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Abstract
The dynamics of active smectic liquid crystals confined on a spherical surface is explored
through an active phase field crystal model. Starting from an initially randomly perturbed
isotropic phase, several types of topological defects are spontaneously formed, and then
annihilate during a coarsening process until a steady state is achieved. The coarsening process is
highly complex involving several scaling laws of defect densities as a function of time where
different dynamical exponents can be identified. In general the exponent for the final stage
towards the steady state is significantly larger than that in the passive and in the planar case,
i.e. the coarsening is getting accelerated both by activity and by the topological and geometrical
properties of the sphere. A defect type characteristic for this active system is a rotating spiral of
evolving smectic layering lines. On a sphere this defect type also determines the steady state.
Our results can in principle be confirmed by dense systems of synthetic or biological active
particles.

Keywords: active smectics, topological defects, coarsening

1. Introduction

Liquid crystals consist of particles that can possess both orient-
ational and positional degrees of freedom [1, 2]. This induces
a wealth of ‘mesophases’ with partial orientational and pos-
itional ordering. In general these phases contain topological
defects. For pure positional ordering such defects are charac-
terized by deviations from the equilibrium number of neigh-
bors, and for orientational order alone a director field can be
defined and topological defects emerge where the orientation
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of this field shows a singularity. In smectic phases, orienta-
tional and positional orders are present simultaneously and
compete with each other, and these defects also interact.
Describing and predicting the coarsening of defected, mul-
tidomain smectic configurations is a long-lasting problem.
Similar to grain growth in crystalline materials, self-similarity
in domain coarsening has been found, which provides a scal-
ing law tα for the characteristic domain size with time t and a
scaling exponent α. The exponent α varies between 1/5 and
1/2 according to different theoretical [3–8] and experimental
[9, 10] investigations in 2D space. The coarsening process is
usually dominated by the motion of grain boundaries, which
move over large distances and are driven by the curvature
of the smectic lines and internal distortions within domains.
These distortions are positional defects, in particular disclin-
ations and dislocations. The motion of dislocations [11] and
the motion of disclinations [8, 12] in smectics are coupled
by topological constraints and their interactions influence the
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coarsening process. This complexity might explain the broad
spectrum of reported values of scaling exponent. Results on
power law scaling for defect densities in 2D space are more
narrow, for which the disclination density scales as t−1/2 and
the dislocation density scales as t−1/3 (see [7–9, 12]).

Here we address two questions: How is this coarsening pro-
cess influenced if the smectic phase forms on the surface of a
sphere, with the director constrained to be tangential, and how
does it change if the smectic phase is active? The first intro-
duces topological constraints resulting from generalizations of
the Poincaré–Hopf theorem and Euler’s theorem on polyhedra,
the concepts of which can be generalized to the director field
for smectics, and forces the defects (orientational and posi-
tional) to be present also in equilibrium. The second brings the
system into nonequilibrium and there is no relaxation towards
equilibrium but rather towards a nonequilibrium steady state.
Smectics on spherical surfaces, the so-called smectic shells,
have been experimentally realized [13, 14]. The topological
and geometrical frustration in these experiments indeed leads
to the formation of defects. However, in these experiments the
thickness of the smectic layer and the proposed anchoring con-
ditions for the director also influence the equilibrium state. Our
study here corresponds to the vanishing thickness limit of an
ideal smectic sphere. This case is characterized by two+1 (ori-
entational) defects located on opposing poles of the sphere and
a director field aligned with geodesic lines connecting these
defects. Activity in smectics can be realized by Janus rods
which are, for instance, catalytically driven and thus convert
chemical energy into mechanical work [15]. Realizations of
active smectics are mostly considered in 2D flat space [16, 17].
These systems can be characterized by aligning interaction
[18], nonreciprocality [19], or nonlinear mutual feedback [20].
Due to the nontrivial coupling between orientational and pos-
itional degrees of freedom with the active driving force, active
smectic systems and their defect dynamics are more complex
than other active liquid crystals, e.g. active nematics [21]. To
the best of our knowledge, studies of defects in active smectics
if constrained to the surface of a sphere, are still lacking, and so
far particle-resolved simulations for active rods in the smectic
phase have not been carried out, not even in flat space.

Potential applications for active smectics on surfaces can be
found in biology. As mentioned in [22], developing tissues on
substrates or myosin filaments in cellular cortex are important
examples. Also smectics on a sphere are important for applic-
ations relevant to e.g. vesicles, bubbles or red blood cells as
discussed before [23]. The investigation of such systems on
a sphere is the first step to understand the complex interplay
of orientational and positional defects in multidomain smectic
systems under topological constraints, geometric effects, and
active driving.

We study this complex interplay computationally using an
active phase field crystal (PFC) model on a sphere [24]. In
the following we first review the known results for equilib-
rium configurations on a sphere and summarize results for
the dynamics of the corresponding active systems. We then
introduce the active PFC model which has recently been used
to model active smectics in 2D space [25], reformulate it on

surfaces and simulate the coarsening process on a sphere.
While essential processes during coarsening are explained on
highly resolved simulations, results on scaling behavior are
addressed by large scale statistical investigations. To unveil the
influence of the spherical topology and activity, we compare
the results with corresponding simulations in flat 2D space and
vary the strength of activity.

2. Review of known results

2.1. Equilibrium configurations on a sphere

Equilibrium configurations for pure orientational or pure pos-
itional ordering on a sphere have been intensely studied (see,
e.g. [26] for a review). To identify the optimal distribution
of interacting particles on a sphere is a classical problem
[27–29], for which above a certain number of particles there
exist non-trivial configurations of defects, the so-called grain
boundary scars [30–32], all consistent with Euler’s theorem on
polyhedrons. For anisotropic particles the situation becomes
more complicated. For orientational ordering [33–43], typ-
ically four +1/2 defects arrange in a tetrahedral configura-
tion, maximizing their distance from each other. Much less
is known for structures that are both orientationally and posi-
tionally ordered, such as the smectic phase in curved space.
Clearly the simultaneous presence and competition of both
local orientational and positional orders put this situation into a
much more complex category. For results on a sphere we refer
to [23, 37, 44–46]. Particle-resolved computer simulations of
hard rods indicate a wealth of different states, including equat-
orial smectics with two+1 defects at the poles, consistent with
the finding in [13, 14], and the configurations with four +1/2
or six+1/2 and two−1/2 defects. In these situations the strain
at the poles is relieved by separating closely positioned half-
strength defects. All these configurations obviously fulfill the
topological constraint of the Poincaré–Hopf theorem.

