Superelastic stress–strain behavior in ferrogels with different types of magneto-elastic coupling

Peet Cremer,* Hartmut Löwen and Andreas M. Menzel*

Colloidal magnetic particles embedded in an elastic polymer matrix constitute a smart material called a ferrogel. It responds to an applied external magnetic field by changes in elastic properties, which can be exploited for various applications such as dampers, vibration absorbers, or actuators. Under appropriate conditions, the stress–strain behavior of a ferrogel can display a fascinating feature: superelasticity, the capability to reversibly deform by a huge amount while barely altering the applied load. In previous work, using numerical simulations, we investigated this behavior assuming that the magnetic moments carried by the embedded particles can freely reorient to minimize their magnetic interaction energy. Here, we extend the analysis to ferrogels where restoring torques by the surrounding matrix hinder rotations towards a magnetically favored configuration. For example, the particles can be chemically cross-linked into the polymer matrix and the magnetic moments can be fixed to the particle axes. We demonstrate that these systems still feature a superelastic regime. As before, the nonlinear stress–strain behavior can be reversibly tailored during operation by external magnetic fields. Yet, the different coupling of the magnetic moments causes different types of response to external stimuli. For instance, an external magnetic field applied parallel to the stretching axis hardly affects the superelastic regime but stiffens the system beyond it. Other smart materials featuring superelasticity, e.g. metallic shape-memory alloys, have already found widespread applications. Our soft polymer systems offer many additional advantages such as a typically higher deformability and enhanced biocompatibility combined with high tunability.

1 Introduction

Ferrogels,1–3 also known as soft magnetic materials, magnetic gels, magnetic elastomers, or magnetorheological elastomers, are manufactured by embedding colloidal magnetic particles into an elastic matrix that most often consists of a cross-linked polymer. This leads to an interplay between magnetic and elastic interactions, allowing material properties to be reversibly adjusted via external magnetic fields.4–15 Dynamically switching the elastic properties allows applications as tunable dampers16 or vibration absorbers.17 Moreover, shape changes5,18–21 are interesting for the realization of soft actuators.22–27 Also shape-memory effects have been observed in soft magnetic materials,28–30 opening the way to even more interesting applications.

Recently we have identified another fascinating feature of soft magnetic materials in a simulation study,31 namely tunable superelasticity. This term was originally introduced in the context of shape-memory alloys.32–34 It addresses their special nonlinear stress–strain behavior with a plateau-like regime, where a small additional load leads to a huge additional deformation that is completely reversible. In shape-memory alloys, the constituents are positioned on regular lattice sites. The observed behavior is enabled by a stress-induced transition of the material to a more elongated lattice structure that can accommodate the deformation. When the load is released, the shape-memory alloy performs the opposite lattice transition, which renders the whole process reversible.

In the case of anisotropic soft magnetic gels,5,6,35–39 the superelastic behavior is enabled by stress-induced structural changes. Such samples can be synthesized by applying a strong external magnetic field during the chemical cross-linking process that forms the elastic matrix. Before cross-linking, when the magnetic particles are still mobile, straight chain-like aggregates form along the field direction.40–43 Cross-linking the polymer locks the particle positions into the elastic matrix even after the external field is switched off. Experimentally, the tunability of the linear elastic modulus of such samples has been investigated by applying external magnetic fields.5 It turned out that the highest tunability was achieved for deformations and magnetic fields along the axes of the chain-like aggregates. Our previous numerical study of stretching such a magnetic gel along the axis of the chain-like aggregates to the nonlinear regime revealed the following behavior. The strong magnetic attractions within the chains first work against the elongation.
However, once the magnetic barriers to detach chained particles are overcome, the material strongly extends. A part of the stored stress working against the magnetic interactions is released, leading to an additional strain without hardly any additional stress necessary. This behavior results in a strongly nonlinear, “superelastic” plateau in the stress–strain curve, similar to the phenomenology found for shape-memory alloys. The strain regime that is covered by this plateau, however, is significantly larger. In addition, it is possible to tailor the nonlinear stress–strain behavior during operation by external magnetic fields. Combined with the typically higher degree of biocompatibility of soft polymeric materials, medical applications might become possible.

In a previous study, we restricted ourselves to the assumption that the magnetic moments of the embedded particles are free to reorient. First, this is possible when each magnetic moment can reorient within the particle interior, which typically can be observed as the so-called Néel mechanism up to particle diameters of 10–15 nm. Second, the type of embedding in the elastic matrix can allow the whole particle to rotate, at least quasi-statically, without deforming the matrix, e.g., when in the vicinity of the particles the cross-linking of the polymer matrix is inhibited. Finally, yolk–shell colloidal particles feature a magnetic core that can rotate relatively to the nonmagnetic shell surrounding it.

Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are not free to reorient with respect to the embedding matrix. Two ingredients are necessary for this purpose. First, the matrix must be anchored to the particle surfaces. In reality, this can be achieved when chemically the particles themselves act as cross-linkers of the polymer matrix. Second, the magnetic moments must not rotate relatively to the particle frames. This is the case for magnetically anisotropic monodomain particles that are large enough to block the Néel mechanism. Again we can observe superelastic stress–strain behavior in such systems and again the nonlinearity can be tuned by external magnetic fields. Yet, the response is altered though, due to the different coupling of the magnetic filler particles to the surrounding matrix. An external magnetic field parallel to the chain-like aggregates largely leaves the superelastic behavior intact. In contrast to that, a sufficiently strong perpendicular field rotates the particles out of the initial alignment configuration and gradually removes the nonlinearity from the stress–strain curve. However, due to the covalent coupling to the elastic matrix counteracting particle rotation, the necessary field strengths to deactivate superelasticity are much higher when compared to the case of freely reorientable magnetic moments.

In Section 2 we begin by introducing our numerical model and our simulation technique for the measurement of the magnetic moments. Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are free to reorient. First, this is possible when each magnetic moment can reorient within the particle interior, which typically can be observed as the so-called Néel mechanism up to particle diameters of 10–15 nm. Second, the type of embedding in the elastic matrix can allow the whole particle to rotate, at least quasi-statically, without deforming the matrix, e.g., when in the vicinity of the particles the cross-linking of the polymer matrix is inhibited. Finally, yolk–shell colloidal particles feature a magnetic core that can rotate relatively to the nonmagnetic shell surrounding it.

In a previous study, we restricted ourselves to the assumption that the magnetic moments of the embedded particles are free to reorient. First, this is possible when each magnetic moment can reorient within the particle interior, which typically can be observed as the so-called Néel mechanism up to particle diameters of 10–15 nm. Second, the type of embedding in the elastic matrix can allow the whole particle to rotate, at least quasi-statically, without deforming the matrix, e.g., when in the vicinity of the particles the cross-linking of the polymer matrix is inhibited. Finally, yolk–shell colloidal particles feature a magnetic core that can rotate relatively to the nonmagnetic shell surrounding it.

Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are not free to reorient with respect to the embedding matrix. Two ingredients are necessary for this purpose. First, the matrix must be anchored to the particle surfaces. In reality, this can be achieved when chemically the particles themselves act as cross-linkers of the polymer matrix. Second, the magnetic moments must not rotate relatively to the particle frames. This is the case for magnetically anisotropic monodomain particles that are large enough to block the Néel mechanism. Again we can observe superelastic stress–strain behavior in such systems and again the nonlinearity can be tuned by external magnetic fields. Yet, the response is altered though, due to the different coupling of the magnetic filler particles to the surrounding matrix. An external magnetic field parallel to the chain-like aggregates largely leaves the superelastic behavior intact. In contrast to that, a sufficiently strong perpendicular field rotates the particles out of the initial alignment configuration and gradually removes the nonlinearity from the stress–strain curve. However, due to the covalent coupling to the elastic matrix counteracting particle rotation, the necessary field strengths to deactivate superelasticity are much higher when compared to the case of freely reorientable magnetic moments.

In Section 2 we begin by introducing our numerical model and our simulation technique for the measurement of the magnetic moments. Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are not free to reorient with respect to the embedding matrix. Two ingredients are necessary for this purpose. First, the matrix must be anchored to the particle surfaces. In reality, this can be achieved when chemically the particles themselves act as cross-linkers of the polymer matrix. Second, the magnetic moments must not rotate relatively to the particle frames. This is the case for magnetically anisotropic monodomain particles that are large enough to block the Néel mechanism. Again we can observe superelastic stress–strain behavior in such systems and again the nonlinearity can be tuned by external magnetic fields. Yet, the response is altered though, due to the different coupling of the magnetic filler particles to the surrounding matrix. An external magnetic field parallel to the chain-like aggregates largely leaves the superelastic behavior intact. In contrast to that, a sufficiently strong perpendicular field rotates the particles out of the initial alignment configuration and gradually removes the nonlinearity from the stress–strain curve. However, due to the covalent coupling to the elastic matrix counteracting particle rotation, the necessary field strengths to deactivate superelasticity are much higher when compared to the case of freely reorientable magnetic moments.

