Structure of Na₂O-GeO₂-P₂O₅ glasses by X-ray and neutron diffraction

Uwe Hoppe^{1*}, Nathaniel P. Wyckoff², Richard K. Brow², Alex C. Hannon³ and Martin von Zimmermann⁴

¹ Institute of Physics, Rostock University, 18051 Rostock, Germany

² Dept. Materials Science and Engineering, Missouri University of Science and

Technology, Rolla MO 65409, U.S.A.

³ ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom

⁴ DESY Photon Science, Notkestraße 85, 22607 Hamburg, Germany

^{*}Corresponding Author e-mail: <u>uwe.hoppe@uni-rostock.de</u>

The Ge-O coordination number (N_{GeO}) is 4 in vitreous GeO₂. The mixed network former GeO₂-P₂O₅ glasses show an increase of the Ge-O coordination number (N_{GeO}) with increasing P₂O₅ content due to the asymmetric distribution of bond valencies in the favored P-O-Ge bridges [1]. Large N_{GeO} 's with ~5 were obtained in K₂O-GeO₂-P₂O₅ glasses [2]. The origin of this N_{GeO} increase differs from that of the germanate anomaly where the absence of non-bridging oxygen is related to the increase of N_{GeO} .

The Na₂O-GeO₂-P₂O₅ glasses here investigated possess larger P₂O₅ contents than the samples used before [2]. The structural features of the samples are determined by X-ray and neutron diffraction experiments of excellent resolving power. The strong X-ray scattering of Ge and sufficiently different lengths of the P-O and Ge-O bonds allow to resolve the Ge-O peak and to extract N_{GeO} . The resulting values vary in a range $4.5 \le N_{\text{GeO}} \le \sim 6$. N_{GeO} depends on the P₂O₅ content. Its maximum value is obtained for the sample of only 20 mol% GeO₂.

The pre-peaks in the structure factors S(Q) at position $Q_1 = ~8 \text{ nm}^{-1}$ that were reported earlier [2] appear also in all the S(Q) of the present glasses. This prepeak is related to a length of medium-range order of ~1.0 nm. The distance is explained with the mutual order of micro-domains of alkali-phosphate and Gephosphate regions [2]. The shape of the pre-peak and its position at Q_1 are widely independent of the GeO₂ content. This model gets support from other authors who reported a combined NMR and X-ray photoelectron spectroscopy study of GeO₂-NaPO₃ glasses [3] The preferred attraction of Na⁺ ions by the phosphorus component and the favored P-O-Ge linkages agree with our model assumptions.

- [1] U. Hoppe, R.K. Brow, B.C. Tischendorf, P. Jóvári, and A.C. Hannon, *J. Phys.: Condens. Matter* **18**, 1847 (2006)
- [2] U. Hoppe, G. Walter, R.K. Brow, N.P. Wyckoff, A. Schöps, and A.C. Hannon, Solid State Commun. 143, 403 (2007) and other papers
- [3] J. Ren and H. Eckert, J. Phys. Chem. C, 116, 12747 (2012)