2.2. Active liquid crystals on a sphere

The active liquid crystalline phases, which have been of tre-
mendous interest in recent years [15, 47–50], exhibit qualitat-
ively different behaviors as compared to those in the corres-
ponding passive systems. Their governing dynamics is non-
relaxational, as in the far-from-equilibrium pattern formation
processes [51]. This type of system on curved surfaces has
been termed topological active matter [52] as it combines act-
ive liquid crystals with topological constraints. Again, stud-
ies are mainly concerned with either pure orientational order,
i.e. active nematics [52–56] showing persistent oscillations
between the tetrahedral and a planar defect configuration as
one possible dynamical process, or the appearance of polar
order which leads to polar vortex and circulating band states
[57, 58], or pure positional order as in active crystals [24],
which can lead to collective rotation as seen in epithelia tissue
confined on a sphere [59–62]. While in flat space activity can
lead to continuous creation and annihilation of defects [21], in
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topological activematter such creation of defects is suppressed
over a wide range of activity.

2.3. PFC and other modeling approaches

In [63] a PFC model for liquid crystals was introduced, and
due to various couplings between the rescaled density field, the
local nematic order parameter, and the mean local direction
of the orientations and their gradients, various stable phases
of the equilibrium free-energy functional could be identified,
including the smectic-A phase. Formulating this model on a
sphere allows us to analyze these phases under the topolo-
gical constraint and the influence of curvature. Besides the
equilibrium configurations, the dynamics of these liquid crys-
talline phases is of importance, which could be addressed by
the diffusive dynamics of the PFC model for liquid crystals.
However, results mainly exist for systems with pure orienta-
tional or positional order, ranging from the classical Lifshitz–
Slyozov–Wagner theory [64], to large scale PFC simulations
[65, 66] and simulations for nematic liquid crystals on surfaces
[42, 43]. They are all characterized by annihilation of defects
and convergence towards a (local) minimum with energetic-
ally preferred defects and the corresponding spatial arrange-
ment. In addition, active PFC models [25, 67–73] have been
introduced. These models are related to the PFC model for
liquid crystals [63] and have been formulated on a sphere in
[24, 74] to study active crystals.

3. Results

In the following we first introduce the surface active PFC
model and then describe large-scale simulation results for act-
ive smectics on a sphere. We compare results of defect dynam-
ics in multidomain smectic configurations, their coarsening
and the emerging of stable configurations to the situation in
flat space with periodic boundary conditions.

3.1. Model

In [24] the active PFC model introduced in [67] has been
formulated on a sphere S = RS2 with radius R, where S2 is
the two dimensional unit sphere embedded in R3. The model
was used to study active crystals. Here, we consider a differ-
ent parameter setting which is applicable for active smectics.
In the model the position r on the sphere S is paramet-
rized by r(θ,ϕ) = Rû(θ,ϕ) with the orientational unit vec-
tor û(θ,ϕ) = (sinθ cosϕ,sinθ sinϕ,cosθ)T and the spherical
coordinates θ ∈ [0,π] and ϕ ∈ [0,2π). We consider a rescaled
density field ψ(r, t) and a polarization field p(r, t), which is
tangential to S at r, i.e. p(r, t) = pθ(r, t)∂θû+ pϕ(r, t)∂ϕû ∈
TrS with scalar polarization fields pθ(r, t) and pϕ(r, t) and the
tangent space TrS of the sphere S at point r.

The free-energy functionals read

Fψ [ψ] =
ˆ
S

{
1
2
ψ
[
ε+(q0 +△S)

2
]
ψ +

1
4
ψ4

}
dS , (1)

Fp [p] =
ˆ
S

(
1
2
C1∥p∥2 +

1
4
C2∥p∥4

)
dS , (2)

with ϵ< 0, the characteristic wave number q0 = 1 after res-
caling, C1 > 0 which leads to the suppression of any spon-
taneous ordering of orientational alignment, and C2 model-
ing the higher order nonlinear term which is neglected in the
following. The connection between this PFC approach and
microscopic particle-resolved description can be best obtained
by a dynamical density functional theory (as exemplified in
references [67, 68, 72] for active spherical particles or in
reference [74] for anisotropic passive particles). The gradi-
ent and divergence operators are considered in spherical
coordinates, i.e.

gradSψ =
1
R

[
(∂θû)∂θψ+

1

sin2 θ
(∂ϕû)∂ϕψ

]
, (3)

divSp=
1
R
(cotθpθ + ∂θpθ + ∂ϕpϕ) , (4)

and the surface Laplace–Beltrami operator is defined as△S =
divS gradS .

The dynamic equations describe the active-particle trans-
port tangential to S and read

∂tψ =△S
δFψ
δψ

− v0 divSp , (5)

∂tp=−(△dR +Dr)
δFp

δp
− v0 gradSψ , (6)

with v0 the strength of particle self-propulsion andDr the rota-
tional diffusion constant. When v0 = 0 the system is pass-
ive and governed by relaxational dynamics, while for act-
ive smectics studied here we focus on nonzero v0 which
leads to nonrelaxational dynamics of the system. The vector-
Laplacian △dR is the surface Laplace–deRham operator
△dR =−gradSdivS − rotSRotS , where

rotSψ =
1

Rsinθ
[−(∂θû)∂ϕψ +(∂ϕû)∂θψ] , (7)

RotSp=
1
R

(
2cosθpϕ−

1
sinθ

∂ϕpθ + sinθ∂θpϕ

)
, (8)

are the surface curl operators in spherical coordinates. The
equations have been rescaled with a diffusive timescale and
a length scale based on the characteristic pattern periodicity
via q0 = 1, and in this form constitute the minimal continuum
field model which was used in [24] to model active crystals
on a sphere. When v0 = 0, equation (5) reduces to the surface
PFCmodel, which has been applied to describe optimal order-
ing and crystallization of passive particles on a sphere [32, 75].
Equations (5) and (6) reduces to the active PFC model [67] in
flat space in the limit R→∞. Within this limit, the model was
used in [25] to simulate defect dynamics in two-dimensional
active smectics. This has been done by considering a para-
meter setting of ϵ=−0.98 and the average density ψ0 = 0
which favors a travelling stripe/smectic phase as identified in
the phase diagram of the active PFC model [67]. Such a stripe
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phase can also emerge on a sphere. Regarding the remaining
model parameters we follow the aforementioned studies [24,
76] and choose Dr = 0.5, C1 = 0.2, and C2 = 0. For spher-
ical geometry we consider a sphere with radius R= 100, such
that for passive case 50 repetitions of a rotational symmetric
smectic pattern perfectly fit to the surface. In the flat case a
square periodic domain is simulated with size L, where L is
chosen to match domain area w.r.t the sphere.

