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Abstract:

These lectures form the second part of classical density functional theory (DFT)
following the lectures of R. Evans (part I).

First, after a brief reminder of equilibrium density functional theory, DFT is
applied to the freezing transition of liquids into crystalline lattices. First, spher-
ical particles with radially symmetric pair potentials will be treated (like hard
spheres, the classical one-component plasma or Gaussian-core particles).

Second, the DFT will be generalized towards Brownian dynamics in order to
tackle nonequilibrium problems. After a general introduction to Brownian dy-
namics using the complementary Smoluchowski and Langevin pictures appropri-
ate for the dynamics of colloidal suspensions, the dynamical density functional
theory (DDFT) will be derived from the Smoluchowski equation. This will be
done first for spherical particles (e.g. hard spheres or Gaussian-cores) without
hydrodynamic interactions. Then we show how to incorporate hydrodynamic
interactions between the colloidal particles into the DDFT framework.

Third orientational degrees of freedom (rod-like particles) will be considered as
well. In the latter case, the stability of intermediate liquid crystalline phases
(isotropic, nematic, smectic-A, plastic crystals etc) can be predicted. Finally,
the corresponding dynamical extension of density functional theory towards
orientational degrees of freedom is proposed.
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This set of lectures will continue and supplement the preceeding lectures of R.
Evans on density functional theory. Here we shall focus on the freezing transi-
tion, on orientational degrees of freedom and on dynamical density functional
theory for colloidal suspensions which are governed by Brownian dynamics.

1 Density functional theory of freezing: spheres

1.1 Phenomenological results

Experiments show that liquids freeze into periodic crystalline structures at low
temperatures or high densities. In these states, the translational symmetry of
the system is broken, i.e. the one-particle density ρ(~r) is inhomogeneous. As
freezing is ubiquitous and general, it is one of the most important phase tran-
sition in nature. The basic question is: when does it happen? Answering this
question is one of the central tasks of statistical physics. A full microscopic
theory is highly desirable which uses the interaction forces as an input and pre-
dicts the thermodynamic conditions for freezing as an output. Since freezing is
a collective effect, this is a very demanding task.

Before turning to such a microscopic approach, let us first collect some empirical

facts for freezing, as for more details and references, see [1, 2, 3, 4, 5, 6]. We
shall also summarize known phase behaviour for simple model potentials gained
by computer simulations.

i) Lindemann-criterion of melting

If a = ρ−1/3 denotes a typical interparticle spacing (with the number density ρ
being the number of particles per volume), then one can examine the root mean-
square displacement u of a particle around a given crystalline lattice position
~Ri, i denoting a lattice site index, which is defined as

u =

√

〈(~ri − ~Ri)2〉 (1)

This quantity can also be viewed as the spread of the inhomogeneous one-particle
density ρ(~r) around a lattice position, see Figure 1.

ρ(r)

rR1 R2

i L

Figure 1: One-dimensional sketch of the inhomogeneous one-particle density
ρ(~r) in a crystalline solid with lattice points at ~R1 and ~R2. The spread of the
density peak is embodied in the Lindemann parameter L.
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The Lindemann parameter L = u/a measures the fluctuations around the lat-
tice positions in terms of the lattice constant. The traditional Lindemann rule
of melting states that a solid melts if L ≈ 0.1. Computer simulations have con-
firmed this phenomenolgical rule where the actual value of L at melting varies
between 0.129 for hard spheres and 0.18 for the one-component plasma. But it
is always roughly one order of magnitude smaller than the lattice constant itself.

ii) Hansen-Verlet rule of freezing

Different to the Lindemann rule, the Hansen-Verlet rule starts from the liquid
side of the freezing transition and states that the freezing occurs if the amplitude
of the first peak in the liquid structure factor S(k) (for a definition, see the
lectures of R. Evans) exceeds 2.85, see Figure 2 for a schematic illustration.
Originally found for Lennard-Jones systems, this rule has been confirmed also for
other interactions like hard-sphere, plasma and Yukawa pair potentials. Without
any notable exception a value of 2.5-3.0 was found near equilibrium freezing.
However, the peak can be much higher in a metastable glassy state.

1

S(K) 2,85

K

Figure 2: Sketch of a liquid structure factor S(k) versus k where the amplitude
of the first peek is 2.85. According to the Hansen-Verlet rule, this is a liquid
structure close to freezing.

1.2 Independent treatment of the different phases

The simplest theoretical approach is to construct different theories for the differ-
ent thermodynamic states (solid and liquid). In particular the internal energy
of the solid phase can be accessed by a simple lattice sum of the given pair
potentials. In particular, different candidate lattices can be assumed at fixed
averaged density, and the one with minimal potential energy will be the stable
one for temperature T = 0. Finite temperature corrections based on a harmonic
phonon-picture can be added on top of that resulting in a (Helmholtz) free en-
ergy F of the solid state.

Likewise the free energy of the liquid can be gained by using for instance liquid
integral equation theories [7] where different closure schemes may be adopted.
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Combined with the free energy of the solid, a Mawell double-tangent construc-
tion for the isothermal free energy per particles versus density ρ leads to the
coexisting liquid and solid densities ρℓ and ρs, see Figure 3. The double tangent
ensures the equality of the chemical potential and the pressure in the two phases.
If this is repeated for various temperature, the full phase diagram emerges. In
three spatial dimensions, freezing is typically a first order transition with a
considerable density jump ∆ρ = ρs − ρℓ.

ρ ρρe s

F/N

Figure 3: Sketch of the Maxwell double tangent construction to the free en-
ergy per particle in the liquid and solid phase resulting in the two coexistence
densities ρℓ and ρs.

1.3 Unifying Microscopic theories

Both from a fundamental and esthetic point of view, a unifying theory which
treats both the liquid and the solid phase on the same footing is desirable. In
the past decades, there have been considerable advances in this field. In three
spatial dimensions, classical density functional theory (DFT) (as described in
the lectures of R. Evans) can be used to get a liquid-based description of the
solid phase. Here the solid is viewed as a strongly inhomogeneous liquid with
strong density peaks. Freezing in DFT is therefore a condensation of liquid
density modes [5].

Conversely, in two spatial dimensions the Kosterlitz-Thouless approach is a
solid-based approach which treats the liquid as a solid phase with an accumu-
lation of defects.

