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Fun with Hard Spheres

Hartmut Lowen

Tnstitut fiir Theoretische Physik II, Heinrich-Heine-Universitdt Diisseldorf,
Universititsstrae 1
D-40225 Diisseldorf, Germany

Abstract. Thermostatistical properties of hard sphere and hard disk systems are dis-
cussed. In particular we focus on phase transitions such as freezing in the thermody-
narmic limit. Results based on theory and computer simulations are given. It is empha-
sized that suspensions of sterically-stabilized colloids represent excellent realizations of
the hard sphere model. Finally a survey of current research activities for hard sphere
systems is presented and some recent results are summarized.

1 Motivation

This article aims at several points: First, it is a brief introduction to classical
statistical physics of hard sphere-like systems ranging from elementary defini-
tions to recent research activities. In this respect it represents both a tutorial
and a review. Second, it is written by a physicist, not by a mathematician. This
implies that emphasis is put on simple physical pictures omitting any mathemat-
ical rigour. However, it is tried to link to the literature of mathematical physics
and to establish thereby a connection between physics and mathematics. Third,
if possible, relations between statistical physics and geometry are discussed.

2 Introduction: The Model

The hard sphere model is defined by a pair interaction between two classical
particles that only involves a non-overlap condition. The potential energy of a
pair of hard spheres is
wifr <o

Vi) = {D else (1)
where ¢ is the diameter of the spheres and r is the distance between the two
centers of the spheres, see Fig. 1 on page 315. The potential V(r} is sketched
in Fig. 2. It is very “steep” for touching spheres. More formally, the peculiarity
of the hard sphere (or any other hard body) potential is that it sets a length
scale {namely o) but it does not set any energy scale. Clearly, a configuration of
two overlapping spheres is punished by an infinite energy. Having a Beltzmann
factor in mind, this implies that such overlapping configurations do not occur,
i.e., they have no statistical weight in a thermal average. If one sphere is fixed,
a second sphere can possess any center position except for a sphere around the
first sphere with a radius ¢. This is the reason why one calls the potential (1)
an “excluded volume” interaction.
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Interesting questions and non-trivial effects arise when many hard spheres
are interacting at high density. To be specific we consider N hard spheres in a
system volume {2 at a temperature T. The particle number density is then

p =N/ 2)

An equivalent dimensionless measure of the number density is provided by the

so-called packing fraction (or volume fraction) n which is the ratio of the volume

of the N spheres and the total accessible volume (2:
=N/ =npa’/6 {3)

where {2, = o /6 is the volume of a single sphere.

Let the set of three-dimensional vectors { Ry, Ra, ..., Ry} denote an arbitrary
configuration of V spheres, see Fig. 3. Then the total potential energy associated
to this configuration is

N
V(R Ry, Ry)= S V(R, - Ry))) (4)

ii=1lii<y

where we distinguish different functions by giving them different arguments.
Obviously, as V{(R1, Ra, ..., Ry} is a sum over hard sphere potentials, it only
takes the two values 0 and oo. Consequently, for the Boltzmann factor, we get

exp(—ﬁV{Rh RQ, veny RN)} = exp(—V(Rl, Rz, vany RN)) (5)

with 3 = 1/kpT, kp denoting Boltzmann’s constant. This implies that the tem-
perature scales out trivially. Or, in other words, hard objects are athermal; all
their structural and thermodynamical properties do not depend on temperature
so that the density p (or the packing fraction %) is the only relevant thermody-
namical variable. The only relevance of temperature is that kg7 sets the natural
energy scale. This can directly be seen by defining the classical canonical parti-
tion function

L .
Zzwm—ﬁ/dSR ] d*Ryexp(~V(Ri,Ra,...R 6
AINNT /, 1 o nexp{~V(Ry, Ry ~)) (6}

Here, the de Broglie thermal wave-length A is just an arbitrary length scale to
make the partition function dimensionless. A i3 irrelevant since multiplying A
by a scaling factor simply means that the chemical potential p is shifted by an
(irrelevant) constant (the definition of u is given later, see (27) and [18]). In
(6), the factor 1/N! avoids multiple counting of configurations that arise simply
from interchanging particle labels. Then the classical canonical (Helmholtz) free
energy is

F=—-kgTnz (7

from which we can extract all information required for equilibrium thermody-
namics. Here, it becomes again evident that the thermal energy kpT simply sets

Fun with Hard Spheres 207

the energy scale of the Helmholtz free energy but the reduced quantity F'/kgT
is independent of temperature.

Interesting collective phenomena are conveniently studied in the so-called
thermodynamic limit (TDL) where the number of particles, N, and the system
voiume, {2, become infinite such that the particle number density p = N/f2
stays finite. A phase transition is signalled by a nonanalytical dependence of
the Helmholtz free energy on the thermodynamic parameters such as density p
and temperature 7. The non-analyticities determine the phase diagram of the
system. At this stage we shall not study the existence of the thermodynamic limit
but simply take it for granted. Unfortunately the thermodynamic limit implies
many integrations in (6) for the partition function Z. Hence one has either to
rely on Monte Carlo techniques to evaluate this high-dimensional integral or to
perform approximation methods. As far as I know, there is no exact solution for
a phase transition in D-dimensional hard sphere systems if D is larger than 1,
for a more detailed discussion see helow.

One can also add an ezternal potentic] Vi (1) to the system. If Voi(r)
vanishes, one speaks about a bulk system. The presence of an external potential
means that the total potential energy now reads

N
V{Ry, Rgy ., Ry) = > Ve (Ry) +
i=1

N

Y. V(R - Ry (8)

3, 4=1;i<4

Typical examples for sources of an external potential are system walls and sy-
stem boundaries, a gravitational field, external laser-optical fields ete. For a
fixed external potential one can also perform the thermodynamic limit. In cases
of a symmetry-breaking phase transition, one can force the system to be in
a symmetry-broken phase by imposing a suitable external potential Vp(r) =
ef(r). Now the sequence of the TDL and the limit ¢ — oo is crucial and inter-
changing both leads to different results. While one always gets a homogeneous
bulk system if the limit € — oo Is performed first, a symmetry-broken state may
be reached if the limit € — oo is performed after the TDL.