In Section 2 we begin by introducing our numerical model and our simulation technique for the measurement of the magnetic moments. Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are not free to reorient with respect to the embedding matrix. Two ingredients are necessary for this purpose. First, the matrix must be anchored to the particle surfaces. In reality, this can be achieved when chemically the particles themselves act as cross-linkers of the polymer matrix. Second, the magnetic moments must not rotate relatively to the particle frames. This is the case for magnetically anisotropic monodomain particles that are large enough to block the Néel mechanism. Again we can observe superelastic stress–strain behavior in such systems and again the nonlinearity can be tuned by external magnetic fields. Yet, the response is altered though, due to the different coupling of the magnetic filler particles to the surrounding matrix. An external magnetic field parallel to the chain-like aggregates largely leaves the superelastic behavior intact. In contrast to that, a sufficiently strong perpendicular field rotates the particles out of the initial alignment configuration and gradually removes the nonlinearity from the stress–strain curve. However, due to the covalent coupling to the elastic matrix counteracting particle rotation, the necessary field strengths to deactivate superelasticity are much higher when compared to the case of freely reorientable magnetic moments.

In Section 2 we begin by introducing our numerical model and our simulation technique for the measurement of the magnetic moments. Herein, we also concentrate on the opposite scenario for spherical, rigid magnetic particles. That is, the magnetic moments are not free to reorient with respect to the embedding matrix. Two ingredients are necessary for this purpose. First, the matrix must be anchored to the particle surfaces. In reality, this can be achieved when chemically the particles themselves act as cross-linkers of the polymer matrix. Second, the magnetic moments must not rotate relatively to the particle frames. This is the case for magnetically anisotropic monodomain particles that are large enough to block the Néel mechanism. Again we can observe superelastic stress–strain behavior in such systems and again the nonlinearity can be tuned by external magnetic fields. Yet, the response is altered though, due to the different coupling of the magnetic filler particles to the surrounding matrix. An external magnetic field parallel to the chain-like aggregates largely leaves the superelastic behavior intact. In contrast to that, a sufficiently strong perpendicular field rotates the particles out of the initial alignment configuration and gradually removes the nonlinearity from the stress–strain curve. However, due to the covalent coupling to the elastic matrix counteracting particle rotation, the necessary field strengths to deactivate superelasticity are much higher when compared to the case of freely reorientable magnetic moments.
The undeformed reference state never changes, hence the inverse matrix \mathbf{X}^{-1} remains constant and has to be calculated only once. This allows to determine the elastic deformation energy $U_{el}(\mathbf{X}(\mathbf{r}))$ in any deformed configuration from the positions of the tetrahedral nodes.

Calculation of the force \mathbf{f}_i on each node i ($i = 0, 1, 2, 3$) is then straightforward,

$$ f_i = -\nabla_{\mathbf{x}_i} U_{el}(\mathbf{F}) = -\frac{\partial U_{el}(\mathbf{F})}{\partial \mathbf{F}} \frac{\partial \mathbf{F}}{\partial \mathbf{x}_i}. \quad (3) $$

These forces allow us to determine the displacements of the nodes. The characterization of the elastic matrix is thus completed. In a second step, we turn to the embedded rigid particles. Since they are rigid objects, we have to treat nodes attached to particle surfaces in a special way. The forces on these nodes are transmitted to the corresponding particle, which leads to net forces and torques on the particles. Rotations and translations of the particles due to these forces and torques are calculated. They, in turn, determine the displacements of the surface nodes. We perform a parallel calculation of all node forces in the system by slicing it into different sections that can be handled separately.

Next we discuss our representation of the magnetic interactions. We assume that all N magnetic particles possess permanent dipolar magnetic moments of equal magnitude m. This leads us to a total magnetic interaction energy given by

$$ U_m = \frac{\mu_0}{4\pi} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{m_i \cdot m_j - 3 (m_i \cdot \mathbf{r}_{ij}) (m_j \cdot \mathbf{r}_{ij})}{r_{ij}^3} - \sum_{i=1}^{N} m_i \cdot \mathbf{B}. \quad (4) $$

Here μ_0 is the vacuum permeability, m_i and m_j are the magnetic moments of particles i and j, respectively, with $|m_i| = |m_j| = m$, $r_{ij} := \mathbf{r}_i - \mathbf{r}_j$ is the separation vector between both particles, $r_{ij} = |r_{ij}|$ is its magnitude, $\hat{r}_{ij} = \mathbf{r}_{ij}/r_{ij}$, and \mathbf{B} is an externally applied magnetic field.

The magnetic dipolar interaction can be strongly attractive at short distances, when the magnetic moments of interacting particles are in a head-to-tail configuration. In order to prevent an unphysical interpenetration of the particles due to such an attraction, we additionally introduce a steric repulsion between the particles that counteracts the attraction at short distances. The WCA potential68

$$ U_{wca} = \begin{cases} 4\varepsilon \left[\left(\frac{r}{\sigma} \right)^{12} - \left(\frac{r}{\sigma} \right)^6 + \frac{1}{4} \right], & \text{if } r \leq 2^{1/6} \sigma, \\ 0, & \text{if } r > 2^{1/6} \sigma. \end{cases} \quad (5) $$

is hard and finite-ranged and commonly used to represent steric repulsions. Its strong scaling with the particle distance compared to the dipolar interactions (r^{-12} vs. r^{-3}) makes it the dominating contribution for short distances. By setting $\varepsilon = \frac{\mu_0}{4\pi} \frac{m^2}{32 \sigma^3}$ and $\sigma = 2R$, the dipolar force between two particles, with their magnetic moments aligned in the most attractive head-to-tail configuration, is exactly balanced by the repulsive WCA interaction when they are in contact.

All these ingredients together express the total energy of the system. It is a function of the node positions of the tetrahedral mesh, the particle positions, the particle orientations, and the orientations of the magnetic moments of the particles. We equilibrate our systems by performing an energy minimization with respect to these degrees of freedom. As a numerical scheme, we employ the FIRE algorithm69 using the forces and torques resulting from eqn (1)–(5) to drive the system towards its energetic minimum. FIRE is a molecular dynamics scheme that introduces artificial velocity modifications to achieve a quick relaxation. In each step of iteration, the equations of motion are integrated using a standard Velocity-Verlet algorithm, causing the system to accelerate towards the direction of steepest descent in energy. The direction is further emphasized by an additional steering contribution that tilts the directions of the velocities and angular velocities more towards the directions of the currently acting forces and torques, respectively. After the system energy has been decreasing for a small number of subsequent iterations, the steering contribution is reduced and the time step is increased, allowing inertia to carry the system further. An eventual increase in system energy is stopped by instantly freezing the system, setting all velocities and angular velocities equal to zero. Subsequently, the system accelerates again with the steering contribution restored to its initial value and reduced time step. The increase and decrease of the time step as well as the steering contribution are controlled using several parameters, for which we use the values suggested in ref. 69. Numerical stability is ensured by an upper bound Δt_{max} for the time step, which may depend on the considered system. We have found $\Delta t_{\text{max}} = 0.01$ to be sufficient for our systems. From our experience, this rather simple minimization scheme is quite competitive with more sophisticated schemes like nonlinear conjugate gradient70 that we employed in our earlier work in ref. 31. In extreme situations of deformation, unphysical behavior may result, such as the inversion of individual tetrahedra or their penetration into the spherical particles.

The physical input parameters for our simulations are the elastic modulus E and Poisson ratio ν of the matrix, the magnitude m of the magnetic moments and eventually the external magnetic field \mathbf{B}. We measure forces F in units of $F_0 = ER^2$, magnetic...
moments in units of \(m_0 = R^3 \sqrt{\frac{4\pi}{\mu_0} E_0} \) and magnetic field strength in units of \(B_0 = \sqrt{\frac{r_0}{4\pi}} \). Throughout his work, we fix the material parameters by choosing \(\nu = 0.495 \) and \(m = 10m_0 \). The Poisson ratio is chosen close to 1/2 to model the typical near-incompressibility of cross-linked polymer matrices while retaining some remnant compressibility required by our numerical simulation method. The choice of \(m \) sets a sufficiently high ratio between magnetic and elastic interactions to observe pronounced effects and is experimentally realistic as explained later in Section 5.