We use vector spherical harmonics, details in the methods
section 5, to conduct multiple simulations (15 for flat geometry
and 50 for spherical geometry) of the coarsening process for
each considered activity v0 ∈ {0.305, 0.35, 0.425, 0.5}. Each
simulation starts from uniform ψ(0) = ψ0 disturbed by ran-
dom noise ψ ′ with magnitude |ψ ′|< 0.01 applied at each grid
point.

In order to identify orientational defects we
define a nematic order parameter almost everywhere
x: ∥gradSψ(x)∥ ̸= 0:

Q(x) = d(x)d(x)− 1
2
Π(x) , d(x) =

gradSψ (x)×ν (x)
∥gradSψ (x)∥

,

(9)

with Π(x) = I−ν(x)ν(x) the surface identity of the con-
sidered geometry and ν the outward oriented surface normal.
The nematic texture is then extended to the complete domain
by smooth continuation. An associated distortion energy can
be defined along the tensor components I,J of Q w.r.t the
coordinates of embedding space R3

FQ [Q] =

ˆ
S
fd (Q)dS, fd (Q) =

1
2

3∑
I,J=1

∥gradSQI,J∥2,

(10)

which will be used to identify defects. For details we refer to
the methods section 5.

3.2. Pattern formation in active smectics

In order to discuss the complex dynamics of smectic pattern
formation and coarsening we introduce the following notions:

• Smectic lines are lines of minimal (maximal) density ψ. In
equilibrium they are quasi parallel and equidistant. In the
active system these lines move consistently in a direction
orthogonal to themselves;

• Grains are regions with quasi parallel and equidistant
smectic lines. They are characterized by the orientation of
the lines or the direction of their movement;

• Grain boundaries separate grains with different line orient-
ation or movement direction from each other. If more than
two grains are in contact the grain boundaries meet in junc-
tion points;

• Defects are localized areas where the smectic lines are not
parallel or not equidistant. For each defect a topological
charge is associated;

• Defect clusters are compact aggregates of defects. In con-
trast to grain boundaries, which are typically chainlike
aggregations of defects, these clusters lead to rotation;

• Rotating grains are a combination of defect clusters and
their associated grains. Due to the rotation of the cluster,
smectic lines form an Archimedes spiral with two rotation
directions and twomovement directions of the smectic lines.
They move either inward or outward.

Figures 1 and 2 highlight most of these features. All phenom-
ena introduced above can be observed in the video correspond-
ing to figure 2 (see appendix).

Figure 2 and the corresponding video in the appendix
show the coarsening process for one simulation with v0 = 0.5.
Within figure 2 at t0 = 500 smectic lines have emerged and
formed multiple grains. These grains move orthogonal to the
smectic lines, with black arrows indicating the direction of
movement. These phenomena are similar to the corresponding
state in flat 2D space and are also reminiscent to the known
coarsening processes in passive systems. At t1 = 900, at the
front side (top panel) grain boundaries curl up and form rotat-
ing grains which induce outward movement w.r.t the central
rotating defect cluster. On the back side (bottom panel) the dir-
ection of the grain movement changes without the curling up
of grain boundaries. At t2 = 1250 two counterclockwise rotat-
ing grains have formed with outward moving smectic lines,
inducing a long grain boundary between these two incompat-
ible grains. Note that the rotating defect clusters do not move
as soon as they are formed. After a metastable state where
grain boundaries wiggle, at t3 = 4000 the rotating grain with
its center at the back side expands and destroys the rotating
cluster at the front side. Snapshot at t4 = 9500 depicts an inter-
mediate configuration where the front cluster is destroyed, yet
the remaining grain moves in the clockwise direction and col-
lapses. This process leads to the final single grain configur-
ation at t5 = 20000 consisting of a counterclockwise rotating
cluster at the back side with outward moving smectic lines. On
the opposite side, with maximum geodesic distance, a clock-
wise rotating cluster has formed with inward moving smectic
lines. The corresponding transient of the distortion energy
FQ, together with the considered time instances, is shown in
figure 3 (top panel of Simulation 4).

3.3. Distinct coarsening regimes

The transients of the distortion energyFQ in the spherical case,
as shown in figure 3 (top panels), indicate different coarsening
regimes. While different simulation runs differ quantitatively,
they share common qualitative features. We can identify four
distinct regimes which are marked in each plot by labels a–c
and d. Regime a refers to initial coarsening, as characterized
by small grains which merge or dissolve. Defect clusters are
rarely observed in this regime. The scaling exponent in this
regime is roughly −1/2 in all simulations. In regime b, a set
of large rotating clusters is formed, while small grains without
rotating clusters are rarely present. The spatial arrangement
of the clusters and their rotation direction seem random but
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Figure 1. Smectic pattern formation and dynamics in sphere domain. (A) Snapshots of ψ exhibiting a typical set of phenomena with (A1) a
single disclination in smectic line structure with topological charge of +1/2 (location denoted by black semi circle); (A2) a grain boundary,
where the nematic texture exhibits an alternating pattern of +1/2 (black semi circles) and −1/2 (black tribars) defects; (A3) an isolated
dislocation in smectic lines, for which the associated nematic texture consists of two disclination defects with opposite sign yielding an
effective topological charge 0 for the dislocation. (B) A rotating cluster formed by several disclinations, where panels 1–4 depict the
temporal evolution of ψ with time steps of △t= 100, showing an outward spiraling movement of lines (marked in green and pink) with
rearranging disclinations and the associated nematic defects at center. The total topological charge of the cluster remains as +1 and its
center does not move.