One hasic question concerns the problem of close-packing in the TDL: A first
part of the problem addresses the maximum of the packing fraction which defines
the socalled close-packed fraction #,. The second part is the corresponding close-
packed configuration whick leads to this close-packed density. Physicists have
assumed over centuries that the close-packed situation of spheres is a stack of
intersecting two-dimensional triangular lattices. This gives

Tep = 7/3V2 = 0.740... (9)

In fact, a rigorous mathematical proof for this was lacking until 1998 when Hales
discovered one (see e.g. [19}). The problem was that locally one can achieve
closer packings by icosahedral structures but these packings cannot be joint
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together to fill the whole space. In fact, it is much simpler to prove that ., =
7/3+/2 among all periodic lattice structures which was done in 1831 by Gauss.
See the contribution of J. Wills in this volume for different problems of close-
packing. It is clear that there are many configurations leading to the same close-
packed fraction n., or, in other words, there is a high degeneracy of close-packed
configurations. In one of them, the spheres are sitting on face-centered-cubic
(fce) lattice positions which corresponds to a stacking sequence ABCABC....
Another structure is the hexagonal-close-packed (hep) lattice corresponding to
a stacking sequence ABAB.... A more exotic structure is the double hep lattice
with a stacking sequence ABACABAC..., but also a random stacking sequence
as ABCBACBABCA... is conceivable.

One may now look for a phase transition in the range of intermediate densities
0 < 1 < Nep. In fact, it is by now well-established and accepted that hard spheres
exhibit a freezing transition which we shall discuss in detail in chapter 3 and 4.

Let us finish with two more general remarks on the hard sphere model: First,
due to its temperature-independence, it is the simplest non-trivial model for
an interaction. In this sense, it is useful as a reference system for systems with
more complicated interactions and particle shapes. Since a theoretical physicist
typically first tries to incorporate the essential ingredients in a simple model
in order to study the principle mechanisms, the hard sphere model is the first
choice of a reasonable approximation. This is iflustrated in the cartoon of Fig. 4:
if a theoretician studies a herd of elephants, his first thought is to approximate
them by hard spheres neglecting any details (trunks, tails, etc.). On a length
scale compatible with the overall size of an eliphant this approximation is not
completely ridiculous!

The second important fact is that the equilibrium thermodynamical proper-
ties of the hard sphere model can actually be probed in nature by examining
suspensions of spherical sterically-stabilized colloidal particles (for a review, see
[75]}. Such particles have a mesoscopic size between lnm and lpm. They are
coated by polymer brushes and suspended in a microscopic solvent. A schematic
picture is given in Fig. 5. A typical coiloidal material is polymethylmethacrylate
(PMMA). The omnipresent van-der-Waals attraction between two colloidal par-
ticles can be tuned to be extremely small by “index-matching” the particles. If
the typical length 7 of the adsorbed polymer brushes is much smaller than the
diameter ¢ of the colloidal spheres, the total interaction between the particles
is dominated by excluded-volume effects. This enahles one to directly compare
experimental data with predictions from the hard-sphere model. An electron-
micrograph of colloidal particles is shown in Fig. 6. Indeed one sees that all the
spheres have the same diameter, i.e. the socalled size-polydispersity is small.
Still, in an actual quantitative comparison, there are three caveats: 1) Is the size-
polydisperity really small in the samples? i) Are the colloidal particles really
spherical i.e. isotropic? iii) Are the interactions stiff or is there still a penetrabil-
ity of spheres? In recent experiments it has been proved that ail these possible
problems can be avoided by carefully “cooking” the suspensions [75].
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3 The Hard Sphere Model
in Arbitrary Spatial Dimension

3.1 General

It is instructive to gemeralize the hard sphere model to an arbitrary spatial
dimension D). The reason to do so is twofold: First, one can formally embed
the three-dimensional case in a general context. Second, in some special spatial
dimensions, exact results are available.

The interaction between two hard “hypersphere” in spatial dimension D is

_Jooiflr| <o
virh = { o7 i (10)
Here, r = (ry,7a,...,rp) 18 a D-dimensional position vector and |r| = Zil 2

is the distance between the centers of two hyperspheres. It is straightforward
to generalize the formalism developed in the last chapter to arbitrary D. The
canonical partition function now is

— 1 D D
exp(_V(Rl’R2:'“,RN)) (11)

where R; now is the D-dimensional position vector of the ith particle. Let us
subsequently discuss some special cases.

3.2 QOne-Dimensional Case

In the one-dimensional case (D = 1) we are dealing with NV hard rods of width
o on a line of length I, see Fig. 7. Here the number “line” density is p = N/L
and the packing fraction is simply 1 = po. The close-packed situation is trivial
in this case leading to 1, = 1. This case is remarkable insofar as the partition
function Z and the Helmholtz free energy F' can be calculated analytically even
in the thermodynamic limit. This was done by Tonks [83] in the early days of
statistical mechanics. The final result for the reduced Helmholtz free energy per

particle is
F

kTN
As a result, there is no phase transition as F is analytic in the particle density
p in the domain 0 < p < 1/o. The only nonanalyticity occurs a$ the boundaries
for p — 1/ (close-packing) where F' diverges to infinity as all rods are forced
to touch each other. But this is not a true phase transition.

In(pd) — 1 —In{l — peo) (12}
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3.3 Two-Dimensional Case

In the two-dimensional case (D) = 2) of hard disks the close-packed area fraction
18 ep = Tpepo?/d = w/24/3 = 0.907... corresponding to a perfect triangular
lattice with long-ranged translational order. The proof is attributed to Lagrange
who did it as early as in 1773. Note that apart from trivial translations, there is
no degeneracy as in the three-dimensional case. As far as phase transitions are
concerned, no rigorous result is known so far. The Fréhlich-Pfister argument for
the absence of long-ranged translational order [35] is not possible for hard disks
as some smoothness conditions are required for the mathematical proof which are
not fulfilled for hard disks. The nature of the freezing transition for hard disks
is still debated in recent literature {49,60] but at least there is evidence from
computer simulations for a freezing transition into a triangular lattice occuring
for a density well-separated from close-packing. Most probably the transition is
in accordance with the Kosterlitz-Thouless scenaric [49].