In the following we shall focus on the three-dimensional freezing and on density
functional theory. We emphasize that a unifying treatment is mandatory for
the description of solid-liquid interface and phenomena like crystal nucleation
and growth out of an undercooled melt where indeed a single theory for both
phases is needed.
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1.4 Phase diagrams of simple potentials

Let us first summarize some familiar phase diagrams for various model pairwise
interactions. These were obtained mainly by ”exact” computer simulation of
a many-body system [8] and therefore provide ”benchmark” data for a micro-
scopic theory.

a) hard spheres

The simplest nontrivial interaction potential is that for hard spheres of diameter
σ . The potential reads

V (r) =

{

∞, r ≤ σ

0, r > σ
(2)

The internal energy is completely ideal U = 3
2NkBT , i.e. the averaged poten-

tial energy is zero. Hence Helmholtz free energy F = U − TS scales with kBT
alone (as kBT is the only energy scale for hard spheres). Therefore, for hard
spheres, the entire thermodynamic behaviour is governed by entropy alone. This
becomes different for other interactions which possess an explicit energy scale.
This is the main reason why hard spheres are the most important models for
freezing. From computer simulations, the hard sphere phase diagram is shown
in Figure 4. The only parameter is the density which is conveniently scaled in
terms of a volume or packing fraction η = πρσ3/6. The quantity η measures the
ratio of the volume occupied by all spheres to the total available volume V of
the system. For η → 0 an ideal gas is recovered, while maximal packing fo hard
spheres occurs for η = ηcp = 0.74 corresponding to stacked layers of triangular
crystals. In between, there is a first order freezing transition with coexisting
packing fractions ηell = 0.494 and ηs = 0, 545. The stable crystalline crystal
is face-centred-cubic (fcc) which has an ABC stacking sequence. Interestingly,
the freezing transition is driven by entropy. For η > ηs the solid state has a
higher entropy than the fluid state clearly showing that entropy has nothing to
do with structural order. More intuitively, a disordered fluid state at high den-
sities implies jammed configurations, and much more configuration (i.e. higher
entropy) is gained by taking as a reference configuration a solid and generating
more configurations from slightly displaced particles (configurational entropy).

b) plasma

The one-component plasma (OCP) with neutralizing background is defined by
the pairwise Coulomb potential V (r) = V0/r. By scaling the classical partition

function, one can show that only the coupling parameter Γ =
3
√

4πρ
3 V0

kBT deter-
mines the structure and phase behaviour. The freezing diagram of the OCP is
summarized in Figure 5, there is isochoric freezing from the fluid into a body-
centered-crystal (bcc) at Γ = 178.
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Figure 4: Hard sphere freezing diagram versus packing fraction η. The intuitive
picture of freezing is also shown: at high densities a fluid state involves blocked
configurations and more configurations are achieved by a periodic packing.

�uid bcc crystal

isochoric

freezing

Γ1780

Figure 5: Isochoric freezing in the one-component plasma.

c) soft spheres

Inverse power law potentials where V (r) = V0(σ/r)n interpolate between the
plasma (n = 1) and the hard sphere potential, formally obtained as n → ∞.
Depending on n either bcc or fcc crystals are stable.

d) Yukawa-system

The Yukawa potential V (r) = V0 exp(−κr)/r applies e.g. to charge-stabilized
colloidal suspensions. Again κ interpolates between the OCP (κ = 0) and
the hard-sphere-limit κ → ∞. The phase diagram depends only on λ = κa

(a = ρ−
1
3 ) and T̃ = kBT

V0

eλ

λ and involves a fluid, a bcc solid and an fcc solid with
a triple point as sketched in Figure 6.

e) Lennard-Jones-system

The Lennard-Jones potential, the traditional model for rare gases, is given by

V (r) = 4ǫ
((

σ
r

)12 −
(

σ
r

)6
)

where ǫ is the energy and σ is the length scale. This

potential has a long-ranged attractive tail. Correspondingly it exhibits also a
critical point separating a gas from a liquid and a triple point with gas-liquid-fcc
solid coexistence. As a function of the two reduced parameters kBT/ǫ and ρσ3

its phase diagram is sketched in Figure 7.
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Figure 6: Sketch of the Yukawa phase diagram in the plane spanned by λ and
T̃ . The special case λ = 0 is the one-component plasma.
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Figure 7: Sketch of the Lennard-Jones phase diagram in the plane spanned by
reduced temperature kBT/ǫ and density ρσ3.

f) sticky hard spheres

Sticky hard sphere possess a square-well attraction and are reasonable models
for proteins. Here

V (r) =







∞ r ≤ σ

−ǫ σ ≤ r ≤ σ(1 + δ)

0 elsewhere

(3)
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with a finite attraction range δσ and an attraction depth of −ǫ. The scaled
range δ must be larger than about 0.25 in order to get a liquid-gas separation.
For small δ < 0.05 there is a novel isostructural solid-solid-transition with a
critical point [9], see Figure 8.

K TB

ε

ρσ³

δ=0.04
$uid fcc

fcc 2

critical point

fcc 1

Figure 8: Sketch of the sticky hard sphere phase diagram in the plane spanned
by reduced temperature kBT/ǫ and density ρσ3.

g) ultrasoft interactions

Soft (floppy) objects like polymer coils have effective interactions which are
even softer than the plasma, therefore these interactions are called ”ultrasoft”
[10]. A log-Yukawa interaction has been proposed for star polymers. Here
the interaction diverges at the origin only logarithmically with distance, i.e.
V (r) ∝ kBT ln(r/σ). The phase behaviour [11] involves fluid, bcc and fcc solids
as well as body-centered-orthogonal and diamond lattices and exhibits reen-
trance effects.

h) Penetrable interactions

One may even describe soft objects with pair potentials which are finite at the
origin. Examples are Gaussian potentials which are a good model for linear
polymer coils. The phase behaviour involves again the fluid, bcc-solid and fcc-
solid phase with fluid reentrance [12]. Penetrable interactions with other shapes
exhibit again also “exotic” solid phases and reentrance [13]. Finite potentials
which have a negative Fourier transform exhibit cluster crystals [14] where a
lattice points is occupied by more than one particle.
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Summary of 1.4:

1) Hard and “harsh” potential freeze into fcc lattices.
2) Soft repulsive potentials with an at least 1

r singularity for r ց 0 freeze into
bcc lattices.
3) Ultrasoft v(r) ∼ −ln( r

σ ) and penetrable (V (r ց 0) = V (0) < ∞) potentials
show besides fcc and bcc structures, more open “exotic” lattices and reentrance
effects.
4) If the Fourriertransform of V (r) has negative parts, a cluster crystal occurs.
5) Attractions lead to gas-liquid coexistence and isostructural solid-solid tran-
sition.

In conclusion, various shapes of the pairwise interaction potential can lead to
a rich phase behaviour and there is the theoretical challenge to construct a
microscopic approach in order to predict and reproduce this complex phase
behaviour. As will be discussed in the sequel, classical density functional theory
for inhomogneous fluids does provide such an approach.

1.5 Density Functional Theory (DFT)

a) Basics

The cornerstone of density functional theory (DFT) is an existence theorem
combined with a basic variational principle [15]. In detail, there exists a unique
grand-canonical free energy-density-functional Ω(T, µ, [ρ]), which gets minimal
for the equilibrium density ρ0(~r) and then coincides with the real grandcanoncial
free energy, i.e.

δΩ(T, µ, [ρ])

δρ(~r)

∣
∣
∣
∣
ρ(~r)=ρ0(~r)

= 0. (4)

In particular DFT is also valid for systems which are inhomogeneous on a micro-
scopic scale. In principle, all fluctuations are included in an external potential
which breaks all symmetries. For interacting systems in 3d, however, Ω(T, µ, [ρ])
is not known.