Figure 2. Grain growth during the coarsening process for v0 = 0.5 in sphere domain, showing as a sequence of snapshots depicting ψ at
various times marked in Simulation 4 of figure 3, with front view (top panels) and back view (bottom) in terms of 180◦ rotation w.r.t vertical
axis. Black arrows indicate the direction of grain movement and black circle arrows mark the rotating defect clusters. Black bold letters
(A–C) indicate rotating clusters and correspond to the marks given in figure 4(B). Snapshots are taken at t0 = 500, t1 = 900, t2 = 1250,
t3 = 4000, t4 = 9500, and t5 = 20000. An animation of the presented snapshots and intermediate grain configurations is provided in the
appendix.

impact the subsequent evolution. This regime is characterized
by a coarsening of rotating clusters. As in Ostwald ripening,
large rotating clusters grow on the expense of small rotating
clusters. This leads to a faster coarsening compared to regime
a. The associated rotating grains are more stable than grains
without rotating clusters. A critical state is reached when a
grain boundary reaches a rotating cluster and dissolves it. The
remaining grain is then typically dissolved into the neighbor-
ing rotating grain. Some intermediate configurations during
the transition from regime a to regime b are more stable or
long-lasting than others. In the configuration shown in figure 2,
after a similar coarsening process indicated by b1 in figure 3,
two almost equally sized rotating grains cover the domain,
although their orientations are different, with a long grain

boundary separating them. Due to their similar size the grain
boundary migrates slowly, yielding a long time period with
quasi stable configuration, as indicated by b2 in figure 3. In
regime c, after the motion of grain boundary of the largest
rotating grain has dissolved any other rotating clusters, only a
single grain and the corresponding rotating cluster remain. The
grain boundary then quickly collapses, and an inward-directed
rotating defect cluster appears on the opposite pole position
of the dominant rotating defect cluster. The collapse of the
grain boundary happens very fast in a zipping mode, lead-
ing to a large coarsening exponent (see section 3.4). The final
regime d is featured by a stable configuration of two rotating
defect clusters (one inward, one outward) positioned on oppos-
ing sides/poles of the sphere with maximized distance. The
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Figure 3. Sample coarsening processes for v0 = 0.5: In sphere (top) and plane (bottom) domain, showing the time evolution of nematic
distortion energy FQ(t) for four different simulations. Diamond markers in Simulation 4 correspond to the snapshots used in figures 2
and 4. Labels a, b, c and d mark distinct coarsening regimes. The scaling exponent for the plane domain is roughly −1/2 in all four
simulations, as indicated by the dashed lines.

resulting rotation axis is determined by the dominant rotating
defect cluster emerging during the transition from regime a
to regime b. Also, the number of defects in these final-state
rotating defect clusters can vary in different simulations and is
determined by the formation of the dominant rotating defect
cluster.

In order to unveil the qualitative difference of the plane vs.
sphere domain, we conduct the same type of simulations on
a planar 2D domain. The corresponding distortion energy is
shown in figure 3 (bottom panels). They do not lead to dis-
tinct coarsening regimes and essentially can be described by
a single regime a, with scaling exponent roughly −1/2 in all
simulations (as indicated in the bottom panels), which termin-
ates into the final configuration d.

To further understand the differences we visualize the
dynamics of defect distributions in the temporally binned
data around different time instances for one sample simula-
tion, as shown in figure 4, and compare the configurations
on the sphere and the plane domains. For the sphere the con-
sidered time instances correspond to those of figure 2. These
defect distributions are obtained by collecting defect positions
around the selected time instances t0, . . . , t5, each of which cor-
responds to one of the 100 temporal bins (logarithmic sizes) set
up between t= 102 and t= 105, and evaluating a spatial distri-
butionDi(x0,x1) (100× 100 spatial bins) of the positions. The
resulting two-dimensional probability distribution of defect
positions is plotted as log-scale colormap (dark blue to yel-
low) with range limited to [10−3,1]. Dark blue patches indic-
ate smectic lines that are free from nematic defects, while dis-
tinct grain boundaries are indicated by green to yellow lines.
Movement of isolated defects (disclinations or dislocations)
is visible as short bright strokes. Rotating clusters are marked

and indicated by dashed circles. On the sphere local coordin-
ates (x0,x1) are derived from spherical coordinates (x0 cor-
responds to polar angle θ, x1 to azimuthal angle ϕ) such that
strong distortions can appear near left and right boundaries of
snapshots.

Initially the situation is similar on the sphere and the plane
domain. At the early time t0 an initial establishment of smectic
lines in small patches is visible for both domains. These
patches merge and rearrange to larger grains at time t1. For
the sphere domain, around time t1 two rotating clusters are
formed, marked asA andB. This occurs by the curling of grain
boundaries. At a later time t2 they evolve to two similarly sized
grains, yielding a metastable state where grain boundaries
hardly move. Eventually the grain boundaries move towards
cluster A at t3. In the t4 snapshot cluster A has been dissolved
and the grain boundary collapses with another rotating cluster.
At t5 the final minimal configuration (ground state dictated by
topology) of an outward rotating clusterB and an inward rotat-
ing cluster C is formed. This evolution process corresponds to
the snapshots given in figure 2. Especially the collapse of the
grain boundary at t4 is characteristic of the fast decay of FQ

shown in figure 3.
The situation differs on the plane domain. At t1 there are

two grains each containing a rotating cluster, labeled A and
B. In transition from t1 to t2 grains expand and merge, and
only the grains containing rotating clusters A and B remain.
At t3 the moving grain boundary reaches a rotating cluster and
dissolves it (as happened for cluster B in transition from t2 to
t3). With the vanishing of the last rotating cluster A the grain
boundaries dissolve into isolated defects and the collective
motion of smectic lines starts. In the t4 snapshot parallel bright
strokes indicate collective movement of isolated defects along
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Figure 4. Dynamics of defect distribution during the coarsening process: Left panel (A) for planar and right panel (B) for sphere domain for
v0 = 0.5. The different time instances t0, . . . , t5 correspond to the transients marked in figure 3 (Simulation 4) showing the nematic distortion
energy FQ. Dark blue patches indicate smectic lines that are free from nematic defects, while distinct grain boundaries are indicated by
green to yellow lines. Movements of isolated defects are visible as short bright strokes. Rotating defect clusters and directions of defect
motion are marked by white arrows. A video of the corresponding time evolution is provided in the appendix.

the direction indicated by arrows. They rearrange and move
collectively at the final configuration shown at t5. Identifying
these details for the other simulation runs of figure 3 leads to
the same qualitative features. We never observe a collapsing
grain boundary in a planar 2D geometry as on the sphere
domain at t4. We therefore associate this phenomenon of grain
collapse with the topological and geometrical constraints of
the sphere.

3.4. Fast coarsening regime

We next examine how the fast coarsening regime identified
above is influenced by the activity and how it influences statist-
ical coarsening laws. We therefore conduct more simulations
at different values of v0, and again compare our results with the
corresponding simulations in flat space. Figure 5(A) shows the
results of averaged distortion energy FQ over time, which can
be related to the statistics on the time decay of defect density.

For the planar geometry there is no clear distinction
between different scaling regimes, as shown in both figures 3

(bottom panels) and 5(A). This is similar to passive smectics
in 2D space. At small activity v0 = 0.305 we obtain the value
of coarsening exponent of 0.26, close to the scaling of t−1/3

for dislocations in 2D passive smectics [7, 8]. At large enough
activity the scaling is roughly t−1/2.