3.4 Arbitrary Dimension

Situations of hyperspheres with D > 3 are also conceivable, at least formally.
If one restricts the consideration within periodic lattice types, the close-packed
density is known for I} = 4, 5,6, 7,8 and only for peculiar higher dimensions but
not in general, see [55] for a compilation of recent data. Apart from very recent
work [30], I am not aware of any investigation of phase transitions in higher
dimensions.

3.5 Degenerate Cases

Finally let us discuss two “degenerate” situations, namely D = 0 and the limit
D — co. The zero-dimensional case can be viewed as a sphere in a cavity that
holds only one particle. In this case one can compute the partition function
exactly, of course. This limiting case is important to check the validity of different
density functional approximations. The limit of infinite dimension is more tricky.
There are bounds for the close-packed deusity proved at the beginning of this
century by Minkowski and by Blichfeld (in [55]). In fact, one knows

(D) D+2
25 S e S o2 (13)

where ((D) denotes the Riemannian zeta-function. This implies that the close-
packed density vanishes in the limit D — oo. A virial analysis shows that only the
first and the second virial coefficients survive in the limit 2 — oo such that one
can use an Onsager-type analysis to extract the instability of the finid, see 132,
33] and [89]. The rigorous location of the freezing which should also depend on
the structure of the crystalline phase is still an open question. However there are
recent investigations using diagrammatic expansions [34]. The question might be
easier to answer for parallel hard hypercubes where the problem of close-packing
is trivial and an instability analysis suggest a second-order transition from a Auid
phase into a hypercubic lattice [50].
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4 Hard Spheres and Phase Transitions: Theory

In this chapter we review some popular theories for the many-body hard sphere
system. Most theories are constructed ir sach a way that they only work in a
certain phase. The easiest theory which applies to the solid phase is the cell or
“free volume” approach. We also mention the Percus-Yevick and scaled-particle
theory which describes the fluid state. Finally a unifying theory which works in
both phases can be obtained by exploiting the density functional technique.

4,1 Intuitive Arguments

Why is there a fluid-solid transition in the hard sphere system? This is not
obvious at all from intuition and it is still not accepted by everybody in the
physics community. In order to discuss this further, we stress that the averaged
potential energy vanishes, i.e.

<V(Ry, Ra,..,Ry) >=0 (14)

as configuration where spheres are at contact have zero statistical weight. Here
< A > denotes the canonical average of the quantity A

1
<AZ = gEN
j d°Ry ... / d*Ry A exp(—V(Ry, Ry, ..., Ry)) (15)
n £2

This immediately implies that the total free energy can be written as
- 3
FeHu, —-TS= —Q-NkBT—TS (186)

where Hy,,, = 3NkgT/2 is the averaged kinetic energy of the spheres and §
is the entropy. Hence, apart from the trivial constant %N kg7, there is only
entropy. This is the reason why one says that hard spheres are an enfropic
system. The intuitive feeling is that high entropy means low order. According
to this intuition, an ordered phase should have a lower entropy or a higher
free energy than a disordered phase. Hence a disordered phase has minimal
free energy and should be the thermodynamically stable phase. This simple
argument, however, is wrong. In fact, at high densities, the entropy of hard
spheres is smaller in the ordered (solid) phase than in the disordered (fluid)
phase! A more refined argument splits the entropy into two different parts which
is visualized for hard disks in Fig. 8. For any random or disordered situation,
one has many possible configurations but as the density grows more and more of
these configurations are blocked by touching nearest neighbours. In an ordered
solid-like phase, on the other hand, there is only one basic lattice configuration
possible, but one can generate further non-overlapping configurations by moving
the disks slightly away form their lattice position. Hence, a fluid phase has a high
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configurational entropy but a small “free volume” entropy, while a solid phase has

a low configurational entropy but a high correlational (or “free volume”) entropy.
Both kind of entropies depend on the density. The configurational entropy is
dominating for small densities whereas the “free volume” entropy is dominating

near close-packing. Consequently there has to be a phase transition between

these two situations for intermediate densities. It has to be emphasized that the
freezing transition is not driven by competition between potential energy and
entropy but by competition between these two different kinds of entropies. This
is even the generic mechanism for freezing which also works for soft repulsive
potentials. We finally remark that these two different kinds of entropies can be
properly defined and calculated by density functional theory [9].

4.2 The Cell Model

The cell theory or free volume approach (for a general introduction and histor-

ical remarks see [61]} starts from a given hard sphere solid. We now draw the

Wigner-Seitz (or Voronoi} cells of this lattice, see Fig. 9. Let us assume that
each sphere can move freely only within its own Wigner-Seitz cell. QObviously

we are neglecting some further configurations by this restriction, therefore this

theory clearly is an approximation. But this approximation should be justified
near close-packing. Equivalently, this means that any center of the spheres can
move within a small “free volume” {2; which has the same form as the Wigner-
Seitz cell, see again Fig. 9. By counting the configurations and considering trivial
particle exchanges we estimate the partition function as follows:

4z Zor = AS—NQ?I (17)
and the free energy is
F - Feor
kpTN — kgTN
=ﬁn¢i+mmAm)—mm€%@fﬁm1] (18)
7

The cell theory thus establishes a rigorous upper bound to the free energy.
Clearly, the free energy diverges as n — 1,. The leading logarithmic divergence
becomes in fact asymptotically exact as 7 — 7, [61]. In the one-dimensional case
(D =1) the cell theory gives the exact equation of state which is the pressure

6Fl
AT

as a function of density, but the free energy itself is not exact.

P=- (19)

4.3 Percus-Yevick Theory

Another obvious approach Is to start from very low densities where the system
is an ideal gas and calculate perturbatively the next leading corrections. The
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equation of state can be expressed in powers of the density. Clearly the starting
point here is the fluid phase. It is known that the virial expansion has a finite
radius of convergence in the density for any spatial dimension D {53] but the
actual convergence radius might be much larger. One could surmise that all the
virial coefficients are positive but a rigorous mathematical proof is still lacking.