Fortunately, there are few exceptions where the density functional is known
exactly. First, for low density, the ideal-gas-limit is reached and the density
functional can be constructed analytically (see below). Next leading orders for
finite densities can be incorporated via a virial expansion which is quadratic in
the densities. Conversely, in the high-density-limit, the mean-field approxima-
tion (see below) becomes asymptocially exact for penetrable potentials.
Indeed this approximation also works surprisingly well for finite densities be-
yond overlap. Furthermore, the density functional is exactly known (as so-called
Percus-functional) in one spatial dimension for the Tonks gas (had rods on a
line). However, the latter system does not exhibit freezing. Please note that
the knowledge of a functional is much more than a bulk equation of state since
it can be applied to any external potential Vext(~r).
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In principle, the application of DFT to freezing works as follows: First one
has to chose an approximation. Then the density field is parameterized with
variational parameters. In the homogeneous gas and liquid bulk phase one takes

ρ(~r) = ρ̄ (5)

where ρ̄ is a variational parameter. On the other hand, for the solid, the Gaus-
sian approximation of density peaks on the lattice positions is an excellent choice
[16].

ρ(~r) =
(α

π

)−3/2 ∑

n

exp

(

−α
(

~r − ~Rn

)2
)

(6)

Here both the lattice structure and spacing as well as the width α are varia-
tional parameters. Finally, for a given chemical potential µ and temperature
T , one has to minimize the functional Ω(T, µ, [ρ]) with respect to all variational
parameters. As a result one obtains the phase diagram in the µT plane.

The procedure itself is sketched close to the solid-liquid transition in Figures 9
and 10. A solid-liquid transition line in the µT plane is schematically shown
in Figure 9 and we consider a path with fixed µ and increasing T crossing the
solid-liquid transition at µ = µcoex and T = Tcoex. Coexistence implies that
temperature T , chemical potential µ and pressure p are the same in both phases.
Since in the bulk p = −Ω/V (V denoting the system volume) coexistence means
that at given µ and T , Ω/V has two minima with equal depth. A contour plot of
the density functional in the space of variational parameters is shown in Figure
10 for three different temperature on the path shown in Figure 9. The liquid
minimum occurs at zero α while the solid is characterized by a minimum at
finite α. The global minimum is the stable phase and at coexistence, the two
minima have equal depth.

μ

μ

T
Tcoex

coex

solid

liquid

Figure 9: Solid-liquid coexistence line in the µT plane. The path along which
three state points are discussed in Figure 10 is indicated.
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a)

α

α

(α=0)

ρ
ρ
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l

solid

at coexistence:  μ=μ       , T=Tcoex coex

liquid

b)

T>Tcoex

α

ρ
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Figure 10: Contour plot of the grandcanonical free energy Ω(T, µ, ρ̄, α) for fixed
T and µ as a function of two variational parameters α and the averaged density
ρ̄. The latter is given by the lattice constant in the solid phase. a) with a stable
solid phase, b) at solid-liquid coexistence, c) with a stable liquid phase.
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b) approximations for the density functional
Let us first recall the exact functional for the ideal gas where V (r) = 0. It reads
as

Fid(T, [ρ]) = kBT

∫

d3r ρ(~r)
[
ln(ρ(~r)Λ3) − 1

]
(7)

and minimization

δFid

δρ(~r)

∣
∣
∣
∣
0

= kBT ln(ρ(~r)Λ3) + Vext(~r) − µ (8)

leads to the generalized barometric law

ρ0(~r) =
1

Λ3
exp

(

−Vext(~r) − µ

kBT

)

(9)

for the inhomogenous density. In the interacting case, V (r) 6= 0, one can split

F(T, [ρ]) =: Fid(T, [ρ]) + Fexc(T, [ρ]) (10)

which defines the excess free energy density functional Fexc(T, [ρ]). Approxi-
mations work on different levels. In the mean-field approximation, we set

Fexc(T, [ρ]) ≈ 1

2

∫

d3r

∫

d3r′ V (|~r − ~r′|)ρ(~r)ρ(~r′) (11)

In fact, the mean-field approximation (together with a correlational hole in the
solid) yields freezing of the Gaussian potential [17] and is the correct starting
point for cluster crystals for penetrable potentials [14].

The Ramakrishnan-Youssuf (RY) approximation is a perturbative treatment
out of the bulk liquid which needs the bulk liquid direct correlation function
c(2)(r, ρ̄, T ) as an input. A functional Taylor expansion around a homogeneous
reference density up to second order yields

Fexc(T, [ρ]) ∼= −kBT

2

∫

d3r

∫

d3r
′

c(2)(|~r − ~r
′ |, ρ̄, T )(ρ(~r)− ρ̄)(ρ(~r

′

)− ρ̄) (12)

The RY approximation leads to freezing for hard spheres and was historically
the first demonstration that freezing can be described within DFT. The RY
functional can readily be generalized to soft interactions [18] (as the OCP) and
gives reasonable results for freezing there (though it is better to improve the
functional by including triplet correlations).

A non-perturbative functional is based on Rosenfeld’s fundamental measure
theory (FMT). For more details, see the lectures of R. Evans. This works,
however, only for hard spheres. In FMT we have

Fexc[ρ]

kBT
=

∫

d3r Φ[{nα(~r)}] (13)

with
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nα(~r) =

∫

d3r
′

w(α)(~r − ~r
′

)ρ(~r
′

) (14)

where the six weight function are given explicitly as

w(0)(~r) =
w(2)(~r)

πσ2
(15)

w(1)(~r) =
w(2)(~r)

2πσ
(16)

w(2)(~r) = δ
(σ

2
− r

)

(17)

w(3)(~r) = Θ
(σ

2
− r

)

(18)

w(V1)(~r) =
~w(V2)(~r)

2πσ
(19)

w(V2)(~r) =
~r

r
δ
(σ

2
− r

)

(20)

with σ denoting the hard sphere diameter and

Φ = Φ1 + Φ2 + Φ3 (21)

Φ1 = −n0 ln(1 − n3) (22)

Φ2 =
n1n2 − ~nv1

·~nv2

1 − n3
(23)

Φ3 =
1
3n3

2 − n2(~nv2
·~nv2

)

8π(1 − n3)2
(24)

This FMT functional yields the Percus-Yevick solution of the direct correlation
function as an output. It furthermore survives the dimensional crossover [19]: If
the three-dimensional hard sphere system is confined within a one-dimensional
tube, the exact Percus functional is recovered. Moreover, in a sphericqal cavity
which holds one or no particle at all, the exact functional is recovered. This helps
to understand that the constraint packing argument of freezing is geometrically
included in the FMT. In fact (also with a tensor modification in Φ3 [20]), the
FMT gives excellent data for hard-sphere freezing [19], see Table 1.

ρl σ3 ρs σ3 L (: Lindemann)
computer simulations 0.94 1.04 0.129

RY 0.97 1.15 0.06
Rosenfeld 0.94 1.03 0.101

Table 1: Coexisting number densities and solid Lindemann parameter at co-
existence for the hard sphere systems. ”Exact” computer simulation data are
shown as well as DFT data using the Ramakrishnan-Youssof (RY) or Rosenfeld’s
fundamental measure theory.