For the sphere the initial coarsening regime, i.e. regime a in
figure 3, shows a similar scaling behavior as the flat geometry.
At low activity this regime spans over most of the time range
until a steady state with low defect density is reached, ana-
logous to the behavior of the planar geometry (see the blue
and red lines in figure 5(A) at v0 = 0.305, where the black
dot indicates the transition towards the steady state config-
uration). The topological constraint and the curvature of the
sphere therefore do not affect the grain coarsening. However,
at high enough activity the dynamical process of coarsening
changes qualitatively, for which a transition to a faster coarsen-
ing regime becomes evident. The transition into this regime
happens earlier with increased activity, as seen in figure 5(A)
(v0 = 0.5, 0.425, and 0.35; blue lines). Much faster coarsening
processes, with much larger scaling exponents, are observed,
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Figure 5. Average behavior of coarsening for sphere and plane domains. (A) The nematic distortion energy FQ averaged over ensemble of
simulation runs on sphere (blue lines, 50 runs for each activity) and plane (red lines, 10 runs for each activity). Black dashed lines indicate
the fitted power-law decay. Black diamonds and dots indicate the fitting interval for the fast coarsening regime and the transition to the
steady state. (B) Time evolution of FQ at v0 = 0.5, for individual runs (light color lines) and the corresponding average (solid black line).
Left and right panels correspond to sphere and plane geometry, respectively. (C) Summary of values of scaling exponent r obtained from the
fitting in (A) as a function of activity v0, for sphere (blue) and plane (red) geometries.

with a scaling behavior of roughly t−2 (see figures 5(A) and
(C)). These scaling exponents are calculated for the time range
combining regimes b and c of figure 3. The transition between
these regimes strongly depends on the specific configurations,
as seen in figure 5(B) showing results from all the individual
simulation runs on the sphere and the flat domains for v0 = 0.5.
As the activity increases, the transition into the fast coarsen-
ing regime occurs at earlier time, and the final configuration is
reached earlier as well (see the black diamonds in figure 5(A)
at v0 = 0.5, 0.425, and 0.35, which mark the start and end
times for the fast coarsening regime, and the black dots which
mark the transition to the steady state).

3.5. Testing defect avalanche phenomenon

One could ask if the grain boundary collapse within this
fast coarsening regime shows any features of avalanche phe-
nomenon. To explore this we follow the characterization of
avalanche event given in [77], through the number of defects
N(t) and the defect velocity vd, and a sudden change of both
quantities. Within an avalanche the defect velocity is signi-
ficantly larger than during the whole coarsening process and
the number of defects reduces faster. The later has already
been identified by the time evolution of FQ in figure 5, which
relates to the defect density and thus also to the number of
defects. Here we examine the velocity of the defects in this fast
coarsening regime, with the comparison between the sphere
and plane domains for v0 = 0.5.

Figure 6 shows the evolution of the average defect velocity
magnitude for Simulation 4 of figure 3, its ensemble average
over all simulations, and the probability distribution of this

data over the complete time domain and of temporal binned
data. All results are shown for the sphere and the plane domain.
For high velocities |vd|/⟨|vd|⟩⩾ 1 a power law scaling with an
exponent of roughly −5.5 can be identified for the probab-
ility distribution for both the sphere and plane domains; see
figure 6(C). This strong decay cannot be exclusively attrib-
uted to the fast coarsening regime. First, the distributions are
similar for the sphere and plane domains at high velocities
while the fast coarsening regime is not present for the planar
domain. Second, the probability distribution of the considered
time bins, i.e. the blue lines in figure 6(C), shows essentially
the same behavior as the overall distribution, which indic-
ates that the high velocities are not limited to any specific
time span within the coarsening process. This is confirmed by
the time evolution of the averaged defect velocity magnitude
in figures 6(A) and (B), which does not show a significantly
larger velocity around the time instance t4 (fast coarsening
regime). We only obtain a plateau of lower velocities before
the fast coarsening regime. Thus, these results are not suffi-
cient to identify the grain boundary collapse observed in the
fast coarsening regime as an avalanche phenomenon.

4. Discussion and conclusions

The complex interplay of orientational and positional defects
under topological constraints, geometric effects, and active
driving has been investigated for active smectics on a sphere
using an active surface PFC model. Above a critical activity
threshold we have identified a stable state of rotating spirals
which emerge from two rotating defect clusters. While the
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Figure 6. Statistics of defect velocities: for sphere (top) and plane (bottom) domains at a large activity v0 = 0.5. (A) Evolution of average
defect velocity magnitude determined at each simulation timestep |v|(t) = 1

N(t)

∑N(t)
n=1 ∥vd(t,n)∥. This data corresponds to Simulation 4 in

figure 3 and is shown together with the distortion energy FQ (blue or red curve, where diamonds mark the times of snapshots shown in
figure 2). (B) Ensemble average of defect velocity magnitude [v](t) = 1

M

∑M
m=1

1
Nm(t)

∑Nm(t)
n=1 ∥vd(t,n,m)∥ across all simulations (M= 50 for

sphere geometry, M= 10 for flat geometry), together with the individual plots of |v|(t) for all M runs (blue and red lines). (C) Probability
distribution for defect velocity magnitude for combined data set across all the simulations and the complete time domain t ∈ [102,105]
(black line), and for temporal binned data (blues and red lines) where [102,105] is separated into 50 slices of logarithmic scaled boxes (as in
[78]). The power law fitting, with the obtained exponent s, for high velocities |vd|/⟨|vd|⟩⩾ 1 is marked by black dashed line.

number of defects in these clusters varies, they are always loc-
alized and positioned to maximize the distance between each
other. Such spiral states are reminiscent to spirals in reaction-
diffusions on a sphere [79–85].

The coarsening process that the system undergoes before it
reaches this stable state significantly differs from self-similar
coarsening in passive smectics or active smectics in the planar
geometry. While several features of grain boundary motion
at early coarsening are similar to the passive case, differ-
ences associated with activity are already present in this early
regime. These differences are rotating defect clusters, which
lead to an enhanced coarsening with defect density scaling of
roughly t−1/2 instead of roughly t−1/3 in the passive case. This
increase in the coarsening rate can be associated with activ-
ity and is independent of the considered geometry of sphere
or planar domain. A key characteristic for active smectics
on a sphere is the appearance of a fast coarsening regime. It
is present at late coarsening, just before the steady state is
reached. This regime is characterized by a scaling of roughly
t−2 for the time evolution of defect density and is only present
on the sphere domain. It is associated with the collapse of grain
boundary of a rotating grain. This collapse forms a new defect
cluster which is located on a pole position opposite to the
already present rotating defect cluster and rotates in the oppos-
ite direction, forming the rotating spiral state. This process
of grain boundary collapse and fast coarsening is found to

be different from the avalanche phenomenon. The velocity of
the defects within this regime is not significantly larger than
that during the whole coarsening process. Our simulations also
show that this fast coarsening regime follows a time period
of frustration, associated with a plateau or even an increase
in the transient of the distortion energy FQ and significantly
lower defect velocities. The extension of this plateau strongly
depends on the local configuration.