Besides the material properties, the behavior of a sample depends on its shape\(^27\)–\(^74\) and on the internal distribution of particles.\(^72\)–\(^74\) Our characteristic numerical probes are small three-dimensional systems of magnetic particles embedded into an initially rectangular box of an elastic material. The dimensions of the box are \(22.5R \times 10.4R \times 10.4R \), containing 96 identical spherical particles. These particles are arranged into 12 chain-like aggregates of 8 particles each. All chains are aligned parallel to the long edge of the box (the \(x \)-direction). Neighboring particles in the same chain are initially separated by a finite gap of the elastic material of thickness \(R/2 \). The positions of the chains are chosen at random, with the constraint that they shall not overlap and have a minimum distance of \(R/4 \) to the box boundaries. This results in a configuration of chains shifted with respect to each other along their axes by a maximum amount of \(2.5R \). Since this maximum shift equals the particle diameter plus the gap thickness, there is no statistical preference of any special particle-gap configuration between two chains. Such an initial arrangement of the chains is supposed to mimic experimental ferrogel systems featuring chain-like aggregates that span the whole sample along one direction.\(^37\),\(^38\) They constitute a natural choice for studying tunable deformation effects along the designated direction.\(^5\) Our results are based on 20 different systems created in this manner, each with a unique particle configuration. About 250,000 tetrahedra result in each case from the mesh generation.

To measure the uniaxial stress–strain behavior of such a numerical system, we quasi-statically stretch it along the chain direction, using the following protocol. We define two numerical clamps, on the two faces where chains start and end. In our geometry, these faces are normal to the \(x \)-direction. All particles on the chain ends are subject to the corresponding numerical clamp. Particles within the clamps may rotate. They may also translate in the \(y \)- and \(z \)-directions, however, with the constraint that the center-of-mass displacement of all particles in a clamp is zero. This keeps the centers of the clamps fixed in the \(xy \)-plane and prevents an overall rotation of the long axis of the system. Finally, we prevent global rotations of the whole system around its long axis at all times. For this purpose, at each timestep, we determine the global rotational modes from which the rotation is eliminated. Overall, this definition of the clamps differs from our approach in ref. 31. There, the clamps consisted of the complete outer 10% of the system at both ends, that is, besides the particles also all matrix mesh nodes in these volumes were included.

After switching on the magnetic moments, we perform an initial equilibration process. During this period, the clamps are allowed to relatively translate along the \(x \)-axis. However, the relative distance between the particles in a clamp is kept constant along the \(x \)-direction. Due to this initial equilibration, we can observe an initial matrix deformation and define the resulting state as unstretched. This sets the equilibrium distance \(L_0 \) between the clamps as the \(x \)-separation between the innermost clamped particles. To apply a uniaxial strain, we increase the distance between both clamps in small steps, displacing all clamped particles uniformly. So we can define the uniaxial strain as \(\varepsilon_{xx} = \Delta L/L_0 \), where \(\Delta L \) is the momentary increase in the distance between both clamps. After each step, we equilibrate the sample again under the constraint of keeping the \(x \)-positions of the clamped particles fixed. Subsequently, we can extract the force \(F \) that has to be applied to the clamps to maintain the system in the prescribed strained state. We continue the stress–strain measurements up to a maximum strain of \(\Delta L/L_0 = 150\% \) and then gradually unload the system again. To check the reversibility of the deformation, we perform several loading and unloading cycles.

3 Definition of the numerical systems

Within our numerical samples defined above, we distinguish between two scenarios of how the magnetic moments are coupled to the surrounding matrix via their carrying particles. Systems showing the first one, which we term free systems, feature magnetic moments that can freely rotate relative to the particle frames and surrounding matrix, see also ref. 31. In this case, a reorientation of a magnetic moment does not directly induce a deformation of the matrix surrounding the carrying particle. Computationally, we treat this system by keeping the orientations of the magnetic moments and the orientations of the carrying particles as separate degrees of freedom. During the initial equilibration, within the particles constituting one chain, the magnetic moments tend to align parallel to the chain axis. The magnetic moments within neighboring chains have the tendency to align in opposite directions to minimize the overall magnetic interaction energy. Fig. 2a illustrates this situation by showing a snapshot of an equilibrated free system before stretching. A cut along the cross-sectional center plane perpendicular to the chain axes in Fig. 2a stresses the different alignment of the magnetic moments in different chains.

In the opposite scenario, we assume that the magnetic moments are fixed to the axes of the carrying particles, while the particles are covalently embedded into the elastic matrix. A torque on a magnetic moment is then equivalent to a torque on the carrying particle, which in turn leads to a deformation of the surrounding matrix. We mark these systems by the term cov and represent them computationally by rigidly coupling the magnetic moment orientations to the particles.

Consequently, the initial orientations of the magnetic moments have a determining influence on the structure of the cov
samples and, thus, on their stress–strain behavior. We distinguish between two sub-scenarios and term the corresponding systems cov∥ and cov⊥. In the cov∥ systems, we define all magnetic moments in the sample to initially point in the same direction parallel to the chains. During the initial equilibration, the orientations of the magnetic moments barely change as particle rotations are energetically expensive. The magnetic moments within all chains are still aligned in the same direction, see Fig. 2b for a snapshot. This is different in the cov⊥ systems: here we take the equilibrated state from the free systems, but then fix the magnetic moments to the particle axes before stretching the sample. As a result, the magnetic moments are rigidly anchored to the carrying particles and are arranged into the chains with alternating alignment, see again Fig. 2a for a snapshot. The cov⊥ system constitutes a case in-between the free and cov∥ systems. We can, therefore, use it to test separately the effect of the two main modifications from the free to the cov∥ system: anchoring the magnetic moments to the particle frames (free to cov⊥) and having all magnetic moments point in the same direction (cov⊥ to cov∥).

If we would apply an external magnetic field before the magnetic moments are anchored, we would destroy the alternating chain morphology that we want to study. Thus, when studying the influence of an external magnetic field on these alternating chain systems, we apply it after the magnetic moments have been anchored. Subsequently, we reequilibrate the systems under these new conditions before performing the stress–strain measurement.

4 Results and discussion

In the following, we will present and discuss our results for the three systems free, cov∥, and cov⊥ as defined above. We begin with vanishing external magnetic field and then proceed to the situation of magnetic fields applied parallel and perpendicular to the stretching direction. For each system and each magnetic field, we show snapshots as well as the uniaxial stress–strain curves and discuss the various mechanisms that lead to our results.

Important insight can be gained by statistically analyzing the orientations of the magnetic moments in the systems. We evaluate them by considering the nematic order parameter S_m, which is defined as the largest eigenvalue of the nematic order parameter tensor:

$$Q_m = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{3}{2} \hat{m}_i \otimes \hat{m}_i - \frac{1}{2} \mathbf{I} \right).$$

Here \hat{m}_i are the magnetic moment orientations of the N particles in the system, \otimes marks the dyadic product, and \mathbf{I} is the unity matrix. S_m measures the degree of alignment of the input orientations without distinguishing between orientation \hat{m}_i and its opposing orientation $-\hat{m}_i$. Perfect alignment leads to $S_m = 1$, while in the absence of global orientational order $S_m = 0$.

In addition to the magnetic order in the systems, also the structural order contains useful information. It can be quantified in a very similar way by defining another nematic order parameter tensor:

$$Q_r = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{3}{2} \hat{r}_i \otimes \hat{r}_i - \frac{1}{2} \mathbf{I} \right).$$

In this expression, \hat{r}_i is defined as the orientation of the separation vector for each particle i to its nearest neighbor. S_r is the largest eigenvalue of the tensor Q_r. We find $S_r = 1$ when all particles have their nearest neighbor along a common axis.
In the case of linear aggregates, this means that all aggregates are aligned. Such a global structural order is absent for \(S_r = 0 \).

As will be revealed later in more detail, in the free system a “flipping mechanism” \(^{31}\) plays an important role. “Flips” refer to events during which some magnetic moments suddenly change their direction with respect to the stretching axis from parallel towards perpendicular. They are induced by the stress-induced structural change in the system. To appropriately characterize this flipping mechanism, we define special modified nematic order parameters \(\hat{S}_m \) and \(\hat{S}_r \) as described here for \(\hat{S}_m \). First, to get rid of the distinction between different perpendicular directions, we determine the projections \(\hat{m}_i^r \) of the magnetic moment orientations \(\hat{m}_i \) onto the stretching axis as well as the projections \(\hat{r}_i^r \) into the plane perpendicular to the stretching axis. Then we define a two-dimensional nematic order parameter tensor as

\[
\hat{Q}_m = \frac{1}{N} \sum_{i=1}^{N} \left(2 \left(\hat{m}_i^r \right)^2 - 1 \right) \left(2 \hat{m}_i^r \hat{r}_i^r \right)
\]

(8)

and obtain \(\hat{S}_m \) as the largest eigenvalue of this tensor. Similarly, we can determine the projections \(\hat{r}_i^p \) and \(\hat{r}_i^r \) of the nearest-neighbor separation vectors \(\hat{r}_i \) define the tensor

\[
\hat{Q}_r = \frac{1}{N} \sum_{i=1}^{N} \left(2 \left(\hat{r}_i^p \right)^2 - 1 \right) \left(2 \hat{r}_i^p \hat{r}_i^r \right)
\]

(9)

and identify \(\hat{S}_r \) as its largest eigenvalue.