Last but not least we mention perturbation theories which can be used for
attractive tails. The total potential V (r) is then split into a purely repulsive
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short-ranged part Vrep(r) and a longer-ranged attractive part Vattr(r) such that
V (r) = Vrep(r)+Vattr(r). The repulsive part is treated as an effective hard core
with an effective (temperature-dependent) Barker-Henderson diameter

σ(T ) =

∫ ∞

0

dr
(

1 − e−βVrep(r)
)

(25)

and the attractive part is treated within mean-field approximation. Accordingly,
the total excess free energy functional reads as

Fexc(T, [ρ]) ∼= FHS
exc(T, [ρ])

∣
∣
σ=σ(T )

(26)

+
1

2

∫

d3r

∫

d3r
′

ρ(~r)ρ(~r
′

)Vattr(|~r − ~r
′ |)

This procedure yields good phase diagrams for both Lennard-Jones potentials
and sticky-hard-sphere systems including the isostructural solid-solid transition
[9].

Summary

1) Rosenfeld´s FMT yields excellent data for hard spheres freezing.
2) The much less justified RY perturbative approach works in principle for softer
repulsions.
3) The mean-field density functional approximation works for penetrable poten-
tials.
4) Hard sphere pertubation theory yields stability of liquids and solid-solid
isostructural transitions.
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2 Brownian Dynamics and dynamical density
functional theory

2.1 Brownian dynamics (BD)

Colloidal particles are embedded in a molecular solvent and are therefore ran-
domly kicked by the solvent molecules on timescales much smaller than the drift
of the colloidal motion [21][22].

Let us first discuss the Smoluchowski picture. Here the time-dependent density
field is the central quantity. It should follow a simple deterministic diffusion
equation. For noninteracting particles with an inhomogeneous time-dependent
particle density ρ(~r, t), Fick´s law states that the current density ~j(~r, t) is

~j(~r, t) = −D~∇ρ(~r, t) (27)

where D is a phenomenological diffusion coefficient.
The continuity equation of particle conservation

∂ρ(~r, t)

∂t
+ ~∇ ·~j(~r, t) = 0 (28)

then leads to the wellknown diffusion equation for ρ(~r, t):

∂ρ(~r, t)

∂t
≡ D∆ρ(~r, t) (29)

In the presence of an external potential Vext(~r), the force ~F = −~∇Vext(~r) acts
on the particles and will induce a drift velocity ~vD resp. an additional current
density

~jD = ρ~vD . (30)

We now assume totally overdamped motion since inertia effects are small as the
colloids are much bigger than the solvent molecules. This results in

~vD =
~F

ξ
= −1

ξ
~∇Vext(~r) (31)

with ξ denoting a friction coefficient. For a sphere of radius R in a viscous
solvent, ξ = 6πηsR, with ηs denoting the shear viscosity of the solvent (Stokes
law). Now the total current density is

~j = −D~∇ρ(~r, t) − ρ(~r, t)
1

ξ
~∇Vext(~r) (32)

In equilibrium, the one-particle density is a Boltzmann distribution

ρ(~r, t) ≡ ρ(1)(~r) = ρ(0)(~r) = A exp(−βVext(~r)) (33)

Futhermore, in equilibrium, the total current has to vanish, i.e.

0 = −D ~∇ρ(0)(~r)
︸ ︷︷ ︸

−βA exp(−βVext(~r))~∇Vext(~r)

−

A exp(−βVext(~r))
︷ ︸︸ ︷

ρ(0)(~r)
1

ξ
~∇Vext(~r) (34)
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Therefore, necessarily

D =
kBT

ξ
(35)

which is the socalled Stokes-Einstein relation.

Hence ~j = − 1
ξ (kBT ~∇ρ + ρ~∇Vext)

and the continuity equation yields

∂ρ(~r, t)

∂t
=

1

ξ
(kBT∆ρ(~r, t) + ~∇(ρ(~r, t)~∇Vext(~r))) (36)

which is called Smoluchowski equation (for non-interacting particles).

The same equation holds for the probability density w(~r, t) to find a particle at
position ~r for time t. For N non-interacting particles,

w(~r, t) =
1

N
ρ(~r, t) , (37)

and the Smoluchowski equation reads:

∂w

∂t
=

1

ξ
(kBT∆w − ~∇(w · ~∇Vext)) (38)

Now we consider N interacting particles. Using a compact notation for the
particle positions

{xi} = {~ri} = {x1, x2, x3
︸ ︷︷ ︸

~r1

, x4, x5, x6
︸ ︷︷ ︸

~r2

, · · · , x3N−2, x3N−1, x3N
︸ ︷︷ ︸

~rN

} (39)

we assume a linear relation between acting forces on the particles and the re-
sulting drift velocities. (The same compact notation is used for other multiple
vectors.) The details of this relation embody the socalled hydrodynamic intera-
tions mediated between the colloidal particles by the solvent flow field induced
by the moving colloidal particles. This linear relation is in general

vi =

3N∑

j=1

Lij({xn})~Fj (40)

where ~Fj = − ∂
∂xj

Utot where Utot involves both the internal and the interaction

potential energy and v is the drift velocity. The underlying assumption in (40) is
that the hydrodynamic interactions act quasi-instantaneously. This is justified
by the fact that the timescale upon which a shear perturbation is traveling
through the suspension within an interparticle distance is much smaller than
that of Brownian motion. The coefficients Lij constitute the socalled 3N × 3N
mobility matrix and can in principle be obtained by solving the Navier-Stokes
equations of N spheres with appropriate stick boundary conditions of the solvent
flow field on the particle’s surfaces.
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In general, Lij depends on ~rN , and we postulate:

• symmetry
Lij = Lji (41)

• positivity
∑

ij

FiFjLij > 0 for all Fi,j 6= 0 (42)

With w({~ri}, t) denoting the probability density for interacting particles, the
suitable generalization of the continuity equation is

∂w

∂t
= −

3N∑

n=1

∂

∂xn
(vtot,nw) (43)

with

vtot,n =
3N∑

m=1

Lmn
∂

∂xm
(kBT lnw + Utot) (44)

which leads to the generalized Smoluchowski equation fo interacting particles.

∂w

∂t
= Ôw (45)

with the Smoluchwoski operator

Ô =

3N∑

n,m=1

∂

∂xn
Lnm(kBT

∂

∂xm
+

∂Utot

∂xm
) (46)

In many applications, hydrodynamic interactions are neglected. This means
that the mobility matrix is constant and a diagonal

Lnm =
1

ξ
δnm (47)

This assumption, however, is only true for small volume fraction of the colloidal
particles.