This investigation on a sphere can only be the first step to
understand the complex interplay in the coarsening process
of active surface smectics. For surfaces with the same topo-
logy but varying curvature we speculate that a similar steady
state configuration will be reached. However, varying surface
curvature potentially localizes the rotating defect clusters at
extrema of surface curvature, e.g. in prolate configurations,
or even leads to more complicated metastable states for more
complex geometries. We further speculate that a similar col-
lapse of defects will be also observed on more general geo-
metries just before the steady state configuration is reached.
However, the observed plateau in the transient of the distor-
tion energy before this event will probably strongly depend
on local geometric features. All these speculations ask for
further numerical investigation and experimental realization.
Numerical methods which deal with non-spherical geometries
and surface PFC or surface liquid crystals (polar and nematic)
have been developed [42, 86–88] and need to be extended to
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the active case. Also, the evolution of the surface in response
to the surface liquid crystals on it is an extension that can be
studied numerically [43]. Extending this to surface smectics
will allow us to consider surface instabilities, such as the
Helfrich–Hurault elastic instability, which if considered for
smectic shells can lead to surface undulations and buckling
[89]. Combined with activity this might be the path to model
and simulate some biological applications (e.g. those men-
tioned in [22]) as active surface smectics. Another interesting
issue to be addressed is the interplay between full crystalline
order and partial liquid-crystalline order on a sphere or curved
surface. This can be achieved for example by the formation
of a metastable liquid crystalline phase when starting from an
isotropic phase and finishing in a pure crystalline phase, or the
study of coexistence between active smectics and active crys-
tal, given that both crystalline and smectic liquid-crystalline
phases can be incorporated in the active PFC model.

5. Methods

5.1. Numerical solution by (vector) spherical harmonics

We expand ψ and p in (vector) spherical harmonics so that
equations (5) and (6) reduce to a set of ordinary differential
equations for the time-dependent expansion coefficients of ψ
and p. Let In = {(l,m) : 0⩽ l⩽ n, |m|⩽ l} be an index set of
the spherical harmonics Yml : S → C up to order n. The scalar
field ψ can be expanded as

ψ (r, t) =
∑

(l,m)∈I∞

ψ̂lm (t)Y
m
l (r) , (11)

with the expansion coefficients ψ̂lm(t). For the vector
field p : S → TS we consider the decomposition p(r, t) =
gradSp1(r, t)+ rotSp2(r, t), and construct a tangent vector
field basis from the gradient gradS and curl rotS = û×
gradS of the spherical harmonics basis functions. We con-

sider the vector spherical harmonics y(1)lm (r) = RgradSY
m
l (r)

and y(2)lm (r) =− r
∥r∥ × y(1)lm (r), and represent p by

p(r, t) =
2∑

i=1

∑
(l,m)∈I∞

p̂(i)lm (t)y(i)lm (r) , (12)

with expansion coefficients p̂(i)lm (t). The resulting Galerkin
scheme [90] reads

∂tψ̂lm (t)+
l(l+ 1)
R2

{
ε+

[
1− l(l+ 1)

R2

]2
}
ψ̂lm (t)

+
l(l+ 1)
R2

ν̂lm (t)− v0
l(l+ 1)
R

p̂(1)lm (t) = 0 , (13)

∂tp̂
(i)
lm (t)+

[
l(l+ 1)
R2

+Dr

](
C1p̂

(i)
lm (t)+C2q̂

(i)
lm (t)

)
+ v0

δi1
R
ψ̂lm (t) = 0, (14)

with i ∈ {1,2}, (l,m) ∈ In, and t ∈ [t0, tend]. Here ν̂lm(t) are
the expansion coefficients of ν = ψ3, q̂(i)lm (t) are the expan-
sion coefficients of q= ∥p∥2p, and tend represents the simu-
lated time range starting at t0 = 0. Quadrature on the sphere S
is realized by evaluating ψ and p in Gaussian points {(θi,ϕj) :
1⩽ i ⩽ Nθ,1⩽ j ⩽ Nϕ}, whereNθ andNϕ are the numbers of
grid points along the polar and azimuthal coordinates, respect-
ively. An appropriate quadrature rule [91] is applied. We use
a second-order accurate scheme similar to that described in
[65] for the time-discretization of equations (13) and (14). The
implementation of the vector spherical harmonics is based on
the toolbox SHTns [91] and identical to the one used in [24].

For numerical solution procedure we discretize the spher-
ical domain withNθ = 512 andNϕ = 1024, and used spherical
harmonics expansion of order n= 500 and a time step τ = 0.05
for time-discretization. The simulations are performed on the
time domain [0,105].

5.2. Identification and tracking of disclinations and
dislocations

To detect disclinations and dislocations in the smectic pattern
we use the nematic order parameter of equation (9) and its
distortion energy defined in equation (10). For these quant-
ities several techniques have been proposed (see, e.g. [92])
to identify dislocations and disclinations. Here we use the
approach to identify defects as localized maxima of distortion
energy in equation (10). It is noted that in this context the dis-
tinction between dislocation and disclination is dropped. To
exclude faulty detections due to numeric fluctuations in fd(Q)
we use a lower threshold fd(Q)> 1. Furthermore we filter the
resulting positions by a distance threshold of ∥xi − xj∥R3 >
π/2 to reduce possible sets of maxima in fd(Q) close to a dis-
clination to a single position.

At the next step we aim to identify larger coherent struc-
tures, like rotating defect clusters and grain boundaries. We
evaluate a hierarchical clustering [93] of the positions along
Euclidean distance with the requirement of single connection,
using the implementation provided by scipy.cluster [94].
The coherent structures are given by a slice (of the defect
position dendrogram) with threshold 3/2π. As the final step
we connect the instantaneous defect positions and clusters
by using the trackpy [95] particle tracking library. From
these trajectories we obtain defect velocity magnitude by
central difference vd(ti) = [∥xi− xi−1∥/(ti − ti−1)+ ∥xi+1 −
xi∥/(ti+1 − ti)]/2.