"The virial expansion can be improved by solving socalled liquid-integral equa-
tions [41]. In fact the following Percus-Yevick closure relation has been found
to give good result even for intermediate packing fractions up to 5 = 0.3. The
closure is expressed in terms of two correlation functions. The first is the pair
distribution function g(r) defined as

N
“”_E%<U§if”““““%”> (20)

This function gives the probability of finding a particle at distance r from a given
fixed particle. A typical g(r) for hard spheres is shown in Fig. 10. For » < o,
g(r) vanishes which is just the non-overlap condition:

gry}=0 for r<o (21)

For r — oo, g(r) is normalized to 1. For very small densities, ¢(r) = &(r ~ o)
where ©(x) denotes the unit step function while for large densities, g(r) exhibits
a structure from neighbouring shells of particles. At very high densities n = 0.5,
the contact value g(r — %) = g(c™) increases to large values and the second
neighbour shell becomes split exhibiting a shoulder [84], see Fig. 10, which is
in accordance with confocal microscopy measurements on sterically-stabilized
colloidal suspensions {85]. The pair correlation function is also discussed in the
contribution of Dige et al. in this volume. The equation of state can exactly be
related [41] to the contact value of g(r} by using the virial expression:

=1+ 4dng{c™ 22
g ng(c™) (22)
So once one knows g{c™) for any density one gets F by integrating (22).

The second correlation function is the Ornstein-Zernike or direct correlation
function. It is implicitly defined via the Ornstein-Zernike relation

dﬂ—1=4ﬂ+pf&wmww—mdwmrw (23)

The Percus-Yevick closure combines the exact relation (21) with the approxima-
tion
cry=0 for r>c (24)

The advantage of the Percus-Yevick theory is that it can be solved analytically
for ¢(r). Using the Ornstein-Zernike relation and the virial expression one can
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deduce an analytical form for the Helmholtz free energy as follows

F o Fpy
kTN ~ kgTN

= 3 In{A/o} — 1 + In{6n/n)

3 1
—(l-n+ —[(“1“*":7?—)2

2
'This expression clearly diverges when i — 1 being an artifact of the approxima-~
tion which is meant only for small #. Finally we remark that the Percus-Yevick
direct correlation function and the free energy are exact in one spatial dimension.

—1] (25)

4.4 Estimation of the Freezing Transition

Knowing analytical expressions {18) and (25) for the free energy in the solid and
fluid state, we can estimate the location of the freezing transition. There are three
conditions for phase coexistence. The first concerns thermal equilibrium, i.e. the
temperature in the two coexisting phases has to be equal, T} = T5. Due to the
trivial temperature dependence of the free energy for hard sphere, this condition
is fulfilled. Second, the pressure in the two coexisting phases has to coincide,
P, = P,, {mechanical equilibrium). Third, chemical equilibrium requires the
same chemical potential in the two coexisting phases, u; = pp. The latter two
conditions are equivalent to Maxwell’'s common-tangent construction. This is
easily explained in terms of the free energy per volume f, = F;/V = fi(T, p)
of the two phases {i = 1,2). The two pressures and chemical potentials can be

written as aF of (T )
Y —f o U D= 0)
P, = 30 lz.N = fi — ps Bp 7 (26)
and oF DT )
ooy _ LU=
i = AN .82 IT {27)

dp
where 1 = 1,2 labels the two different phases. The two conditions P, = P, and
(41 = pig hence are expressed as

filery = fi(p2) (28)

and
Jalpa) = filpr) + filpr){p2 — p1) (29)

with fi(p) = 8fi/8p|r . These equations mean that one finds the two coexisting
densities p; and p2 by a common tangent construction for the two free energy
densities plotted as a function of density. In our case of hard sphere freezing this
is visualized in Fig. 11. Assuming that the cell theory (solid line in Fig. 11) and
the Percus-Yevick expression (dashed line in Fig. 11) are valid for any density
the Maxwell common tangent construction leads to coexisting packing fractions
of ny = 0.57 for the fluld phase and 5, = 0.65 for the solid phase. Of course,
actual data for free energies are required for intermediate densities where the
two theoretical expressions are expected to fail. Nevertheless, we shall see later
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that the coexisting densities and the relatively large density jump across the
transition are in fairly good agreement with “exact” computer simulations.

"These considerations also give a clue of how to prove rigorously the existence
of the freezing transition. The solid cell model gives an upper bound to the free
energy in the solid phase. If one would know a lower bound of the free energy in
the fluid phase and could show that this lower bound hits the upper bound of
the cell model, then the existence of the phase transition would be proven. The
construction of a lower bound in the fluid phase is strongly linked to the virial
coeflicients which determine the convergence of the virial expansions in powers
of the density. If all the virial coeflicients would be positive, then there has to
be a freezing transition. Even if only the virial expansion truncated after the
second coeflicient would be a lower bound, then it hits the solid celi theory for
spatial dimensions D > 8 [30]. However, although all these assumptions seem to
be plausible for physicists, they need to be proved mathematically. Therefore,
to establish rigorously the exostence of the freezing transition is still an open
unsolved problerm.

4.5 Scaled Particle Theory

The scaled particle theory ([76]; for a review see [8]) considers the reversible
work to create a spherical cavity of radius By in a hard sphere fluid. Formally
the cavity can be regarded as a further “scaled” particle. One knows the relation
of this work to the bulk pressure for the special case By = 0. For Ry — o0,
this work is connected to the interfacial free energy v between a planar hard
walls and a hard sphere fiuid. Interpolating between these special cases one gets
the work for Ry = o from which one deduces the contact value g(ot). Using
the exact virial expression {22), one gets the free energy. Remarkably, though a
completely different phyical picture is used, the scaled-particle results coincides
with the Percus-Yevick virial expression {25). The scaled-particle theory cannot
be applied to the solid but it has the advantage that it can be generalized to hard
convex bodies with non-spherical shapes as e.g. hard spherical-capped cylinders.