4.1 Vanishing external magnetic field \((B = 0)\)

We now start by quasistatically stretching the three systems along the chain axes in the absence of an external magnetic field. The elongation is stepwise increased to a maximum and then, in the inverse way, reduced back to zero. The necessary forces on the clamps are recorded.

Fig. 3 shows the strongly nonlinear stress–strain behaviors resulting for the three systems. In the beginning, all systems show an almost identically steep increase of the stress with the imposed strain. Then, from a strain of about \(\Delta L/L_0 \approx 10\% \) up to \(\Delta L/L_0 \approx 50\% \), a pronounced superelastic plateau follows. In this regime, a small increase in the applied load leads to a huge deformation that is completely reversible. The shape of the superelastic plateau differs among the systems. In the cov \(\Rightarrow \) and cov \(\approx \) systems the plateau is almost completely flat. However, in our strain-controlled measurements we find a regime of negative slope \(^{76}\) for the free system. Moreover and in contrast to the other systems, we here observe a considerable hysteresis for the free system in the strain interval containing the superelastic plateau. In all cases, subsequent to the plateau, the slope partially recovers, becomes relatively constant, and does not differ much among the different systems. Each stress–strain curve is obtained by averaging the stress–strain curves resulting from 20 different realizations that vary in the initial arrangement of the chain-like aggregates, see Section 2. The standard deviations are indicated by the shaded areas around the curves.

For the free system they are significantly larger than for the other ones.

The main mechanism responsible for the nonlinearities in all systems is a stress-induced detachment mechanism. \(^{31}\) We briefly illustrate how it can lead to the change from the steep slope at the origin of the stress–strain curve to the subsequent superelastic plateau. Consider again the unstretched states depicted in Fig. 2. In these states, the chains are contracted because of the mutual attraction between the magnetic moments of neighboring particles. Thus, the elastic material in the gaps between neighboring particles on the same chain is pre-compressed and the particles are close to each other. In this situation, the dipolar attraction is strong, since its interaction energy, see eqn (4), scales with the inverse cube of the distance. To stretch the system, work has to be performed against this strong attraction between the particles, which accounts for the steep initial increase in the stress–strain curve. However, when a section of a chain is detached a little from the remainder, the attraction between both parts weakens considerably. Therefore, once overcoming the magnetic barrier, the displaced chain section can be detached from the remainder of the chain. Such a detachment event releases the energy stored in the gap between the detached particles and allows a sudden elongation of the system.

Fig. 4a shows a snapshot of a free sample stretched by 35%, illustrating this process. In the depicted situation, some particles are detached from the chains with increased particle separation, while smaller segments are still intact. Each individual detachment event corresponds to a small localized drop in the stress–strain curve. In a very small and ordered system, this would lead to a spiky appearance of the stress–strain relationship as
we have demonstrated for a single chain in ref. 31. However, averaging over the many detachment events that occur in a larger, inhomogeneous system with many parallel chains yields a smooth superelastic plateau as in Fig. 3. Upon unloading the system, the individual particles can simply reattach, reform the chains, and restore the energy in their separating gaps, so that the detachment mechanism is reversible.

The second mechanism contributing to the observed superelasticity is the flipping mechanism. It only plays a significant role in the free system. In the unstretched sample, the magnetic moments align along the chain axes in a head-to-tail configuration to minimize their magnetic interaction energy, see Fig. 2. This situation changes when the sample is sufficiently stretched in the direction parallel to the chains. The distances between particles in the same chain eventually increase, see Fig. 4a and ref. 31. Meanwhile, volume preservation in our nearly incompressible systems enforces a contraction in the perpendicular direction, driving different chains closer to each other. Eventually, the interparticle distances in the parallel and perpendicular directions become approximately equal for subsets of particles. For the involved magnetic moments this means a sudden change in their preferred orientation from parallel to the stretching axis towards perpendicular. In the free system, the moments can easily seize this opportunity to minimize their magnetic interaction energy by sudden reorientation. This constitutes a flip event.

Flips are associated with drops in the stress–strain curve for the following reason. As long as the magnetic moments participating in a flip event are still aligned parallel to the stretching axis, their magnetic interaction energy increases with the strain. However, once the flip has occurred and they have aligned towards perpendicular, their magnetic interaction energy decreases with the stretching. Therefore, during a flip event, the slope of the magnetic interaction energy suddenly changes for the participating magnetic moments. Since the stress is the derivative of the energy with respect to the strain, this causes a drop in the stress–strain curve. Or, discussing the situation directly in the force picture: as long as the magnetic moments align along the stretching axis, they counteract the elongation, which requires a higher stretching force; once they flip, they repel each other along the stretching axis, which supports the elongation. In an inhomogeneous sample, flips are local events and can occur over a wide range of global strain magnitudes. As a result, the individual drops are smoothened out in the stress–strain curves resulting from our characteristic systems.

Consider again the snapshot in Fig. 4a. Compared to the particles in the still intact chain parts, the detached particles have a larger interparticle distance along the stretching axis and their magnetic moments indeed prefer an orientation towards perpendicular to this axis. When a detachment event occurs, the corresponding sample section elongates, which can in turn trigger flip events. Conversely, a reorientation of magnetic moments towards the perpendicular direction can induce detachment. So in our characteristic free systems, the detachment and flipping mechanisms are intertwined. Yet, considering suitable
idealized model situations, both mechanisms can be studied in isolation, see ref. 31. The interplay between both mechanisms supports the hysteresis observed in our stress–strain curves for the free system, see Fig. 3. The magnetic attractions pull the particles together along the orientation of the magnetic moments, which in turn self-strengthen the magnetic interaction. In this way, an energetic barrier is created that needs to be overcome every time the magnetic moments are pulled apart and flip, either during initial stretching, or in the flipped state during unloading.

We can further quantify the flipping mechanism by statistically analyzing the orientations of the magnetic moments. Let us evaluate the nematic order parameters \tilde{S}_m and \tilde{S}_r, defined in eqn (8) and (9) as a function of the imposed strains. \tilde{S}_m measures the degree of alignment of the magnetic moments and \tilde{S}_r does the same for the separation vectors between nearest-neighboring particles. The results are plotted in Fig. 5. \tilde{S}_m and \tilde{S}_r (as well as S_m and S_r) are themselves per definition obtained from averages, see eqn (6)–(9). We here take the sums in these equations directly over all particles in all 20 different realizations of each system. In this way, the deviations between the different realizations are already contained in these order parameters.

In Fig. 5, for low strains, magnetic moments are aligned parallel to the stretching axis, because this is the direction of smallest interparticle distance. Consequently the system is in a state of high magnetic and structural order, reflected by the high levels of \tilde{S}_m and \tilde{S}_r. Upon increasing the strain, the interparticle distances in the stretching direction increase, particles are detached and magnetic moments flip, taking the system into a mixed state. \tilde{S}_m and \tilde{S}_r simultaneously decrease and reach a minimum at $\Delta L/L_0 \approx 35\%$, where they almost vanish. This state is depicted in the snapshot in Fig. 4a, where about half of the particles are detached from the chains with their magnetic moments flipped towards a perpendicular direction. From there on, both \tilde{S}_m and \tilde{S}_r increase again until finally all particles are detached and all magnetic moments have flipped. The strain regime where the order parameters change significantly coincides with the position of the superelastic plateau in the stress–strain curve in Fig. 3. Finally, at the highest strains, both order parameters again decrease slightly when the lateral contraction of the system squeezes the particles together. This causes them to evade each other when they come too close and makes them shift relatively to each other along the stretching axis, which disturbs the perpendicular alignment. Also for the order parameters, we here observe again the hysteresis discussed already in the context of the stress–strain curves.

Let us now come back to the cov\parallel and cov\perp systems where the magnetic moments cannot rotate relatively to the particle frames. Then magnetic reorientations cost a significant amount of elastic energy, as this requires a corotation of the elastic matrix directly anchored to the particle surfaces. Fig. 4b and c, show snapshots of the corresponding samples at a strain of 100%. There we can nonetheless observe particle rotations. These particle rotations, however, do not apparently lead to a configuration that minimizes the magnetic interaction energy. In fact, the primary reason for these rotations is not the magnetic interaction between particles, but inhomogeneities in the stiffness across the system. We recall that the particles in our systems are rigid inclusions of finite extension. Consequently, the particles are local sources of increased rigidity within the soft elastic matrix. Already in an unmagnetized system, such rigid inclusions lead to an overall stiffer elastic behavior of the whole system.37–39 In our case, an increase of a factor of ~ 7 in the elastic modulus was observed.31 Placing the particles into the randomly shifted chains when designing our systems adds a certain randomness to the distribution of our localized rigidities. When stretching the systems, the inhomogeneous distribution of rigidity can lead to local shear strains that rotate the embedded rigid particles. Of course, this does not require the particles to be magnetized and occurs in unmagnetized systems ($m = 0$) as well. In Fig. 4d we show a snapshot of an unmagnetized system stretched by 100% for demonstration. There we indicate the initially horizontal particle axes by bars to visualize the particle rotations. The resulting patterns of particle rotation are qualitatively similar to the ones in the cov\parallel and cov\perp systems.