5.3. Fast coarsening regime and steady state regime
tracking

To quantify and track the fast coarsening regime we consider
the distortion energy transient (t,FQ(t)) in the log–log space
(t= log10 t, FQ = log10FQ). There we separate the log–log
transient in equidistant slices [ti, ti+ δt], i ∈ {0, . . .250}, eval-
uate the relative energy decrease in each slice di = [FQ(ti+
δt)−FQ(ti)]/maxk[FQ(tk+ δt)−FQ(tk)] and a threshold by
di > 0.75 to obtain time slices containing fast coarsening. In
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a second step neighboring slices with fast coarsening regime
are combined.

Applying this method to the transients of averaged ener-
gies, as described in figure 5, we obtain a single time domain
with fast coarsening regime. Note that when applying such a
method to an energy transient of a single simulation run we
have to reduce noise in the transient, e.g. by convolution with
a Gaussian function along temporal axis in the log–log space,
and then yield possibly more than one time domains with fast
coarsening regime.

To identify a steady state regime we determine the average
nematic distortion energy ⟨FQ⟩ in the last 5% of simulation
time domain [0,T]. If the energy at t= 0.95T, the begin of aver-
aging domain, is less than a value 5% higher than the averaged
energy, i.e. if FQ(0.95T)< 1.05⟨FQ⟩, we classify the simula-
tion as reaching the steady state. If a steady state is reached,
we find the steady state domain [Ts,T] by traversing the sim-
ulation time steps backward, starting from t= 0.95T, as long
as the criteria FQ(t)< 1.05⟨FQ⟩ is satisfied.

5.4. Decay rate fitting

To estimate the power-law decay rates as done in figures 5
and 6, we transform the considered data into the log–log space
and perform linear regression on the relevant subset of the data
to obtain the decay rate r. For figure 5 we use the full data set
in cases where no steady state was tracked, while in cases with
steady state we consider data sets either restricted to [0,Ts]
(if no fast coarsening regime was tracked) or restricted to the
regime of fast coarsening. In figure 6 we restrict the data set to
velocities faster than the average, i.e. |vd|/⟨|vd|⟩⩾ 1.

5.5. Statistics of defect velocities

As we are concerned with evolution in a time span across sev-
eral orders of magnitude, we typically describe the phenom-
ena in log–log space. To reduce noise in the simulation results
we apply the temporal binning with log sized bins as provided
by numpy.logspace [96] such that the considered bins are
equally sized in log space.

To characterize the defect velocity we apply several notions
reflecting the possible perspectives on the data. As the first
notion we consider

|v|(t) = 1
N(t)

N(t)∑
n=1

∥vd (t;n, I)∥,

the average defect velocity magnitude across a defect config-
uration (consisting of N(t) defects) at a certain time t and in
a simulation I. To obtain a characteristic defect velocity mag-
nitude independent of instantaneous defect configuration and
specific realization of evolution, which highly depend on the
random initial value, we introduce an ensemble average across

M simulations to obtain the characteristic average defect velo-
city magnitude

[v] (t) =
1
M

M∑
m=1

1
Nm (t)

Nm(t)∑
n=1

∥vd (t,n,m)∥.

Furthermore, we consider the probability distribution of defect
velocities to obtain a notion compatible to [78]. For this pur-
pose we consider the magnitude of defect velocity as a ran-
dom variable. We calculate the associated expected value
⟨|vd|⟩ and probability distribution numerically from the com-
bined data set of all defect configurations across all sim-
ulations, ∥vd(t,n,m)∥,∀n= 1 . . .N, m= 1 . . .M, t ∈ [102,105],
as shown in figure 6(C) (black curves). To test whether
the observed different coarsening regimes have an impact
on this probability distribution we repeat the calculation
by restricting the defect velocity data to different tem-
poral bins with the use of 50 slices of logarithmic scaled
boxes.
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Appendix

A.1. Animations of Evolution

To supplement the description for the evolution of smectic
defect density distributions presented in figures 2 and 4, we
provide visualization animations which can be found at https://
datashare.tu-dresden.de/s/jXJ5yBNg3wKZF94

A.1.1. EvolSmecticLines. This video corresponds to figure 2,
showing the rescaled density field ψ in the front and back per-
spectives on a linear time scale.

A.1.2. D450_V0.5. Here we combine the defect distributions
along 100 logarithmic temporal bins to an animation. On the
left side the transient of nematic distortion energy is depicted,
while the red diamonds indicate the domain of the temporal
bin. The right side provides the defect density distribution for
the time bin. These results correspond to the snapshots presen-
ted in figure 4(A).

A.1.3. R100_V0.5. Analog to D450_V0.5, this animation
corresponds to the result presented in figure 4(B). The defect
densities have been derived from simulation results shown in
EvolSmecticLines.
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Grapin-Botton A and Jülicher F 2022 Emergent chirality in
active solid rotation of pancreas spheres bioRxiv Preprint
https://doi.org/10.1101/2022.09.29.510101

[63] Achim C V, Wittkowski R and Löwen H 2011 Phys. Rev. E
83 061712

[64] Radtke L and Voorhees P W 2002 Growth and Coarsening:
Ostwald Ripening in Material Processing (Springer)

[65] Backofen R, Gräf M, Potts D, Praetorius S, Voigt A and
Witkowski T 2011 Multiscale Model. Simul. 9 314–34

[66] Backofen R, Barmak K, Elder K and Voigt A 2014 Acta Mater.
64 72–77

[67] Menzel A M and Löwen H 2013 Phys. Rev. Lett.
110 055702

[68] Menzel A M, Ohta T and Löwen H 2014 Phys. Rev. E
89 022301

[69] Alaimo F, Praetorius S and Voigt A 2016 New J. Phys.
18 083008

[70] Alaimo F and Voigt A 2018 Phys. Rev. E 98 032605
[71] Ophaus L, Gurevich S and Thiele U 2018 Phys. Rev. E

98 022608
[72] Huang Z F, Menzel A M and Löwen H 2020 Phys. Rev. Lett.

125 218002
[73] Ophaus L, Knobloch E, Gurevich S V and Thiele U 2021

Phys. Rev. E 103 032601
[74] Löwen H 2010 J. Phys.: Condens. Matter 22 364105

[75] Koehler C, Backofen R and Voigt A 2016 Phys. Rev. Lett.
116 135502

[76] Menzel A M 2015 Phys. Rep. 554 1–45
[77] Chan P Y, Tsekenis G, Dantzig J, Dahmen K A and

Goldenfeld N 2010 Phys. Rev. Lett. 105 015502
[78] Angheluta L, Jeraldo P and Goldenfeld N 2012 Phys. Rev. E

85 011153
[79] Maselko J and Showalter K 1989 Nature 339 609–11
[80] McQuillan P and Gomatam J 1996 J. Phys. Chem. 100 5157–9
[81] Gomatam J and Amdjadi F 1997 Phys. Rev. E 56 3913–9
[82] Davidsen J, Glass L and Kapral R 2004 Phys. Rev. E

70 056203
[83] Amdjadi F and Gomatam J 2005 J. Comput. Appl. Math.