Complementary to the Smoluchowski approach which considers diffusion in
phase space, stochastic trajectories in real-space are the basic ingredients for
the Langevin picture. A typical “cuspy” Brownian trajectories of a colloidal
particle is shown in Figure 11

‘Brownian motion’

Figure 11: Typical trajectory of a randomly kicked Brownian particle.
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First, we consider only one particle in an external potential Vext(~r) with random

force ~f(t). The stochastic differential equation for a single particle is completely
overdamped

ξ~̇r = −~∇Vext(~r) + ~f(t) (48)

where ~f(t) mimicks the random kicks of the solvent and is a Gaussian random
variable which fulfills

〈~f(t)〉 = 0 (49)

〈fi(t)fj(t
′

)〉 = 2ξkBTδijδ(t − t
′

) (50)

One can show that this is stochastically equivalent to the Smoluchowski equa-
tion of non-interacting particles. Numerical methods to solve these stochastic
differential equations are treated in the lectures by A. Ladd.

For interacting particles, the Smoluchowski equation is obtained from the fol-
lowing Langewin equations [21]:

ẋn(t) =

3N∑

m=1

Lnm(−∂Utotal

∂xm
+ fm(t)) + kBT

3N∑

m=1

∂Lnm

∂xm
(51)

2.2 Dynamical density functional theory (DDFT)

Here we derive a deterministic equation for the time-dependent one-particle
density from the Smoluchowski equations [17]. We follow the idea of Archer and
Evans [23]. First, we recall Smoluchowski equation for the N -particle density

w(~r1, . . . , ~rN , t) ≡ w(~rN , t) , ~rN = {~r1, . . . , ~rN} as

∂w

∂t
= Ôw =

1

ξ

N∑

i=1

~∇i · [kBT ~∇i + ~∇iUtot(~r
N , t)]w (52)

with

Utot(~r
N , t) =

N∑

i=1

Vext(~ri, t) +

N∑

i,j=1
i<j

V (|~ri − ~rj |) (53)

Here, hydrodynamic interactions have been neglected. Now the idea is to inte-
grate out degrees of freedom. In fact, an integration yields

ρ(~r1, t) = N

∫

d3r2 . . .

∫

d3rN w(~rN , t) (54)

The 2-particle density is analogously obtained as

ρ(2)(~r1, ~r2, t) = N(N − 1)

∫

d3r3 . . .

∫

d3rN w(~rN , t) (55)
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Integrating the Smoluchowski equation with N
∫

d3r2 . . .
∫

d3rN yields

∂

∂t
ρ(~r1, t) = N ·

∫

d3r2 . . .

∫

d3rN

{ N∑

i=1

(
kBT∆iw(~rN , t)

+ ~∇i

(

~∇iVext(~ri, t)w(~rN , t)
))

+
N∑

i=1
i<j

~∇i

(

~∇i(V (|~ri − ~rj |)w(~rN , t))
)}

(56)

now:

1) N

∫

d3r2 . . .

∫

d3rN

N∑

i=1

kBT∆iw(~rN , t) = kBT∆1ρ(~r1, t)

+ N

∫

d3r2 . . .

∫

d3rNkBT

N∑

i=2

∆iw(~rN , t) (57)

= kBT∆1ρ(~r1, t)

+

N∑

i=2

NkBT

∫

d3ri
~∇i (~∇i

∫

d3r2 . . .

∫

d3rN w(~rN , t))

︸ ︷︷ ︸

~g(~r1,~ri,t)

(58)

= kBT∆1ρ(~r1, t) +

N∑

i=2

NkBT

∫

d2 ~f ~g(~r1, ~ri, t)

︸ ︷︷ ︸

=0

(59)

since w decays to zero for large distances.

2) N

∫

d3r2 . . .

∫

d3rN

N∑

i=1

~∇i(~∇iVext(~ri, t)w(~rN , t))

= N

∫

d3r2 . . .

∫

d3rN
~∇1(~∇1Vext(~r1, t))w(~rN , t) + 0 (60)

= ~∇1((~∇1Vext(~r1, t))ρ(~r1, t)) (61)
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3) N

∫

d3r2 . . .

∫

d3rN

N∑

i,j=1
i<j

~∇i · (~∇iV (|~ri − ~rj |))w(~rN , t)

= N

∫

d3r2 . . .

∫

d3rN
~∇1





N∑

j=2

~∇1V (|~r1 − ~rj |)w(~rN , t)



 (62)

~rN is symmetric in coordinates, set j = 2

= N(N − 1)~∇1

∫

d3r2
~∇1V (|~r1 − ~r2|)

∫

d3r3 . . .

∫

d3rN w(~rN , t)

(63)

=

∫

d3r2
~∇1(~∇1V (|~r1 − ~r2|))ρ(2)(~r1, ~r2, t) (64)

Hence in total we get

ξ
∂

∂t
ρ(~r1, t) = kBT∆1ρ(~r1, t) + ~∇1(ρ(~r1, t)~∇1Vext(~r1, t)

+ ~∇1

∫

d3r2 ρ(2)(~r1, ~r2, t)~∇1V (|~r1 − ~r2|) (65)

In equilibrium, necessarily ∂ρ(~r1,t)
∂t = 0

which implies

0 = ~∇
(

kBT ~∇ρ(~r, t) + ρ(~r, t)~∇Vext(~r, t) +

∫

d3r
′

ρ(2)(~r, ~r
′

, t)~∇V (|~r − ~r
′ |)

)

(66)

= ~∇
(

kBT ~∇ρ(~r) + ρ(~r)~∇Vext(~r) +

∫

d3r
′

ρ(2)(~r, ~r
′

)~∇V (|~r − ~r
′ |)

)

(67)

The constant must vanish for r → ∞ and is thus identical to zero. Therefore

0 = kBT ~∇ρ(~r) + ρ(~r)~∇Vext(~r) +

∫

d3r
′

ρ(2)(~r, ~r
′

)~∇V (|~r − ~r
′ |) (68)

This is also known as Yvon-Born-Green-hierarchy (YBG).

In equilibrium, DFT implies:

δF
δρ(~r)

= µ − Vext(~r) (69)

= kBT ln(Λ3ρ(~r)) +
δFexc

δρ(~r)
, since F = Fid + Fexc (70)
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We now apply the gradient which gives:

~∇Vext(~r) + kBT ~∇ ln(Λ3ρ(~r))
︸ ︷︷ ︸

1
ρ(~r)

~∇ρ(~r)

+~∇δFexc

δρ(~r)
= 0 (71)

combined with YBG we obtain

∫

d3r′ ρ(2)(~r, ~r′)~∇V (|~r − ~r′|) = ρ(~r)~∇ · δFexc[ρ]

δρ(~r)
(72)

We postulate that this argument holds also in nonequilibrium. In doing so,
non-equilibrium correlations are approximated by equilibrium ones at the same
ρ(~r, t) (via a suitable Vext(~r) in equilibrium). Equivalently, one can say that
it is postulated that pair correlations decay much faster to their equilibrium
one than the one-body density. Therefore the basic approximation of DDFT
is sometimes called adiabatic approximation. For an alternate approach, see
Cichocki and Hess [24].