Again we use statistical analysis to further quantify the particle rotations. Due to the different mechanism when compared to the flipping process, we are here only interested in the degree of alignment along the initial anisotropy axis. Therefore, we use the nematic order parameter S_m defined in eqn (6) for quantification. The results are plotted in Fig. 6a as a function of the imposed strain for the free, cov\parallel, and cov\perp systems, as well as for the unmagnetized (unmag) case. Let us first consider the unmag system, where the initial horizontal particle axes, see Fig. 4d, are used to calculate S_m. Up to a strain of $\Delta L/L_0 \approx 35\%$,
particle rotations barely seem to occur, as S_m stays close to 1. Then, there is a crossover to a regime of approximately linear decay of S_m. The particles rotate more and more away from the initial axes of alignment as a consequence of the inhomogeneous stiffness. The behavior in the cov$\|\|\|$ and cov\perp systems is very similar, the crossover to the regime of declining order merely occurs at a higher strain of $\Delta L/L_0 \approx 50\%$, which also roughly marks the end of the superelastic plateau in Fig. 3. In these systems, the dipolar magnetic interactions along the initial, still intact chains counteract particle rotations and stabilize the alignment up to higher strains. When the detachment of the particles from the chains has been completed at the end of the superelastic plateau, this stabilizing magnetic interaction disappears, rendering the particles susceptible to shear stresses originating from the system inhomogeneity. The curve for the cov\perp system is always below the one for cov$\|\|$, because already the initial unstretched state is less ordered, see again Fig. 2.

The behavior of S_m for the free system is obviously completely different and should rather be compared with S_m in Fig. 5. S_m shows a rapid initial decay up to a minimum and afterwards recovers to reach a relatively low but constant level. This is despite the fact that S_m unlike $S_\|$ distinguishes between different directions perpendicular to the stretching axis. Therefore, beyond the superelastic plateau, one particular axis perpendicular to the stretching axis must emerge along which the magnetic moments preferably align. Such a direction forms as nearby flipped magnetic moments tend to align by magnetic dipolar interaction. In turn, this favors further contraction along such an emerging axis of alignment, providing a self-supporting mechanism. Inherent structural inhomogeneities will affect this mechanism.

The same analysis as for S_m can be conducted for the nematic order parameter S_r of the separation vectors between nearest neighbors. It is plotted for all systems in Fig. 6b. S_r starts at a high value for all systems, because in the unstretched state the nearest neighbor of each particle is always along the chain. The more the sample is stretched, the more the distances along the chains increase, while the distances between separate chains decrease due to volume preservation. Thus, it becomes increasingly likely that the nearest neighbor for a particle is a member of a different chain. In the unmag system, there is no stabilizing attractive interaction keeping the chains together. So the minimum, where nearest-neighbor directions predominantly switch, is reached relatively soon. In the other systems, however, the magnetic attraction makes the chains subject to the detachment mechanism. Segments detach from the chains, while the remainder of the chains remains intact. As a result, partial structural order is preserved up to much higher strains. Again, the strain regime where S_r changes a lot due to the changes in structural order coincides with the strain interval of the superelastic plateau in the stress–strain curves in Fig. 3.

Finally, we now also understand the different magnitudes of the standard deviations for the displayed averaged stress–strain curves in Fig. 3. Each curve is obtained by averaging of 20 realizations of the particle arrangement. Differences in the initial distribution of the chain-like aggregates lead to differences in the thresholds for flip and detachment events as a major source for the standard deviations. In the unmag system, neither the detachment nor the flipping process is activated, consequently the standard deviation is smallest. Intermediate magnitudes are observed in the cov$\|\|$ and cov\perp systems where the detachment mechanism prevails and flipping is largely inhibited. In contrast to that, the flipping mechanism is activated in the free system and can also trigger detachment events, thus here the largest standard deviations arise.

4.2 External magnetic field along the stretching axis ($B = B_0\hat{s}$)

Upon applying an external magnetic field parallel to the chain and stretching axes (the x-direction) when recording the stress–strain
behavior changes the situation fundamentally in all three systems free, cov\(\rightarrow\), and cov\(\leftarrow\). In the free system, turning on the field after the initial equilibration quickly causes all magnetic moments to point in the same direction along the field as opposed to the situation in Fig. 2a. There, the magnetic moments carried by particles in different chains can show opposite magnetic alignment. In the free system as well as in the cov\(\rightarrow\) system, the field also introduces an additional energetic penalty for the rotation of magnetic moments away from the chain axes. The detachment mechanism is not impeded by this, as it relies on the strong magnetic attraction between close neighboring particles within the same chain and the storage of elastic energy within the compressed gap material. The magnetic moments are not rotated away from the alignment along the chain axes during this process. In contrast to that, the flipping mechanism is based on reorientations away from the direction of the applied magnetic field and is, therefore, affected by the aligning magnetic field. In the cov\(\leftarrow\) system featuring anchored magnetic moments of opposite alignment, the external magnetic field has a particularly interesting effect. Roughly half of the magnetic moments are aligned with the field. The remaining moments are misaligned and the corresponding particles would need to rotate by about 180 degrees to minimize the interaction energy with the external magnetic field.

Fig. 7 revisits our results for the free system for various applied magnetic field strengths. The stress–strain curves in Fig. 7a illustrate the tunability of the material.† Already a small external magnetic field of \(B_x = 1B_0\) at a strain of \(\Delta L/L_0 = 100\%\) flattens the superelastic plateau, and also reduces the hysteresis considerably. As noted in ref. 31, the dip was mainly generated by flipping of magnetic moments. When a stronger field is applied, the shape of the superelastic plateau becomes almost identical to the one for the cov\(\rightarrow\) system in the case of vanishing external magnetic field, see Fig. 3. The snapshot in Fig. 7b shows a free system for \(B_x = 1B_0\) at a strain of \(\Delta L/L_0 = 100\%\). Even in this highly strained state, the magnetic moments assume oblique angles instead of performing full flips towards a perpendicular direction.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 7 Results for the free system under the influence of an external magnetic field of varying strength, applied parallel to the stretching axis. (a) Uniaxial stress–strain behavior.† The external field gradually deactivates the flipping mechanism. As a result the superelastic plateau is flattened, the dip at \(\Delta L/L_0 = 50\%\) and the hysteresis are removed until the behavior resembles the one for the cov\(\rightarrow\) system in Fig. 3 for vanishing external magnetic field. For better visibility, only the maximum standard deviation on each curve is indicated by a bar where it occurs. (b) Snapshot showing a free system subject to an external field of \(B_x = 1B_0\) at a strain of \(\Delta L/L_0 = 100\%\). Even in this highly strained state, the magnetic moments assume oblique angles instead of performing full flips towards a perpendicular direction. (c) Degree of magnetic order \(\tilde{S}_m\) and (d) degree of structural positional order \(\tilde{S}_r\) as defined by eqn (8) and (9), indicating the deactivation of the flipping mechanism with increasing \(B_x\). The minimum in \(\tilde{S}_m\) is gradually removed by the parallel external magnetic field. Meanwhile, the minimum in \(\tilde{S}_r\) is shifted slightly.

† In ref. 31, the magnetic field strengths in the figures containing stress–strain curves were not scaled correctly. Instead of \(10B_0, 20B_0, 30B_0\) it should read \(1B_0, 2B_0, 3B_0\), respectively.
In summary, the flipping transition and the connected bumps in the superelastic plateau together with the hysteresis can be deactivated by the field.

The plot in Fig. 7c of the nematic order parameter \(S_m \) quantifying the magnetic order in the system provides further evidence that the field impedes the flipping mechanism. An external magnetic field of \(B_x = 1B_0 \) is sufficiently strong to smoothen the sharp local minimum in \(S_m \) corresponding to the transition from a parallel state towards perpendicular magnetic alignment with respect to the stretching axis. Stronger fields enforce a parallel alignment, remove the local minimum in \(S_m \) and thus deactivate the flipping mechanism. Only the detachment mechanism remains active. Meanwhile, the structural positional order in the sample does not seem to be influenced significantly by the external magnetic field, as the plots of the nematic order parameter \(S_r \) for the separation vectors between nearest neighbors in Fig. 7d suggest. The minimum where the most likely nearest-neighbor direction switches from parallel towards perpendicular is shifted slightly. Beyond the minimum, \(S_r \) decreases with increasing \(B_x \). This results from an arising competition between two effects. On the one hand, due to overall volume preservation, the particles are driven together along the direction perpendicular to the stretching axis as before. On the other hand, flips are hindered by the external magnetic field, or even suppressed completely. Therefore, the magnetic moments cannot support the perpendicular approach anymore as efficiently, or even counteract it due to the magnetic repulsion when the magnetic moments are forced into the direction of the external magnetic field. This also largely removes the hysteresis from our curves.

