shown curves are based on data at 100 different concentrations. Agent density:
N/(κ2L2) = 60.

α(c) shows an additional peak around concentrations of c/κ2 ∼ 6.5 ∗ 103, i.e. in the regime where β(c)
sharply increases.

For large consumption rates (and high particle density), the agents follow the ‘spreading strategy’ (red
dots in figure 4), which is defined by α(c)< 0 at all concentrations (figure 5). That is, following the
spreading stratey, particles stay away from each other to avoid competing for nutrients. Thus they
individually hunt for food by moving up the local food concentration (β(c)> 0 is almost constant).

The third regime in the state diagram is the ‘adaptive strategy’, where α(c)> 0 at low c but α(c)< 0 at
large c. That is, the agents adaptively decide, depending on the local concentration, if they move towards
other agents or stay away from them. This is plausible since at low concentration the agent depend on others
to identify (remote) regions of high nutrient concentration. (Simply following the nutrient concentration
gradient would bear the risk of ending up in a tiny maximum.) When an agent is already at a large
concentration, it does no longer depend on others and its primary concern is to avoid that the concentration
does not get depleted too rapidly; thus we have α(c)< 0 at large c.

3. Conclusions

In conclusion, this work exemplifies the idea that RL can be used to optimize the interactions—or
communication rules—of self-propelling agents to achieve a common goal. For the present example, the
learned communication rules allow the agents to enhance their nutrient consumption and lead to three
distinct motion patterns that closely resemble food hunting strategies observed in nature. On a more
conceptual level, this work also illustrates the idea to use machine learning to determine parameters (or
parameter functions) that are fixed in biological systems (evolutionarily optimized) but often occur as
non-optimized unknown parameters in mathematical models describing their dynamics. That way, machine
learning could be used in the future to reduce the number of free parameters in mathematical models of
biological systems. For smart active particles such as future programmable microrobots, our results could
also be used to determine how these agents need to interact with each other and with their environment to
efficiently collect certain targets, e.g. when decontaminating polluted water [50] or collecting microplastics
[51].

We finally note that the present work just serves as a starting point that aims to illustrate the discussed
ideas. It employs a minimal model and a rather simple machine learning approach, that invite the
development of more sophisticated approaches in the future that could account e.g. for a visual perception of
the agents and could involve planning. Other future generalizations could use more involved ways to control
the communication among the agents or could extend the information that particles receive about each
other; providing them e.g. with knowledge about the orientations of other particles, could allow them e.g. to
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flock [35] and it would be interesting to find out when this is beneficial to further enhance the nutrient
consumption efficiency. Finally, it would also be interesting to explore non-identical agents with different
speeds or consumption rates in the future, which could allow it to make interesting links to inter-species
cooperation and competition in foraging theory.
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