Hence:

ξ
∂ρ(~r, t)

∂t
= ~∇(kBT ~∇ρ(~r, t) + ρ(~r, t)~∇Vext(~r, t)

+ ρ(~r, t)~∇ δFexc

δρ(~r, t)
) (73)

or equivalently

ξ
∂ρ(~r, t)

∂t
= ~∇ρ(~r, t)~∇ δΩ[ρ]

δρ(~r, t)
(74)

which constitutes the basic equation of dynamical density functional theory
(DDFT).
The applications of DDFT are numerous. The dynamics of a strongly inhomo-
geneous Brownian fluid has found to be a good agreement with BD computer
simulations.

Equation (74) can even be used for a description of crystal growth. If a func-
tional is used which describes freezing, the dynamical evolution of a crystal-
like density field can be computed. This was explicitly demonstrated for two-
dimensional crystals with dipolar interactions in Ref. [25] by using the RY
functional.
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2.3 Hydrodynamic interactions

How does Lnm({xj}) look like explicitely? Solving the linearized Navier-Stokes
equations with the appropiate stick boundary conditions on the particle surfaces,
is a difficult problem. Furthermore it is problematic that

i) Lnm({xj}) is long-ranged in terms of distances between particles

ii) H.I. have many-body character, pair expansion only possible at low
concentrations

iii) H.I. have quite different near-field behaviour. They are divergent lubrica-
tion terms.

The linear relationship (40) can be rewritten as

~vn =

N∑

m=1

¯̄Hnm
~Fm (75)

where each quantity ¯̄Hnm is a 3 × 3 matrix. In particular, we can discriminate
the following cases:

1) no H.I. Hnm = 1
δnm

ξ

2) Oseen-tensor

In the Oseen approxmation, ¯̄Hnn = 1

ξ

¯̄Hnm = ¯̄H(~rn − ~rm
︸ ︷︷ ︸

~r

) for n 6= m (76)

with the Oseen tensor

¯̄H(~r) =
1

8πηs
(1 + r̂ ⊗ r̂)

1

r
, r̂ =

~r

r
(77)

This is the leading far field term for two particles at large distance ~r. The sym-
bol ⊗ denotes the dyadic product or tensor product.

3) Rotne-Prager-tensor

In this approximation, the next leading correction is included.

Hnn =
1

ξ
, Hnm = ¯̄HRP (~rn − ~rm) (78)

with

¯̄HRP (~r) =
D0

kBT

(
3

4

RH

r
[1 + r̂ ⊗ r̂] +

1

2

R3
H

r3
[1 − 3r̂ ⊗ r̂]

)

(79)

Higher order expansions of higher order than 1
r3 are possible. These include also

terms of sphere rotation. Finally the triplet contribution can be estimated.
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The DDFT can be generalized to hydrodynamic interactions [26]. Again the
starting point is the Smoluchowski equation which we now write in the form

∂w(~rN , t)

∂t
=

N∑

i,j=1

~∇i · ¯̄Hij(~r
N ) ·

[

~∇j + ~∇j
Utot(~r

N , t)

kBT

]

w(~rN , t) (80)

We use the two particle approximation

¯̄Hij(~r
N ) ≈ D0

kBT



1δij + δij

∑

i6=j

ω11(~ri − ~re) + (1 − δij)ω12(~ri − ~re)



 (81)

on the level of the Rotne-Prager expression

ω11(~r) = 0 (82)

ω12(~r) =
3

8

σH

r
(1 + r̂ ⊗ r̂) +

1

16
(
σH

r
)3(1 − 3r̂ ⊗ r̂) + O((

σH

r
)7) (83)

where σH is the hydrodynamic diameter.

Integrating Smoluchowski equation [17] then yields [26]

kBT

D0

∂ρ(~r, t)

∂t
= ∇r ·

[

ρ(~r, t)∇r
δF [ρ]

δρ(~r, t)

+

∫

d~r′ ρ(2)(~r, ~r′, t)ω11(~r − ~r′) · ∇r
δF [ρ]

δρ(~r, t)

+

∫

d~r′ ρ(2)(~r, ~r′, t)ω12(~r − ~r′) · ∇r
δF [ρ]

δρ(~r, t)

]

(84)

A possible closure is via the Ornstein-Zernike equation

ρ(2)(~r, ~r′, t) = (1 + c(2)(~r, ~r′))ρ(~r, t)ρ(~r′, t)

+ ρ(~r′, t)

∫

d~r′′((ρ(2)(~r, ~r′′, t) − ρ(~r, t)ρ(~r′′, t))c(2)(~r′′, ~r′)) (85)

with

c(2)(~r, ~r′) = −β
δ2Fexc[ρ]

δρ(~r, t)δρ(~r′, t)
(86)

In an easier attempt, one can approximate

ρ(2)(~r, ~r′, t) ≈ ρ(r, t)ρ(r′, t)g(|~r − ~r′|, ρ̄) (87)

where ρ̄ is a suitable averaged density and g(r, ρ̄) is a pair distribution function
in the equilibrium bulk fluid.

Good agreement was obtained between DDFT and BD computer simulations
[27] for colloids in unstable traps [26].
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3 Density functional theory for rod-like parti-
cles

3.1 Statistical mechanics of rod-like particles

Density functional theory can readily be extended to rod-like particles which
possess an additional orientational degree of freedom described by a unit vector
û. A configuration of N particles is now fully specified by the set of positions of
the center of masses and the corresponding orientations {~Ri, ûi, i = 1, . . . , N},
see Figure 12.

rod i

orientation vector

center-of-mass coordinate

û

R

i

i

Ri

ûi

platelet i

Figure 12: Sketch of the center-of-mass position ~Ri and the orientational unit
vector ûi for the ith particle both for a rod-like and plate-like particle.

Example for ansiotropic particles include

(1) molecular dipolar fluids (e.g. H2O molecule)

(2) rod-like colloids (e.g. tobacco-mosaic viruses)

(3) molecular fluids without dipole moment (apolar), (e.g. H2 molecule)

(4) plate-like objects (clays)

The canonical partition function for rod-like particles now reads [28]

Z =
1

h6NN !

∫

V

d3R1 ...

∫

V

d3RN

∫

R3

d3p1 ...

∫

R3

d3pN

×
∫

S2

d2u1 ...

∫

S2

d2uN

∫

R3

d3L1 ...

∫

R3

d3LN e−βH (88)

with the Hamilton function

H =

N∑

i=1

{
~p2

i

2m
+

1

2
~Li(

¯̄Θ)−1~Li

}

+
1

2

N∑

i,j=1

v(~Ri − ~Rj , ûi, ûj)

+

N∑

i=1

Vext(~Ri, ûi) (89)
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which comprises the kinetic energy, the pair interaction energy and the external
energy. Here ¯̄Θ is the inertia tensor and S2 the unit-sphere in 3d.

Again the central quantity is the one-particle density ρ
(1)
0 (~r, û) which is defined

as

ρ
(1)
0 (~r, û) :=

〈
N∑

i=1

δ(~r − ~Ri)δ(û − ûi)

〉

(90)

Integrating the orientations over the unit sphere S2 results in the density of the
center-of-masses

ρ0(~r) =
1

4π

∫

S2

d2u ρ
(1)
0 (~r, û) (91)

On the other hand, the globally averaged orientational order is gained by inte-
grating over the center-of-mass corrdinates and given by

f(û) =
1

V

∫

V

d3r ρ
(1)
0 (~r, û) (92)

û1 û2

R1

r

R2

1 2

Figure 13: Sketch of two interacting rods. The interaction potential depends
on ~r = ~R1 − ~R2 and û1, û2.