Let us discuss the \(\text{cov}_{\perp} \) system next. The results are summarized in Fig. 8. Fig. 8a shows the corresponding stress–strain behavior. Up to the end of the superelastic plateau, the curves for different external magnetic field strengths hardly differ. This is not surprising, since we have established before that the flipping mechanism plays no role for these systems and that the detachment mechanism is not impeded by an external magnetic field parallel to the chains. However, beyond the plateau, where we have a regime of relatively constant increase of the stress with the imposed strain, we can observe a stiffening of the system when a higher field strength is applied. Only at very high strain, the slopes for all different field strengths become similar again. The explanation for this stiffening influence of the external magnetic field is the suppression of magnetic moment reorientations and, thus, in this \(\text{cov}_{\perp} \) system, of particle rotations. We have seen, however, in Fig. 4b that such particle rotations would arise in the absence of a magnetic field to minimize the elastic energy. Suppressing them increases the necessary mechanical energy input into the system. The snapshot in Fig. 8b shows a sample with an applied field of \(B_x = 10B_0 \) at a strain of \(\Delta L/L_0 = 100\% \) for comparison with the analogous situation in Fig. 4b for \(B_x = 0 \).

For a more quantitative analysis of the rotation effects, we evaluate the nematic order parameter \(S_m \) of the orientations of the magnetic moments as a function of the imposed strain, see Fig. 8c. We can distinguish between two major regimes. In the first one, the overall strain is still too low to induce significant local shear deformations due to the inhomogeneities, thus, the particles rotate only slightly and \(S_m \) remains at a high and relatively constant level. However, in the second regime, we can observe an approximately linear decay in \(S_m \) as the particles begin to significantly rotate. In the absence of an external magnetic field, the crossover between both regimes occurs at the end of the superelastic plateau. There, the particles are detached from the chains. This reduces the aligning magnetic interactions and the particles become susceptible to rotations due to the elastic inhomogeneities in the system. Interestingly, increasing the strength of the external magnetic field can postpone the crossover far beyond this point by supporting the magnetic moment orientations along the field direction. This stiffens the system in two ways. First, the inhomogeneity shear stresses are prevented from relaxing via the favored channel: the rotation of particles. Second, the magnetic moments in the system keep repelling each other perpendicular to the stretching axis, which occurs against their perpendicular approach. The stronger the external magnetic field strength, the longer the embedded particles can resist a rotation, maintaining the stiffening effect. For all considered magnetic field strengths, the particles eventually begin to rotate, as indicated by the crossover in \(S_m \). Therefore, the slopes of the stress–strain curves become similar again at the maximum strain.

Finally, we show for completeness in Fig. 8d the nematic order parameter \(S_r \) for the nearest-neighbor separation vectors as a function of the imposed strain. Here, the curves for different magnetic field strengths are largely similar.

Now we come to the \(\text{cov}_{\parallel} \) system and present the results in Fig. 9. Before the external magnetic field is applied, these systems are in a state like the one depicted in Fig. 2a. Roughly half of the magnetic moments are aligned along to the magnetic field direction, while the other half is oppositely aligned and tends to reorient to minimize the magnetic interaction energy with the external field. This has implications on the stress–strain behavior, as illustrated in Fig. 9a. For small field strengths \(B_x = 2B_0 \), the behavior barely changes compared to the case of vanishing external magnetic field. Then for intermediate fields of \(B_x = 4B_0 \), the steep increase at low strains as well as the superelastic plateau become less pronounced. Starting from a field of \(B_x = 6B_0 \), the superelastic features vanish altogether. An explanation is given in the following. As long as the external field strength is low enough \(B_x = 2B_0 \), the energy cost of misalignment is not particularly large for the magnetic moments in the metastable configuration antiparallel to the field. However, when increasing the external field, due to imperfections in the initial antiparallel alignment, at some point the magnetic particles can be rotated by a significant amount. Then, the torques due to the external field get amplified, causing the particles to rotate even further. At this stage, the reorientations of the misaligned moments together with their carrying particles begin to distort the sample substantially. Obviously, for the corresponding chains, the detachment mechanism will seize to function at this point, but also the chains containing aligned magnetic moments in the neighborhood will be disturbed.
This chaotic situation is depicted in the snapshot in Fig. 9b for an external magnetic field of $B_x = 6B_0$ and a strain of 30%. One can still identify the particles that have been aligned along the field direction, but the corresponding chains are distorted. As a result, the detachment mechanism is disabled and the superelastic plateau vanishes.

The plots of the nematic order parameters S_m and S_r in Fig. 9c and d support this picture. For small magnetic field strength of $B_x = 2B_0$, S_m is still very similar to the case of vanishing magnetic field. Further increasing the field strength up to $B_x = 6B_0$ promotes magnetic disorder in the system, leading to an overall low level of S_m. From there on, the level of S_m slightly increases with the magnetic field strength as the orientations of the aligned magnetic moments are stabilized by the field. The structural order measured by S_r does not change too much as long as $B_x \lesssim 4B_0$. Starting from $B_x \gtrsim 6B_0$, however, the misaligned magnetic moments are rotated significantly and distort the system. The increased magnetic order indicated by a higher level of S_m apparently cannot prevent the structure from becoming more disturbed, so that S_r is still lowered further.

In conclusion, the effect of an external magnetic field applied parallel to the stretching axis varies substantially among the different systems. In the free system, the main effect is the deactivation of the flipping mechanism, which makes the stress–strain behavior almost identical to the one of the cov systems in the absence of an external magnetic field. Within the cov system the superelasticity is barely affected. However, the external magnetic field stabilizes the particle orientations at strains beyond the superelastic plateau and thereby stiffens the stress–strain behavior. Finally, in the cov system the field promotes a strongly disturbed structure by rotating particles carrying magnetic moments misaligned with the field. As a consequence, the detachment mechanism is disabled and the superelastic plateau vanishes from the stress–strain curves.

4.3 External magnetic field perpendicular to the stretching axis ($B = B_y$)

An external magnetic field applied perpendicular (here along the y-axis) to the stretching axis attempts to rotate the magnetic moments away from their attractive head-to-tail configuration within the chains. This influence is strongest in the free system,
where the magnetic moments are free to reorient to minimize their magnetic energy. In the cov\(\parallel\) and cov\(\perp\) systems, however, rotations of the magnetic moments are counteracted by restoring torques on the embedded particles due to the otherwise induced deformation of the surrounding matrix.

Let us again discuss the free system first. We present the results in the same fashion as before for the parallel field. Fig. 10a shows the resulting stress–strain behavior.† The perpendicular field has two effects. First, it influences the superelasticity, causing the plateau to be confined to a smaller strain interval. Second, it lowers the initial slope of the stress–strain curve. At a high enough magnetic field strength, the superelastic nonlinearities are switched off completely together with the hysteresis, and the stress–strain curve becomes ordinary.

To understand this behavior, it is first noted that the perpendicular magnetic field shifts the flipping mechanism to smaller strains. This is intuitive, as the external magnetic field energetically supports flips to a direction perpendicular to the stretching axis. Analysis of the nematic order parameters \(S_m\) and \(S_r\) in Fig. 10c and d, respectively, confirms this expectation.

The regime of mixed orientations centered around the minimum in \(S_m\) is shifted to lower strains by the field. In this regime, some of the magnetic moments are still aligned along the chains, while others have already flipped. Meanwhile, \(S_r\) is strongly correlated with \(S_m\). This indicates that the external magnetic field does not only influence the flipping mechanism, but also the detachment mechanism. As noted before, flip events trigger detachment events and vice versa. Reoriented magnetic moments do not feel a strong attraction along the stretching axis that could keep the carrying particles attached to the chains. So the threshold strains for both mechanisms are lowered at the same time.

This shift of threshold strains can cause the system to enter a mixed state already without any external strain imposed. The snapshot in Fig. 10b shows a situation of \(B_y = 2B_0\). Although the system is unstretched in the depicted case, a significant amount of particles has already detached from the chains. Their magnetic moments are aligned along the field direction, perpendicular to the chain axis. So the fraction of particles that can still perform detachment or flip events is lowered.
As a result, the features corresponding to both mechanisms are less pronounced in the stress–strain curves. Also the initial slope is lower, because there is less overall magnetic attraction along the stretching direction counteracting the elongation. Consequently, the superelastic plateau spans a smaller strain interval.

We now proceed to the results for the cov system as shown in Fig. 11. In the case of vanishing external magnetic field, this system features global polar magnetic order in the x-direction, see again Fig. 2b. Applying an external magnetic field perpendicular to the stretching axis leads to a new state of rotated global magnetic order. Fig. 11b shows a snapshot of an unstretched system subject to a strong external magnetic field of $B_y = 3B_0$. The magnetic moments, together with the carrying particles, are rotated towards a configuration of collective polar alignment oblique to the external magnetic field. This occurs against the strong magnetic attractions within each chain and the necessary elastic deformation of the matrix between the particles. The rotations of individual particles are energetically expensive. In fact, the system partially avoids these expensive rotations by allowing chain segments to rotate as a whole towards the field. Undulations and buckling of the chains then lead to a compromise between the minimization of the elastic and magnetic parts of the total energy.