4.6 Density Functional Theory

Density functional theory (DFT) provides a unified picture of the solid and fluid
phase. In fact as we shall show below, it is a way to combine the cell theory for
the solid with the Percus-Yevick (or scaled particle) theory of the liquid. As for
general reviews, see e.g. [57] and {29]. The cornerstone of DFT is the Hohenberg-
Kohp-Sham theorem which was generalized to finite temperatures by Mermin.
It guarantees the existence of a functional for the excess free energy F.po(p] of
the (in general inhomogeneous) one-particle density p(r). This functional has
the unique property that the functional for the grandcanonical free energy

Plp) = Feccle] = [ drofr) Vet -
~ 1+ kgTin{A%p(r))} (30)
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is minimized by the equilibrium one-particle density
N
pa(r) =< Zd(r -R)> {31)
i=1

and the minimum £2[p{r)] is the actual grandcanonical free energy which is
equal to —PS2 in the bulk case. The problem, however, is that nobody knows
the actual form of the functional Fe,.[p]. It is only for the trivial case of an
{non-interacting) ideal gas that F.pc[p] is known to vanish.

Different approximations for F...[p] designed for strongly interacting systems
(in particular for hard spheres} are on the market. Most of them make use of
the fact that the direct (Ornstein-Zernike) correlation function introduced in
chapter 3.3 is the second functional derivative of F,,.[p| in the homogenous bulk
fluid [41]:

1 82 F ege

e(lry —raf) = kT 8p(r1)0p(ra) thom (32)

The most elaborated and reliable functional for hard spheres is that recently
developed by [79]. It is fixed by approximating

Fewcldl > ko [ dral{na(ry)] (33)

where one introduced a set of weighted densities

ne(r) = /ﬂ d*r' p(rNwa(r — r") (34)

Here, the index a = 0,1,2,3,V1, V2 labels six different weighted densities and

six different associated weight functions. Explicitly these six weight functions:

are given by

wo(r) = 2247 (35)
w(r) = 2 (36)
wa(r) = 8(5 1) (37)
ws(r) = 6(5 - 1) (38
wyi(r) = wg%f:} (39)
and r o
wya(r) = ;5(5 —r) (40

Note that the index V' denotes a vector weight function. We can express thi
fact by writing wy1 = wyy, nvy = nvi,... Finally the function @ is given by -

D =@ + Dy + Dy (41
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with
P = —ngIn(l — ng) (42)
figha — Ny - Ny
b,y = 43
2 T (43)
and ) b
Pr — ﬂ3(1 - (nV2/n2) ) (44)

2471’(1 — ﬂ3)2

Let us emphasize few points: First, the six weight functions are connected
to the geometrical {(fundamental} Minkowski measures. In fact, the derivation
of the Rosenfeld functional requires a convolution property which can nicely be
evaluated by using the linear decomposition into the four Minkowski measures
for an arbitrary additive measure. One might therefore conjecture that there is
a deeper connection between the geometry and density funetional theory which,
however, still has to be discovered and worked out! Second, Rosenfeld’s functional
gives the analytical Percus-Yevick direct correlation function as an output by us-
ing the relation (32). Consequently the Percus-Yevick theory is included in this
density functional approach. Also the cell model is included near close-packing
[77]. Hence the density functional approach provides a unifying theory of fluid
and crystal. In particular, a configuration of overlapping spheres (which implies
n3 — 1) is avoided as the functional gives an infinite energy penalty to such
densities, see again (42} and the denominator in {43). From this respect, the
Rosenfeld functional is superior to weighted density approximations proposed
earlier where c(r) is taken as an input and overlapping configurations of hard
spheres are not excluded, for a more detailed discussion see e.g. [70]. Third, one
can test the gquality of any density functional by subjecting the three-dimensional
functional to a strongly confining external potential such that the resulting sy-
stem lives in a reduced spatial dimension. For instance, by applying a hard tube
of diameter o one can squeeze the three dimensional hard sphere system into a
system of hard rods. As the density functional for hard rods is exactly known, one
can test whether the resulting projected three-dimensional functional respects
this dimensional crossover [78]. The ultimate reduction occurs for an external
hard cavity potential that can hold only a single particle.- For this trivial situa-
tion, the exact functional is known. It was shown that this limit requires some
conditions which can be exploited to fix some freedom in the original functional
[78]. Finally, the freezing transition can be calculated by plugging in a constant
density field for the fluid phase and a lattice sum of Gaussian peaks in the solid
phase. If the width of the Gaussians and the prefactor are taken as variational
parameters one gets a first-order freezing transition with coexisting packing frac-
tions of 7y = 0.491 and 7, = 0.540 which are very close to “exact” simulation
data.
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5 Hard Spheres and Phase Transitions:
Computer Simulations

Most of our knowledge for hard sphere systems is based on “exact” results ob- -

tained by computer simulations, see e.g. [1]. In a bulk computer simulation the
system is typically confined to a finite cubic box with periodic boundary condi-
tions in all three directions to minimize finite-size effects. The typical number o
particles is in the range from N = 100 to N = 1000000. -

The recipe is as follows: one starts from a given overlap-free configuration

of spheres. Then one generates a new configuration by using either a Molecular

Dynamics code or a Monte Carlo technique. Using Molecular Dynamics means
that Newton’s equation of motion are solved. The hard spheres are then moving
along the classical trajectories which are straight lines interrupted by elastic col-
lisons. In Monte Carlo one randomly displaces a randomly chosen particle and
checks for particle overlap: if the new configuration is free of any overlaps the
move is accepted, if not it is rejected. Then one carefully has to equilibrate the
system. Finally statistics is gathered to perform the canonical averages. We re-
mark that Monte Carlo techniques are also possible in different ensermbles where
the pressure is fixed instead of the system volume, or the chemical potenti:al is
fixed instead of the particle number. For an example, see the method described
in the contribution of Dége et al in this volume.