In analogy to the isotropic case, one can define a pair correlation function

g(~R1, ~R2, û1, û2) :=

〈
N∑

i,j=1
i6=j

δ(~R1 − ~Ri)δ(~R2 − ~Rj)δ(û1 − ûj)δ(û2 − ûj)

〉

ρ
(1)
0 (~R1, û1)ρ

(1)
0 (~R2, û2)

(93)

Now different phases are conceivable which can be classified and distinguished
by their one-particle density field.

1) fluid (disordered) phase, isotropic phase

Here the center-of-mass-positions and orientations are disordered, see Figure
14:

ρ
(1)
0 (~r, û) = ρ0 = const (94)
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Figure 14: Sketch of a typical particle configuration in the isotropic phase.

2) nematic phase

Here, positions are disordered and orientations are ordered, i.e.

ρ
(1)
0 (~r, û) = ρf(û) , û0 : nematic director (95)

Typically the orientation is distributed around a nematic director û0, see Figure
15.

f(û)

û0

ûû0

Figure 15: Left: Orientational distribution in the nematic phase (schematic).
Right: Typical particle configuration in the nematic phase with a nematic di-
rector û0.

In order to quantify orientational order, it is convenient to introduce a nematic
order parameter. In fact, this is defined via the second rank tensor

¯̄Q = 〈 1

N

N∑

i=1

(
3

2
ûi ⊗ ûi −

1

2
1

)

〉 (96)

where the dyadic product is

ûi ⊗ ûi =





uixuix uixuiy uixuiz

uiyuix uiyuiy uiyuiz

uizuix uizuiy uizuiz



 (97)

One can easily show that the tensor ¯̄Q is trace-less

Tr ¯̄Q =
1

2
〈Tr(3ûi ⊗ ûi − 1)〉 (98)

=
1

2
〈3 · 1 − 3〉 = 0 (99)
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Furthermore ¯̄Q is clearly symmetric and hence diagonalizable with three eigen-
values λ1 ≥ λ2 ≥ λ3 where λ3 must be −λ2 − λ1. The largest eigenvalue λ1 is
called nematic order parameter S. The corresponding eigenvector is called ne-
matic director. For perfect alignment along ~u0 we have ~ui ≡ û0 for all i. Then,
S = 1. If the two lower eigenvalues are identical, λ2 = λ3, the call it a uniaxial

nematic phase. If λ2 6= λ3 , the orientation is called biaxial. In the isotropic

phase: S = 0. Orientational distributions are accessible experimentally, by e.g.
birefringence.

3) smectic-A phase

The socalled smectic-A phase is positionally ordered along an orienation axis û0,
see Figure 16. The associated one-particle density is periodic in the z-direction
along û0:

ρ
(1)
0 (~r, û) = ρ(z, û) z-periodic (100)

n

cut e û0z

cut:

û

Figure 16: Typical particle configuration in the smectic-A phase in the plane
of û0 and perpendicular to û0.

4) smectic-B phase

The smectic-B phase is similar to the smectic-A phase but exhibits an in-plane
triangular lattice as indicated in Figure 17.

û

Figure 17: Typical particle configuration in the smectic-B phase perpendicular
to û0.
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5) columnar phase

The columnar exhibits crystalline order perpendicular to the director û0 but
is disordered positionally along ~u0. The one-particle density field thus reads as

ρ
(1)
0 (~r, û) = ρ(x, y, û) (101)

6) plastic crystal

In a plastic crystal, the positions are ordered in all three spatial directions
but the orientations are disordered, see Figure 18. Therefore:

ρ
(1)
0 (~r, û) = f(~r) (102)

û

Figure 18: Snapshot of a plastic crystal.

7) full crystalline phases

Finally, in the full crystalline phase, positions and orientations are both or-
dered, see Figure 19.

Figure 19: Snapshot of a full crystalline phase.

The list (1)-(7) of liquid crystalline phases is by far not exhaustive. There are
more “exotic” phases such as an AAA stacked phase, a smectic-C with tilted
rods, or cholesteric phases which possesses a helical twist with a pitch length lp,
see Figure 20.

3.2 Simple models

Let us now discuss simple models for interactions between anisotropic rods. The
phase behaviour of hard objects, as shown in Figure 21, is dominated by the
shape. Temperature scales out in this case such that packing fraction alone
(apart from the particle shape) is the only parameter. Hard spherocylinders
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smectic C

y

x

y

x

AAA

lp

cholesteric

Figure 20: Typical particle configurations of the AAA-phase, the smectic-C
and the cholesteric phase.

have been studied, as well as hard platelets (“hard coins”) or thin needles which
arise from spherocylinders in the limit of infinite aspect ratio L

D → ∞.

h L

D
hard

spherocylinders
hard coins hard needles

limit:
D
L ∞

Figure 21: Sketch of differently shaped hard bodies.

A) Analytical results by Onsager

In the limit p = L
D → ∞, a virial expansion up to second order is getting asymp-

totically exact. There is a isotropic-nematic transition which can be calculated
analytically [29]. It is first order with a density jump. The scaled coexistence
densities of the coexisting isotropic and nematic phases are

ρisoL
2D = 4.189 . . . (103)

and

ρnemL2D = 5.376 . . . (104)

At coexistence, the nematic order parameter in the nematic phase is S = 0.784.
The phase diagram is shown qualitatively in Figure 22. However, in practice,
one needs pretty large aspect ratios (about p & 200) in order to get reasonably
into this Onsager limit.
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nem

iso

s=0

s=0.784

~1/p

p=−

ρD²L
(vol. fraction)

L
D

Figure 22: Isotropic-nematic phase diagram in the plane of reduced particle
number density ρD2L and as aspect ratio p = L

D , the density jump is also
included.

B) Computer simulations
Full phase diagrams can be obtained by Monte Carlo computer simuations [30].
Hard spherocylinders show for various densities ρ and aspect ratios p the fol-
lowing stable phases as sketched in Figure 23: isotropic, plastic, ABC stacking,
AAA stacking, smectic-A, and nematic phases. All those transitions are purely
driven by entropy.

1

0
1 5 10

coexistence

P ABC

iso

AAA

smectic

nem

ρ*=—
ρ
ρ

p=—
L
D

cp

Figure 23: Topology of the bulk phase diagram for hard spherocylinders. The
density ρ is scaled in terms of its close-packed density ρcp which corresponds to
an ABC stacked crystal. The following phases have a stable region in the plane
spanned by density and aspect ratio p: isotropic (iso), nematic (nem), plas-
tic crystal (P), ABC-stacked crystal (ABC), smectic-A phase (smectic), AAA-
stacked crystal (AAA). The grey zones indicate coexistence regions

Another anisotropic system are hard ellipsoids which are characterized by two
different axial lengths a and b as shown in Figure 24. The phase diagram, as
sketched in Figure 24 involves isotropic, nematic fully crystalline and plastic
crystalline phases [31]. There is a remarkable symmetry in x → 1

x for the topol-
ogy of the phase diagram where x = a

b . x < 1 correspond to oblate and x > 1
to prolate objects.
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Figure 24: Phase diagram of hard ellipsoids versus x = a
b with a similar notation

as in Figure 23.