Either way, the magnetic dipolar attraction between neighboring particles along the stretching direction is weakened, which impedes the detachment mechanism. So the influence of the perpendicular external magnetic field on the stress–strain behavior is again a gradual removal of the superelastic plateau, as illustrated in Fig. 11a. A stiffening of the stress–strain behavior beyond the superelastic plateau, however, cannot be observed. Contrary to the parallel magnetic field, the perpendicular magnetic field breaks the uniaxial symmetry of the system and offers a distinctive direction for the particles to rotate towards. As can be deduced from the nematic order parameter S_{nm} of the magnetic moments plotted in Fig. 11c, the perpendicular...
external field aligns the particles very effectively even up to the highest considered strains. Differences in the rotations of the particles due to elastic inhomogeneities can, thus, be prevented. A field of $B_y = 2B_0$ is already quite successful in this respect, using stronger fields does not significantly increase the effect much further. The magnetic moments are no longer pointing in the same direction along the stretching axis. Therefore, the mutual repulsion between magnetic moments perpendicular to the stretching axis is reduced and does not counteract an elongation of the system any more. Thus, there is no significant stiffening of the stress–strain behavior when changing the external magnetic field strength.

We also plot the nematic order parameter S_m of the nearest-neighbor separation vectors in Fig. 11d. For $B_y = 0$, S_m is at a high level for low strains, where it is most likely that the nearest neighbor of a particle is located along the stretching axis within the same chain. Then S_m quickly drops as the chains are stretched out and subsequently remains at a low level. When a perpendicular magnetic field is applied, such a drop of S_m never occurs. It remains likely that the nearest neighbor of a particle is within the same chain for the whole considered range of strains. This reflects again the tendency of whole chain segments to rotate as one unit, creating a principal axis of structural order oblique to the external magnetic field direction and the initial chain axes.

Let us finally discuss the cov⫷⫷ system under the influence of a perpendicular external magnetic field. Contrary to the case of a parallel external magnetic field, there are no particles that are aligned opposite to the external field. All particles can in principle rotate equally easily into the external magnetic field direction. However, the initial orientation of the magnetic moment of a particle determines the sense of rotation towards the field. Neighboring chains with opposing alignment of the magnetic moments show opposing sense of rotation. As a consequence, in contrast to the cov⫷⫷ system, the rotations of the complete chain segments towards the magnetic field are largely blocked. Instead, the particles within the chains individually rotate towards the external field, as depicted in the snapshot of an unstretched sample in Fig. 12b. Here, the external magnetic field of $B_y = 10B_0$ has rotated the particles...
by a significant amount, but the chains are still relatively ordered and aligned along the stretching axis. Depending on their initial alignment, the magnetic moments together with their carrying particles rotate either clockwise or counter-clockwise towards the field. In this way, there are two competing magnetic polarities in the system, with roughly the same y-component but oppositely signed x-components. The resulting stress–strain behavior is plotted in Fig. 12a and reveals an influence of the external magnetic field very similar to the cov system. Increasing the magnetic field strength rotates the particles further and weakens their attraction along the stretching axis. This gradually disables the detachment mechanism and, therefore, removes the superelastic plateau from the stress–strain curve. Again, we cannot observe significant stiffening of the system at high strains when increasing the external magnetic field strength, for the same reasons as in the cov system.

The two competing magnetic polarities are reflected by the nematic order parameter S_m plotted in Fig. 12c. In the unstretched state, when neighboring particles in a chain are close to each other, their magnetic interaction intensifies an alignment of the magnetic moments parallel to the stretching axis. The magnetic field, however, urges the differently orientated magnetic moments and their carrying particles to rotate out of their common initial axis of alignment. More precisely, for magnetic moments of opposite initial orientation, this leads to opposite senses of rotation, which destroys the overall nematic alignment. At low field strengths the particles rotate only slightly in the unstretched state, so that S_m is initially high. Stronger fields are able to rotate the particles further, see again Fig. 12b, leading to the formation of a lower value of S_m at zero strain. With increasing strain, the magnetic interactions between neighboring particles in a chain are weakened due to their increased separation. The particles become more susceptible to

Fig. 12 Same as Fig. 10, but for the cov system. (a) The stress–strain behavior responds to the external magnetic field in a very similar way as for the cov system. Increasing the field strength gradually removes the superelastic nonlinearity. (b) Snapshot of an unstretched system with an applied external magnetic field of $B_y = 10B_0$. There are two competing polarities for the magnetic moments, sharing a common y-component but with opposite x-components. (c) Quantification of the magnetic order in the system via the nematic order parameter S_m for the magnetic moment orientations. When the magnetic field strength and the strain are low, the two opposing polarities that are not aligned along a common axis compete, and S_m is a decreasing function of the strain. The higher the magnetic field strength and the higher the strain, the more the magnetic moments are rotated. Eventually, the magnetic field direction is preferred over the stretching axis by both polarities and S_m becomes an increasing function of the strain. For $B_y \approx 8B_0$ this is already the case in the unstretched state, which is consistent with the observation that the corresponding stress–strain curves do not show superelasticity anymore. (d) Nematic order parameter S_r for the nearest-neighbor separation vectors, quantifying the structural order. The minimum in S_r shifts to lower strains when increasing the field strength and the overall value beyond the minimum is increased. This is simply a consequence of the particle rotations that lead to less magnetic attraction between particles along the stretching axis and to more attraction along the magnetic field direction.
rotations by the magnetic field. Thus, a decrease in S_m can be observed. S_m increases again when the y-direction becomes predominant for all magnetic moments so that they again align along a common axis. At even stronger fields of $B_y = 8B_0$ and $B_y = 10B_0$, the y-direction is prevalent at all strains, so that S_m is monotonically increasing. This is in agreement with the observation, that for these magnetic field strengths superelastic features in the stress–strain curves are absent.

Finally, we show in Fig. 12d the nematic order parameter S_y for the nearest-neighbor separation vectors. The minimum in each curve indicates the point where it becomes more likely for particles to find their nearest neighbors in a direction perpendicular to the stretching axis than parallel. For low field strengths, this structural bias along the perpendicular axis is not very distinctive. Increasing the field strength, however, shifts the minimum to lower strains and increases the value of S_y at higher strains. This is intuitive, because for stronger magnetic fields there is simply less attraction within individual chains along the stretching axis and more attraction perpendicular to the stretching axis between reoriented particles belonging to different chains.

In summary, the main effect of the perpendicular external magnetic field in all systems is the gradual removal of the superelastic plateau from the stress–strain curves. This is mainly caused by the rotation of the magnetic moments in the direction of the magnetic field. When the magnetic attraction disappears between neighboring particles along the stretching axis, the detachment mechanism seizes to function. In the free system, magnetic moment reorientations can be achieved exceptionally easily (see the different scales for B_y in Fig. 10–12), making this system highly susceptible to the perpendicular external magnetic field. Together with the detachment mechanism, also the flipping mechanism is gradually deactivated. In the $\text{cov} \leftrightarrow$ system rotations of the magnetic moments are harder to achieve and require significantly stronger magnetic fields. We can observe collective rotations of the particles such that global polar magnetic ordering is preserved with all magnetic moments aligned oblique to the external field. Furthermore, these systems avoid the energetically expensive rotations of individual particles by allowing whole segments of the chains to rotate towards the external magnetic field as one unit. As a result, the chains buckle and undulate as a compromise between minimizing the magnetic and elastic energetic contributions. Finally, the $\text{cov} \leftrightarrow$ system behaves quite similarly concerning the influence of the external field on the stress–strain behavior. However, here the particles do rotate individually towards the field, facilitated by the initially opposite magnetic alignment in different chains. During the rotation process, the opposing magnetic alignments lead to two separate polarization directions of the magnetic moments. Altogether, in both cov systems, particle rotations induced by elastic inhomogeneities of the system are effectively superseded by particle rotations due to the external magnetic field.

5 Conclusions

We have numerically investigated the stress–strain behavior of uniaxial ferrogel systems. Our anisotropic numerical systems consist of chain-like aggregates of spherical colloidal magnetic particles that are embedded in an elastic matrix of a cross-linked polymer. The particles are rigid and of finite size, while the matrix is treated by continuum elasticity theory. In experimental situations, chain-like aggregates can be generated by applying a strong homogeneous external magnetic field during synthesis. We have considered three different realizations of such uniaxial ferrogel systems. The free system features magnetic moments that can freely reorient with respect to the frames of the carrying particles and the surrounding matrix. In contrast to that, in the $\text{cov} \leftrightarrow$ system the magnetic moments are fixed with respect to the axes of the carrying particles. In addition, the particles are covalently embedded into the matrix: particle rotations require corotations of the directly surrounding elastic material, leading to matrix deformations and restoring torques. Initially, all magnetic moments point into the same direction along the chain axes. The third system is the $\text{cov} \leftrightarrow$ system, where the magnetic moments are likewise firmly anchored. However, initially the magnetic moments on different chains can point into opposite directions along the chain axes.