A problem is that only averages are readily calculated by a simulation. The

key quantity for phase transitions, however, is the Helmholtz free energy, V{hich
cannot be written as an average. One possible solution of this problem is to

calculate the contact value g{o*) of the pair distribution function which can

clearly be written as an average, see {20). One thereby gains the pressure (or
the reduced equation of state) by using the virial expression (22). In doing so for
arbitrary densities, one can plot directly P(p) and look for van-der-Waals 190;?8
indicating a first order phase transition, see Fig. 12. Typically the hysteresis is

small decreasing with increasing system size and therefore it is difficult to see -

whether really a phase transition takes place. A more accurate alternative is to
obtain the Helmholtz free energy F by integration as follows

F
N

-

Here, the reference density p, is so small that the system can be considered to be

an ideal gas where the free energy is known. This is the simplest way of so-called -

thermodynamic integration starting from a well-known reference system. This
strategy readily applies to the fluld phase.

As a remark, the virial expression also works in the solid phase if the contact

value of the spherically averaged pair distribution function is inserted into (22).

However there are technical problems in applying this recipe to the solid phase :

as the pair distribution function strongly piles up near contact and extrapolation
of g(r) to contact bears a large extrapolation error. A smarter way of thermo-
dynamic integration in the hard sphere solid is to start from an Einstein solid

= = kgTln{p. A% — 1] + /p dp’%g) (45) .
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[31]. Here, ali particles are harmonically bound to a lattice position of a given

lattice as described by an external potential H,,,

YK
Hept = Z E(RZ - REO))Z (46)

i=1

where {R,ED)} are the positions of the given lattice. If the spring constant K which
confines the particles to their lattice positions is very large, then the particles
do not feel the hard sphere interaction. Hence the system is practically a set a
decoupled harmonic oscillators for which the reference free energy Fy can readily
be calculated. Now the harmonic external potential is switched off continuously,
i1e. we consider the total Hamiltonian

Htot = Hkin + (1 - )‘)Hext + th (47)

where Hy,, is the total kinetic energy, Vi, is the pairwise hard core interaction,
and the parameter A is a formal coupling parameter by which we can switch off
continuously the external harmonic potential and turn on the hard-core interac-

tion.. It is readily calculated that the derivative 8F/8A|y o v can be written as
an average:

aF 9z
T —kBTﬁZ’\— == < Hepy >y
NK
=< (R ~ R1(0))2 >4 (48)

Here the canonical average < ... >, means that an external potential of strength
1— A is present. {48) implies that one has to calculate the Lindemann parameter
(or the mean-square-displacement) of the solid in order to access F /0. Finally
integration with respect to A yields the desired free energy:

A

It is important to remark that one needs a whole set of simulations (for different
A) to access a single free energy. In practice typically 10-30 integration points
are needed to get a good accuracy. Apart from numerical integration errors and
statistical and finite-system-size errors, this methods leads in principle to exact
results for the free energy. The only reguirement is that one should not cross a
phase boundary during the integration. Also the lattice structure is not known
a priori but different lattice types have to be tried and the resulting free energy
which is minimal corresponds to the realized structure.

Computer simulations of the hard sphere system have given a coherent pic-
ture of what is going on as far as phase transformations of the system are con-
cerned. By a careful study of finite system size effects it has been established
from the early days of computer simulation [45] that the hard sphere system
freezes indeed from a fluid into an ordered solid with a strongly first-order tran-
sition, i.e. the density jump across the transition is pretty large. The data of the

1
I3
F=F +/ d)\a— (49)
0
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coexisting packing fractions are 1y = 0.494 and #; = 0.545. The phase diagram -

is sketched in Fig. 13. The combination of Percus-Yevick and cell theory gives
coexistence densities that are too high while there is perfect agreement with

density functional theory.

There is another interesting non-equilibrium phase transition for 5 = ng = .

0.58 where a rapidly compressed hard sphere fluid freezes into an amorphous

glass as signalled by a very slow decay of dynamical correlations. However, if one )
waits for a long time, the system will recrystallize in its thermodynamically stable

solid [27]. Above a certain threshold density nrop = 0.64 called random—clgseci :
packing there is no glass transition possible and the system is forced to freeze into -

a regular solid. We finally mention that the whole phase diagram including the

glass transition was confirmed in detail by experiments on sterically-stabilized

colloidal suspensions [73]. . .
What is the stable crystal lattice away from close-packing? This question has

attracted some attention in the past years. A simple cubic and body-centered-

cubic lattice can be ruled out from the very beginning, since these lattices are -
mechanically unstable with respect to shear. A tricky competition arises between

the possible close-packed structures fee, hep, double hep, and random stacking,

see again chapter 1. It was shown by computer simulation [14,17,58,74] that for -

ns < 1 < nep an fee solid has a slightly lower free energy than all other stacking

gequences, but the relative difference in the free energy per particle is smaller

than 1073kgT.

As already menticned in chapter 2, the freezing transition in the hard dlisk :
system is much more difficult to compute by simulation and is still controversial. :
The reason is that the transition is not strongly first order as for the hard sphere -
system. Therefore the free energy differences are tiny and also finite system size -

effects are much more pronounced in two spatial dimensions.
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6 A Selection of Recent Research Activities
on Hard-Sphere-Like Systems

6.1 Binary Mixtures

1t is straightforward to generalize the one-component hard-sphere model to two
species. The three parameters determining the system are now the diameter ratio
g = 01/oz <1 and the two partial packing fractions, n; and 7 of the small and
big spheres. Obviously, the one-component model is obtained as the special case
q=1.

Depending on the ratio ¢, one might expect quite different phase diagrams.
if g is not much different from 1, then an fce crystal is stable which is randomly
occupied by the two species. Computer simulations [52] and numerous density
functional calculations (see e.g.[22,23] have been performed here. The results for
the phase diagram are in accordance with measurements on sterically-stabilized
colloidal suspensions.

For intermediate ¢, there are more exotic crystalline phases. For certain val-
ues of ¢ there are crystalline solids with an AE ABs and AB;4 {(superlattice)
structure. These structures were obtained by experiments [4], computer simu-
lation (28], density functional [90] and cell theory [5] studies and demonstrate
nicely the fruitful interaction between these different approaches. The existence
of such solid lattices cruciaily depends on the close-packed structure. Even more
complicated lattice structures can be expected upon further reducing ¢. Also it
has been speculated about the existence of stable quasicrystals for certain ratios
g although they can most probably be ruled out for g > 0.85 [59]. The stabil-
ity of quasicrystals is closely related to the question whether the close-packed
structure is a periodic lattice or not. There is no mathematical proof known for
general g.