C) Density functional theory
Again density functional theory tells us that there exists a unique grandcanon-
ical free energy functional Ω(T, µ, [ρ(1)]) (functional of the one-particle density)

which becomes minimal for the equilibrium density ρ
(1)
0 (~r, û) and then equals

the real grand canonical free energy, i.e.

δΩ(T, µ, [ρ(1)])

δρ(1)(~r, û)

∣
∣
∣
∣
ρ(1)=ρ

(1)
0 (~r,û)

= 0 (105)

Here, the functional can be decomposed as follows

Ω(T, µ, [ρ(1)]) = kBT

∫

d3r

∫

d2u ρ(1)(~r, û)[ln(Λ3ρ(1)(~r, û)) − 1]

+

∫

d3rd2u (Vext(~r, û) − µ)ρ(1)(~r, û) + Fexc(T, [ρ(1)]) (106)

The first term on the right hand side of equation (106) is the functional Fid[ρ(1)]
for ideal rotators. The excess part Fexc(T, [ρ(1)]) is in general unknown and re-
quires approximative treatments.

For hard spherocylinders, Fexc(T, [ρ(1)]) can be approximated by a smoothed
density approximation (SMA) [32] yielding several stable liquid-crystalline phases,
namely: isotropic, nematic, smectic-A and ABC crystalline. A modified weighted
density approximation (MWDA) was subsequently proposed [33] which improves
upon the SMA by exhibiting stable plastic crystalline and AAA crystals as well.
An important recent progress was archieved by generalizing Rosenfeld’s funda-
mental measure theory from hard spheres to hard objects with any shape [34].
For spherocylinders the functional was worked out explicitly. This functional
could be exploited also for attractions by employing a perturbation theory for
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the attractive parts in the potential. Finally, a mean-field density functional for
rods with soft segments was proposed and studied [35].

3.3 Brownian dynamics of rod-like particles

In order to derive a dynamical density functional theory (DDFT) for rod-like
particles one can start from the Smoluchowski equation for the full probabil-
ity density distribution w(~r1, · · · , ~rN ; ~u1, · · · , ~uN , t) of N rods with their cor-
responding center-of-mass positions ~rN = (~r1, · · · , ~rN ) and orientations ûN =
(û1, · · · , ûN ) which reads [36]

∂w

∂t
= ÔSw (107)

where the Smoluchowski operator is now given by

ÔS =

N∑

i=1

[

~∇~ri
· ¯̄D(ûi) ·

(

~∇~ri
+

1

kBT
~∇~ri

U(~rN , ûN , t)

)

+DrR̂i ·
(

R̂i +
1

kBT
R̂iU(~rN , ûN , t)

)]

(108)

where U(~rN , ûN , t) is the total potential energy. Here the rotation Operator ~̂Ri

is defined as ~̂Ri = ûi × ~∇ûi
and the anisotropic translational diffusion tensor is

given by

¯̄D(ûi) = Dqûi ⊗ ûi + D⊥(~1 − ûi ⊗ ûi) (109)

The two diffusion constants Dq and D⊥, parallel and perpendicular to the ori-
entations reflect the fact that the translational diffusion is anisotropic. For hard
spherocylinders there are valid approximations for Dq and D⊥ [37].

Following the idea of Archer and Evans [23] one can integrate the Smoluchowski

equation by now applying N
∫

d3r2 · · ·
∫

d3rN

∫
d2u1 · · ·

∫ 2

d
un on both sides of

Eqn (107). This results in [35]:

∂ρ(~r, û, t)

∂t
= ~∇~r · ¯̄D(û) ·

[

~∇~rρ(~r, û, t) +
1

kBT
ρ(~r, û, t) · ~∇~rVext(~r, û, t) −

~F (~r, û, t)

kBT

]

+ DrR̂ ·
[

R̂ρ(~r, û, t) +
1

kBT
ρ(~r, û, t)~∇~rVext(~r, û, t) − 1

kBT
~T (~r, û, t)

]

(110)

with an average force

~F (~r, û, t) = −
∫

d3r′
∫

d2u′ ρ(2)(~r, ~r′, û, û′, t)~∇~rv2(~r − ~r′, û, û′) (111)

and average torque

~T (~r, û, t) = −
∫

d3r′
∫

d2u′ ρ(2)(~r, ~r′, û, û′, t)R̂v2(~r − ~r′, û, û′) (112)
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The two-particle density which is in general unknown can be approximated
in equilibrium by using

~F (~r, û, t) = ρ0(~r, û)~∇~r
δFexc(T, [ρ0])

δρ0(~r, û)
(113)

respectively

~T (~r, û, t) = ρ0(~r, û)R̂
δFexc[ρ]

δρ0(~r, û)
(114)

Similar as in the isotropic (spherical) case we now employ the “adiabatic” ap-
proximation. We assume that the pair correlations in nonequilibrium are the
same as those for an equilibrium system with the same one-body density profile
(established by a suitable Vext(~r, û, t)). The resulting dynamical equation for
the time-dependent one particle density ρ(~r, û, t) is then given by Ref. [35].

∂ρ(~r, û, t)

∂t
= ~∇~r · ¯̄D(û) ·

[

ρ(~r, û, t)~∇~r
δF [ρ(~r, û, t)]

δρ(~r, û, t)

]

+ DrR̂

[

ρ(~r, û, t)R̂
δF [ρ(~r, û, t)]

δρ(~r, û, t)

]

(115)

with the equilibrium Helmholtz free energy density functional

F [ρ] = kBT

∫

d3r

∫

dû ρ(~r, û)
[
ln(Λ3ρ(~r, û)) − 1

]

+ Fexc(T, [ρ]) +

∫

d3r

∫

dû ρ(~r, û)Vext(~r, û, t) (116)

This sets the frame for dynamical density functional theory (DDFT) for rods.

As for a special application of DDFT to dynamics in the confined isotropic
phase we refer to [35] where the mean-field approximation for the functional
was employed. More recent work has used the Rosenfeld functional for hard
spherocylinders [34] for driven nematic phases [38].

Finally, DDFT was also applied to self-propelled rods in order to predict the
collective swarming and clustering behavior of “active” rods in confinement [39].
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4 Conclusions

In conclusion, density functional theory provides an excellent statistical me-
chanical framework and a versatile tool for equilibrium and nonequilibrium
situations. This was shown explicitly for the freezing transition of spherical-
symmetric pair potentials and for rod-like systems. For Brownian dynamics,
density functional theory can be made time-dependent in order to tackle vari-
ous nonequilibrium phenomena.
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(2001).

[15] R. Evans, lecture notes of this summer school.
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