When we stretch these systems along the chain axes, a pronounced nonlinearity in the stress–strain behavior appears. It has the form of a superelastic plateau, along which the samples can be strongly deformed while barely increasing the load. The deformation is reversible and the shape and intensity of the superelastic plateau can be reversibly tailored by external magnetic fields. There are two stretching-induced mechanisms that enable superelasticity. The main mechanism is a detachment mechanism and is active in all systems. It relies on the strong magnetic dipolar attraction between neighboring particles within one chain as long as the magnetic moments align along the chain axis. At certain threshold strains, parts of the chain can detach, leading to a local elongation of the system. This leaves the remainder of the chain intact until the next detachment event is triggered. Besides, a flipping mechanism corresponding to reorientation events of magnetic moments is only active in the free system, where the magnetic moments can easily rotate. A flip event occurs when elongation of the system causes positional rearrangements such that for a subset of magnetic moments a new orientation is suddenly rendered energetically more favorable.

The inhomogeneous distribution of the rigid inclusions in our samples results in regions of elevated stiffness. At high strains, this leads to the formation of local shear regions. This is especially apparent in the $\text{cov} \leftrightarrow$ and $\text{cov} \leftrightarrow$ systems and influences their stress–strain behavior.

Our systems can be reversibly tuned by an external magnetic field as follows. If the field is applied parallel to the chain axes, the detachment mechanism is not affected in the free and $\text{cov} \leftrightarrow$ systems, so that the superelastic plateau remains intact. However, in the $\text{cov} \leftrightarrow$ system the particles carrying misaligned magnetic moments are forced to rotate. The corresponding chains are strongly distorted, which perturbs the neighboring chains carrying aligned magnetic moments as well. This weakens the required magnetic attractions along the stretching axis that are vital for a pronounced detachment mechanism and
removes the superelasticity from the stress–strain curve of the \(\text{cov} \perp \) system. Moreover, in the free system the flipping mechanism can be deactivated as well, as the aligning external magnetic field hinders the reorientation of magnetic moments. Consequently, the related features are removed from the stress–strain behavior, leaving only a flat plateau caused by the detachment mechanism. Finally, in the \(\text{cov} \parallel \) system, the external field parallel to the chains has another interesting effect. We can observe a stiffening of the system when increasing the field strength at high strains beyond the superelastic plateau. In this situation, all particles have been detached from their chains, leaving them particularly susceptible to rotations due to shear caused by the elastic inhomogeneity of the system. Since the external magnetic field introduces an energetic penalty for particle rotations, the intrinsic inhomogeneity–caused shear stresses cannot relax via particle rotations and the magnetic moments remain parallel to each other. The parallel magnetic moments repel each other in the direction perpendicular to the stretching axis and, thus, work against the volume-conserving stretching deformation. In combination both effects increase the stiffness of the system.

When instead the magnetic field is applied perpendicular to the stretching axis, the detachment mechanism is weakened in all three systems due to an induced rotation of the magnetic moments towards a configuration which is repulsive along the stretching axis. In this way, the superelastic plateau can be gradually removed from the stress–strain curve by increasing the field strength. This works exceptionally well in the free system, where the magnetic moments are not anchored to the particle frames and the flipping mechanism is likewise weakened. In contrast to that, in the \(\text{cov} \perp \) and \(\text{cov} \parallel \) systems, even a strong external magnetic field cannot rotate the magnetic moments completely. While in the \(\text{cov} \parallel \) system, the magnetic moments feature a global polar magnetic alignment oblique to the external magnetic field, the two opposite initial magnetic alignment directions in the \(\text{cov} \perp \) system lead to two separate polar alignment directions, each of them oblique to the external magnetic field.

Our effects rely on the sufficiently strong magnetic interactions in our systems when compared to the elastic interactions. To achieve this experimentally, the remnant magnetization of the particle material should be as high as possible. For example, NdFeB can easily exceed \(2 \times 10^5 \, \text{A m}^{-1} \). At the same time, the elastic matrix into which the particles are embedded should be soft. Fabrication of matrices with time, the elastic matrix into which the particles are embedded.

Increased particle size would be necessary for the generation of the \(\text{cov} \parallel \) and \(\text{cov} \perp \) systems. The free and \(\text{cov} \parallel \) systems can be generated by applying an external magnetic field during synthesis to form the embedded chains from Néel-type particles and from monodomain particles of larger size, respectively, possibly by covalently anchoring appropriately sized particles into the matrix. For small Néel-type particles, typically of sizes up to 10–15 nm, thermal fluctuations become important. These can suppress the hysteretic behavior as well as the negative slope associated with the dip in our stress–strain curves. Overall, these fluctuations will smoothen the bumps along the plateau, leading to a flatter appearance. Free systems of larger particle size could be realized e.g. using so-called yolk–shell colloidal particles that consist of a magnetic core rotatable within a shell. To realize the \(\text{cov} \perp \) system, electro-magnetorheological fluids could be used as a precursor of the anisotropic ferrogel. In such a system, an external electric field can be applied to induce the chain formation of the electrically polarizable magnetic particles, while still allowing for opposite alignments of the magnetic moments in separate chains. Subsequent cross-linking of the surrounding polymer with covalent embedding of the particles should lock the chain structures together with their oppositely directed magnetic alignments into the emerging matrix. The result would be an anisotropic ferrogel with the desired \(\text{cov} \perp \) morphology. Possible real example systems that could be analyzed experimentally in view of our effects are discussed in ref. 37, 38, and 80. When measuring the stress–strain behavior, instead of stretching the sample longitudinally, due to the overall volume preservation, it can also be compressed from the sides. This enables the use of experimental compression devices, see e.g. ref. 87–89. Qualitatively the same effects should be induced.

We have assumed permanent magnetic dipoles carried by spherical particles in this work. The particles are arranged in characteristic chain-like structures. Possible quantitative refinements comprise extensions beyond the permanent point-dipole picture or to elongated, non-spherical particles. However, the main mechanism leading to superelastic behavior in our systems is the detachment mechanism for which only strong attraction at short distances between the neighboring particles along the stretching axis is necessary. This kind of attraction can likewise be realized for soft magnetic particles magnetized by an external field. The same mechanism could also be realized for nonmagnetic attractive interaction forces. An example is given by electrostatic interactions for particles sufficiently polarizable by an external electric field. To be able to directly transfer our results to the electrostatic case, these samples need to be sufficient electric isolators. Otherwise electric currents would possibly need to be included into our description. Moreover, also the flipping mechanism could be initiated for soft magnetic particles from outside, when the direction of a magnetizing external field is switched at the corresponding imposed strain.
mechanisms, strong polydispersity may mask the resulting effects. This occurs if they are too broadly distributed along the stress-strain curve and do not occur within a narrow enough strain interval. Another point is the morphology of the chain-like aggregates. To observe the basic phenomenology, they do not necessarily need to span the whole system. In the most basic opposite situation, embedded pair aggregates would be sufficient.90 Also the chains do not need to be as perfectly straight as considered here but could for example be slightly wiggled. However, when the wiggling becomes too strong, qualitative variations in the material behavior should arise as discussed in ref. 8. Finally, here we have considered a mesoscopic representative volume element. Macroscopic experimental measurements would include many of these volume elements and average over them. To investigate a system of the same size as in our simulations in an experiment, either large particles can be used as our results are scale invariant, or the stress-strain behavior of a mesoscopic sample volume could be measured using a piezorheometer.35,42 On the theoretical side, a connection to continuum descriptions on the macroscopic scale shall be established in the future.4,36,96

Exploitation of the described reversibly tunable nonlinear stress-strain behavior of our systems should enable a manifold of applications. When a pre-stress is applied to the material, such that it is pre-strained to the superelastic regime, it becomes extremely deformable.97 This is an interesting property for easily applicable gaskets, packagings, or valves.24 Moreover, in such a state, the ferrogel can be operated as a soft actuator,22,23,25–27 as external magnetic fields can trigger significant deformations. Passive dampers based on superelastic shape-memory alloys are already established98,99 and utilize hysteretic losses under recoverable cyclic loading to dissipate energy. Our results for the free system might stimulate the construction of analogous soft passive dampers with the additional benefit of being reversibly tunable from outside. Finally, the typically increased biocompatibility of polymeric materials allows for medical applications exploiting the above features, \textit{e.g.}, in the form of quickly fitting wound dressings, artificial muscles,100,101 or tunable implants.30,51

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for support of this work through the priority program SPP 1681.

References