182 472–86
[84] Calhoun D A, Helzel C and LeVeque R J 2008 SIAM Rev.

50 723–52
[85] Sigrist R and Matthews P 2011 SIAM J. Appl. Dyn. Syst.

10 1177–211
[86] Aland S, Lowengrub J and Voigt A 2011 Phys. Fluids

23 062103
[87] Aland S, Lowengrub J and Voigt A 2012 Phys. Rev. E

86 046321
[88] Nestler M, Nitschke I, Praetorius S and Voigt A 2018 J.

Nonlinear Sci. 28 147–91
[89] Blanc C, Durey G, Kamien R D, Lopez-Leon T,

Lavrentovich M O and Tran L 2023 Rev. Mod. Phys.
95 015004

[90] Hesthaven J S and Warburton T 2007 Nodal Discontinuous
Galerkin Methods: Algorithms, Analysis and Applications
(Springer)

[91] Schaeffer N 2013 Geochem. Geophys. Geosyst. 14 751–8
[92] Wenzel D, Nestler M, Reuther S, Simon M and Voigt A 2021

Comput. Methods Appl. Math. 21 683–92
[93] Müllner D et al 2013 J. Stat. Softw. 53 1–18
[94] Virtanen P et al (SciPy 10 Contributors) 2020 Nat. Methods

17 261–72
[95] Allan D et al 2019 Soft-matter/trackpy: trackpy v0. 4.2
[96] Harris C R et al 2020 Nature 585 357–62

13

https://doi.org/10.4208/cicp.OA-2021-0206
https://doi.org/10.4208/cicp.OA-2021-0206
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevE.91.022306
https://doi.org/10.1103/PhysRevFluids.4.044002
https://doi.org/10.1103/PhysRevFluids.4.044002
https://doi.org/10.1073/pnas.1119578109
https://doi.org/10.1073/pnas.1119578109
https://doi.org/10.1073/pnas.1201141110
https://doi.org/10.1073/pnas.1201141110
https://doi.org/10.1209/0295-5075/ac757a
https://doi.org/10.1209/0295-5075/ac757a
https://doi.org/10.1101/2022.09.29.510101
https://doi.org/10.1103/PhysRevE.83.061712
https://doi.org/10.1103/PhysRevE.83.061712
https://doi.org/10.1137/100787532
https://doi.org/10.1137/100787532
https://doi.org/10.1016/j.actamat.2013.11.034
https://doi.org/10.1016/j.actamat.2013.11.034
https://doi.org/10.1103/PhysRevLett.110.055702
https://doi.org/10.1103/PhysRevLett.110.055702
https://doi.org/10.1103/PhysRevE.89.022301
https://doi.org/10.1103/PhysRevE.89.022301
https://doi.org/10.1088/1367-2630/18/8/083008
https://doi.org/10.1088/1367-2630/18/8/083008
https://doi.org/10.1103/PhysRevE.98.032605
https://doi.org/10.1103/PhysRevE.98.032605
https://doi.org/10.1103/PhysRevE.98.022608
https://doi.org/10.1103/PhysRevE.98.022608
https://doi.org/10.1103/PhysRevLett.125.218002
https://doi.org/10.1103/PhysRevLett.125.218002
https://doi.org/10.1103/PhysRevE.103.032601
https://doi.org/10.1103/PhysRevE.103.032601
https://doi.org/10.1088/0953-8984/22/36/364105
https://doi.org/10.1088/0953-8984/22/36/364105
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1103/PhysRevLett.116.135502
https://doi.org/10.1016/j.physrep.2014.10.001
https://doi.org/10.1016/j.physrep.2014.10.001
https://doi.org/10.1103/PhysRevLett.105.015502
https://doi.org/10.1103/PhysRevLett.105.015502
https://doi.org/10.1103/PhysRevE.85.011153
https://doi.org/10.1103/PhysRevE.85.011153
https://doi.org/10.1038/339609a0
https://doi.org/10.1038/339609a0
https://doi.org/10.1021/jp952512j
https://doi.org/10.1021/jp952512j
https://doi.org/10.1103/PhysRevE.56.3913
https://doi.org/10.1103/PhysRevE.56.3913
https://doi.org/10.1103/PhysRevE.70.056203
https://doi.org/10.1103/PhysRevE.70.056203
https://doi.org/10.1016/j.cam.2004.12.027
https://doi.org/10.1016/j.cam.2004.12.027
https://doi.org/10.1137/060664094
https://doi.org/10.1137/060664094
https://doi.org/10.1137/100806692
https://doi.org/10.1137/100806692
https://doi.org/10.1063/1.3584815
https://doi.org/10.1063/1.3584815
https://doi.org/10.1103/PhysRevE.86.046321
https://doi.org/10.1103/PhysRevE.86.046321
https://doi.org/10.1007/s00332-017-9405-2
https://doi.org/10.1007/s00332-017-9405-2
https://doi.org/10.1103/RevModPhys.95.015004
https://doi.org/10.1103/RevModPhys.95.015004
https://doi.org/10.1002/ggge.20071
https://doi.org/10.1002/ggge.20071
https://doi.org/10.1515/cmam-2020-0021
https://doi.org/10.1515/cmam-2020-0021
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.18637/jss.v053.i09
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Active smectics on a sphere
	1. Introduction
	2. Review of known results
	2.1. Equilibrium configurations on a sphere
	2.2. Active liquid crystals on a sphere
	2.3. PFC and other modeling approaches

	3. Results
	3.1. Model
	3.2. Pattern formation in active smectics
	3.3. Distinct coarsening regimes
	3.4. Fast coarsening regime
	3.5. Testing defect avalanche phenomenon

	4. Discussion and conclusions
	5. Methods
	5.1. Numerical solution by (vector) spherical harmonics
	5.2. Identification and tracking of disclinations and dislocations
	5.3. Fast coarsening regime and steady state regime tracking
	5.4. Decay rate fitting
	5.5. Statistics of defect velocities

	Appendix 
	A.1.  Animations of Evolution
	A.1.1.  EvolSmecticLines.
	A.1.2.  D450_V0.5.
	A.1.3.  R100_V0.5.


	References