Another interesting case is the limit of small g. Here there has been some de-
bate about possible phase separation over the last decade. An analytical Percus-
Yevick solution is possible predicting no fluid-fluid phase separation for hard
sphere mixtures but the theory fails in the limit of g — 0if n, and 7 is kept finite
{10]. The phase diagram of strongly asymmetric hard sphere mixtures was re-
cently obtained by computer simulations by Dijkstra, van Roij and Evans [25,26]
which answered the story after all. For three different ratios q=02,0.1,0.05 the
phase diagrams are shown in Fig. 14. In fact a fluid-fluid phase separation is
preempted by the fluid-solid transition but an isostructural solid-solid transition
shows up for high packing fractions of the large particle due to the strong and
short-ranged depletion attraction induced by the small particles [38].

Finally we remark that the kinetic glass transition is different for large and
for small ¢. While both particle species freeze-in simultaneously for g == 1, there
is a crossover at g, = 0.15 where the big spheres are frozen-in on a lattice and
the small spheres are still liquid-like. This was found theoretically [16,64,65] and
confirmed experimentally for colioidal suspensions [46,47].
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6.2 Size Polydispersity

A size-polydisperse hard-sphere system can be understoed as a mixture with an
infinite number of different species whose diameter is distributed according to a
normalized probability function p(c). A relative small distribution is character-
ized by its first two moments, or equivalently by its mean diameter & = [ dop(o)
and the relative polydispersity 52 = a2/5? — 1. A study of effects induced by
polydispersity is important if one has a gqunantitative comparison with a real col-
loidal sample in mind. It has been established by density functional theory [3]
and computer sirmulation [12,13,51] that above a certain critical polydispersity of
roughly 6% a solid iattice is no longer stable. The corresponding phase diagrlam
is shown in Fig. 15. A regular random occupied solid lattice structure coexists
with a fluid that has a higher polydispersity as the solid as indicated by the
tie-lines in Fig. 15. For high densities the solid exhibits reentrant melting into
an amorphous phase [7}.

At higher polydispersities, the phase behaviour depends more and more on
the details of the diameter distribution p(c). A randomly occupied solid is ex-
pected to separate into two or more solids with different lattice constants [5,82].
Also fluid-fluid phase separations are probable to occur 21,87]. We finally men-
tion that the Percus-Yevick direct correelation fucntion can be explicitly calcu-
lated involving only the first three moments of the diameter distribution [11] and
that the cell model is again a reliable description of the solid for high densities
and small polydispersities [72].

6.3 Hard Spheres near Hard Plates
A planar hard wail can be described as an external potential

oo if 2 < o/2

50
0 else (50)

Vewt(z) = {

where z is the coordiante perpendicular to the wall. The insertion of such a
planar hard plate costs free energy as there are less configurations possible. T 'his
additional free energy scales with the plate surface and gives rise to a positive
surface free energy . For a fluid phase in contact with a wall, scaled particle
theory makes a theoretical prediction for +. In Fig. 16, « is plotted versus t-he _
bulk packing fraction n. The agreement between scaled particle theory, dens@y
functional theory [37] and computer simulation {42,43] is convincing. If a solid
is in contact with a hard wall, v depends on the orientation. It has recently be
shown that the cell model provides a reasonable analytical theory for v which
agrees perfectly with the computer simulation data [43]. 3
For a fluid in contact with a hard wall, there is an interesting wetting effect:

if the bulk density is slightly below bulk freezing. Precrystallization on the hard:
walls [20] occurs, i.e. few layers on top of the wall have an in-plane long-ranged._
order corresponding to a intersecting triangular lattice sheets. _
Other interesting phase transitions occur for two parallel hard plates with a
slit distance H. The phase diagram depends solely on two parameters, namely the
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reduced density pry = No®/(AH) (where A is the system area) and the reduced
plate distance h = H/o — 1. Clearly one can continuously interpolate between
two and three spatial dimensions by tuning the plate distance: For H = o7,
our model reduces to that of two-dimensional hard discs while for  — oo the
three-dimensional bulk case is recovered.

The equilibrium phase diagram as obtained by Monte-Carlo computer simu-
lation in the pyr — h-plane [80,81] is shown in Fig. 17 for moderate plate distances
h. The phase behaviour is very rich and much more complicated than in the bulk,
Cascades of different solid-solid transitions are found. For low densities the stable
phase is an inhomogeneous fluid. All possible stable solid phases are also realized
as close-packed configurations [71,73] for a certain plate distance. Accordingly
one finds stable iayered structures involving intersecting triangular lattices (1A,
2/\) and intersecting square lattices (20). Also a buckled phase (b} and a phase
with a rhombic elementary cell (thombic phase (r)) are stable. All transitions
are first-order. Results of the cell model together with a simple fluid state theory
are given in Fig. 18. Clearly the simple cell theory gives the correct topelogy of
the phase diagram.

Similar phases were found in experiments of highly salted charged colloids
between glass plates {62,63,68,86,88]. Here even higher reduced plate distances
were studied. There is compelling evidence that a prism-phase consisting of
alternating prisms built up by spheres is the close-packed configuration in certain
domains of A [68]. Still a full quantitative mapping of the experimental data onto
the theoretical phase digram of Fig. 17 has to be performed.

Let us comment on further related aspects: First it would be nice to perform
a full theoretical calculation for the phase diagram of hard spheres between
nard plates using a density functional calculation with Rosenfeld’s functional.
Second, one should investigate different confining shapes. Intriguing examples are
circular and polyhedral boundaries in two dimensions. Studies have been made
for confined hard discs [66] and confined hard spheres within spherical cavities
[67]. Finally it is an unsolved mathematical problem to rigorously establish the
close-packed structure for different A.

6.4 Hard Spherocylinders

Finally let us discuss phase transitions for hard convex bodies that are non-
spherical, for a recent review see [2]. In particular, if these bodies are rotational
invariant around one axis they may serve as a model for colloidal liguid crystals
[54]. In particular hard spherocylinders with an additional orientational degree
of fredom have been studied. These are spherical capped cylinders of cylindri-
cal fength L and diameter ¢ whose anisotropy is characterized by the aspect
ratio p = L/o. For p = 0 one recovered the case of hard spheres. The phase
diagram of hard spherocylinders depends on the aspect ratio p as well as on the
particle density p. It has recently been explored by computer simulations [14]
and is shown in Fig. 19. A number of mesophases or liquid-crystalline phase are
stable in the plane spanned by p and p. There is a plastic (or rotator) erystals
for small p. For larger p, a nematic and a smectic A phase become stable for
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intermediate densities. Possible stacking sequences in the solid phase are AAA
where all triangular sheets are put directly on top of each other and ABC which
is the close-packed structure. Note that the AAA stacking sequence is not a
close-packed situation but is still stable for intermediate densities. Cell theory
combined with scaled particie theory can reproduce this diagram satisfactorily
[39]. Also density functional theory studies have been performed [40,44]. How-
ever, it is not easy to generalize Rosenfeld’s theory to the case of anisotropic
particles.

7 Conclusions

To summarize: Systems of hard spheres and its variants show interesting phase
transitions. Although they are purely eatropically driven, they exhibit ordering
transitions. These transitions are seen in theory, computer simulation and in real
matter, namely in sterically-stabilized colloidal suspensions.

A few final remarks are in order: First, there are further fascinating phenom-
ena occurring for dynamial correlations and non-equilibrium situations of hard
sphere systems [36] which have not been addressed at all in this article. Another
field of physics where hard sphere system play an important role are simulations
of granular matter [56]. Second, most stable crystalline phases observed in phase
diagrams of hard sphere problems are close-packed ones. Therefore it would be
very helpful to provide mathematical proofs for the close-packed structures in
confining geometry.

As a final perspective, such simple intuitive systems as hard spheres are

nontrivial enough to be studied also over the next decades. One might surmise

that further interesting unexpected transitions will be discovered in the near

future. Hence the final conclusion is that hard spheres are fun both for physicists

and for mathematicians.
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Fig. 1. Twe hard spheres of diameter o at center-of-mass distance r.
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Fig. 2. Pair potential of hard spheres V{r) as a function of their center-of-mass distance
.
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Fig. 3. Configuration {R;} {i = 1,2, 3,4) of four hard spheres.
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Fig. 4. The hard sphere model at work: zeroth approximation for almost any problem
in the brain of the theoretician,
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steric repulsion

Fig. 5. Sterically-stabilized colloidal suspensions of PMMA spheres with coated block :
copolymer brushes of length £.

Fig. 6. Electron micrograph of colloidal microspheres. From [69].
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Fig. 8. Random configuration in the fluid phase and regular packed configuration in
the solid phase of a hard disk system.

free volume

Fig. 9. Cell theory for the hard sphere crystal. The Wigner-

Seitz cell (dashed line) and
the free-volume cell is shown schematically.
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Fig. 10. Pair distribution function g(r) for hard spheres as a function of distance r
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for small densities (dashed step function), for n = 0.2 (dotted line) and for n = 0.494.
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Fig. 11. Reduced free energy per unit volume f* = fo® /kgT versus packing fraction

n. The dashed line is the Percus-Yevick virial expression, the solid line is from solid.
cell theory. The Maxwell common tangent is also shown.
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Fig. 12. Isothermal equation of state P as a function of density. The Maxwell equal-

area construction is shown.
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Fig. 13. Phase diagram of hard spheres versus packing fraction 7. The freezing transi-

tion together with the two coexisting packing fractions n; and 1,

glass transition is indicated.

are shown. Also the
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Fig. 14. Phase diagram of a binary hard-sphere mixtures with size ratio {a) ¢ = 0.2,
(b) g = 0.1, {c) g = 0.05 as a function of the large sphere packing fraction 7; and the
small sphere packing fraction .. F and & denote the stable fluid and solid (fce) phase.

F+ 8, F+ F, and 8§+ S denote, respectively, the stable fluid-solid, the metastable -
fluid-fluid and (meta) stable solid-solid coexistence region. The solid and dashed lines’
are from one effective one-component depletion potential. The symbols joined by lines

to guide the eye are from computer simulations of the full binary system. From [26].
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Fxg 15. Phase diagram of polydisperse hard spheres in the %, s plane. The fluid and
solid phase together with their tie-lines are shown. The terminating polydispersity for
a solid phase is roughly 6%. From [12,13].
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Fig. 16. Reduced interfacial free energy v* = ~5°/ksT of the hard sphere fluid in
contact with a hard wali versus bulk packing fraction . Solid line: scaled-particle

;;’le}ol‘y', *: simulation data from [42] and [43]; diamonds: density functional results from
T
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Fig.17. Phase diagram for hard spheres of reduced density pr between parallel
plates with effective reduced distance k. Symbols indicate different system sizes:
N = 192(+); N = 384,512(c}); N = 576(A); N = 1024,1156(0). Six phases occur
(fluid, 1A, b, 200, r and 24) . The closed-packed density is marked by a dashed line.
Solid lines are guides to the eye. Thin horizontal lines represent two-phase coexistence.
From [80].
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Fig. 18. Same as Fig, 17, but now obtained within the cell model for the solid phases
and a simple mapping theory for the fluid phase. From [81].
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Fig. 19. Phase diagram of hard spherocylinders obtained by cell and scaled-particle
theory in the p* - p plane where p* = %/n.,. The coexistence regions are shown as
shaded areas. Simulation results from {15] are shown as dots. There is an isotropic
fluid (T}, an ABC-stacked solid, an AAA stacked =olid, a plastic crystal (P), a nematic
(N} and a smectic-A (SmA) phase. The meaning of the symbols for the simulational
data are: {+) -ABC transition, ({) I-P transition, (01) I-SmA transition, (¢ ) I-N
transition, {x) N-SmA transition, (*} SmA-ABC transition, (4 ) P-ABC transition.
From [39].
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