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Stability of interlocked self-propelled dumbbell clusters
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Combining experimental observations of Quincke roller clusters with computer simulations and a stability
analysis, we explore the formation and stability of two interlocked self-propelled dumbbells. For large self-
propulsion and significant geometric interlocking, there is a stable joint spinning motion of two dumbbells. The
spinning frequency can be tuned by the self-propulsion speed of a single dumbbell, which is controlled by an
external electric field for the experiments. For typical experimental parameters the rotating pair is stable with
respect to thermal fluctuations but hydrodynamic interactions due to the rolling motion of neighboring dumbbells
leads to a breakup of the pair. Our results provide a general insight into the stability of spinning active colloidal
molecules, which are geometrically locked.
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I. INTRODUCTION

Soft matter physics of autonomously driven particles on the
micron scale is an expanding research arena, which comprises
a plethora of synthetic and animate systems ranging from
self-propelling colloidal Janus particles to swimming bacteria
[1–5]. Most of the situations occur in an embedding liquid
environment giving rise to hydrodynamic interactions be-
tween the particles, which are induced by the particle motion
and transmitted via the solvent flow. When two such active
particles collide, there can be not only an enhanced particle
scattering due to repulsive interactions and self-propulsion
[6–9], but also the inverse effect is possible that the particle
self-propulsion leads to an increase in the time for which two
particles remain in close contact, i.e., the retention time [10].
During this time, particles form transiently a pair of virtually
attractive particles. In fact, this is the basic mechanism un-
derlying motility-induced phase separation [11–13]: an initial
transient cluster gives rise to further particle aggregation such
that the cluster can grow even to a macroscopic size [13,14].

Although a cluster of spherical repulsive self-propelled
particles is always unstable with respect to fluctuations
[14,15], this may change for attractions and nonconvex
geometric particle shapes [16,17]. In fact, even passive
colloidal particles with nonconvex shapes serve as lock-
and-key colloids [18–20] establishing strong bonds between
repulsive particles if they do interlock. When equipped
with activity, such particle composites are ideal building
blocks for active colloidal molecules with a dynamical
function [14,21].

In this paper, we explore self-propelled particles with a
nonconvex shape, namely, colloidal dumbbells formed by
fusing two colloidal spheres together. In contrast to pre-
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vious studies [22–28], the direction of self-propulsion is
perpendicular to the longer dumbbell axis. When two of
these dumbbells collide with opposing self-propulsion di-
rections, they may interlock and stay together for a long
time. Recently, it was experimentally demonstrated that self-
propelled dumbbell Quincke rollers on a two-dimensional
substrate form a spinning pair composed of two interlocked
dumbbells [29] (see Fig. 1). The spheres of the two spin-
ning dumbells build a tetramer with a parallelogram shape.
The spinning frequency can be tuned by the self-propulsion
speed.

Here, we provide a theoretical analysis for the clus-
ter stability of two interlocked dumbbells and show that
in contrast to spheres, spinning dumbbell pairs are abso-
lutely stable, i.e., they stay together even in the presence
of small external fluctuations. The stability, however, de-
pends on the interaction between the individual spherical
monomers forming the different dumbbells. If the poten-
tial energy between two monomers strongly increases as a
function of monomer separation, the interaction is harsh,
and the dumbbells are interlocked almost in a geomet-
ric way as two touching nonconvex hard bodies. In this
extreme case, there are excluded volume interactions as
realized for sterically stabilized colloids and the experi-
ments of Ref. [29]. Under these conditions, stability occurs
for a broad range of intermediate self-propulsion veloci-
ties. Clearly for very small self-propulsion, we are close
to the passive case where stability is lost. In the oppo-
site limit, extremely large self-propulsions dominate any
potential energy barrier leading ultimatively to an instabil-
ity. However, for soft monomer interactions as realized for
charged dumbbells [30–32] or dumbbells with soft poly-
meric shells [33] or composed of microgel particles [34],
the degree of interlocking is much weaker. In this case,
we show that the tetramer is always unstable. We fur-
ther explore the stability for geometric interlocking (as
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FIG. 1. (a) A tetramer of two dumbbells is stable. (b) An exper-
imental tetramer formed by two Quincke rollers. (c) Once a third
dumbell passes by the tetramer it breaks up due to long ranged hy-
drodynamic interactions. (d) A tetramer breaking up in the presence
of a third Quincke roller. Experimentally, the sphere diameter is
σ = 3.1 µm.

relevant for the experiment [29]) against thermal fluctuations
and show by computer simulations that these fluctuations
are irrelevant for the experimental determined lifetimes
of the spinning dumbbell pairs. In other words, thermal
fluctuations are too weak to explain the observed finite
duration of the spinning cluster. However, long-ranged hy-
drodynamic interactions between a spinning tetramer and a
neighboring dumbbell can destroy the spinning pair much
more efficiently. This is demonstrated by experimental snap-
shots and supported by a computer simulation study of
Quincke rollers, which includes hydrodynamic interactions
between the particles and the underlying substrate. For
the latter, the multiparticle collision dynamics method is
employed [35].

The implications of our paper are manifold: First, it is
important to understand stability of spinning active colloidal
molecules [36] both from a fundamental point of view [37,38]
and for applications, such as micromixers [39]. Second, stable
spinning colloidal molecules can used as building blocks of
rotating particles forming a chiral fluid, which is a booming
area of present research [40–45]. Third, our work provides an
analytical framework to study more complicated nonconvex
colloidal shapes and their impact on cluster stability as basic
building blocks for more complex colloidal molecules with a
dynamical function [21].

This paper is organized as follows: First, in Sec. II, the
stability of tetramers is studied using a linear stability anal-
ysis and the tetramers spinning frequency is compared to
experiments. Then, in Sec. III A the experimental approach
is discussed. In Sec. III B Brownian dynamics simulations are
used to assess the impact of fluctuations on the stability of
tetramers. Finally, in Sec. III C, the influence of hydrodynamic
interactions on the stability are studied and the breakup of
tetramers by a third colloid passing by is investigated.

FIG. 2. (a) Sketch of our theoretical setup with two jammed
dumbbells (denoted by 1, and 2) with their respective circles (denoted
by a and b) and their orientations (e1 and e2). (b) Eigenvalues as
a function of self-propulsion velocity v0 (here using the softness
k = 9 for the interparticle potential). (c) Stability diagram showing
regions with a stable tetramer (yellow) and regions which are un-
stable (blue) for varying self-propulsion velocity v0 and potential
softness k. (d) Angular velocity of the tetramer as a function of
self-propulsion velocity for experiments (data was extracted from
[29]) and for theory with different T .

II. THEORY

The stability of two interlocked dumbbells is first analyzed
theoretically, by using a two dimensional projection of the
system. The dumbbells are modelled as active rigid parti-
cles, that self propel along their short axis [see Fig. 2(a)]
and are moving on the two-dimensional xy plane. Explicitly,
the following overdamped equations of motion for the two
dumbbells are used

dR1

dt
= v0e1 + 1

γ

(
Fa2→a1 + Fa2→b1 + Fb2→b1 + Fb2→a1

)
,

(1)

dR2

dt
= v0e2 + 1

γ

(
Fa1→a2 + Fb1→a2 + Fb1→b2 + Fa1→b2

)
,

(2)

where R1 is the first and R2 the center of mass position of the
second dumbbell. The dumbbells propel with a constant ve-
locity v0 along their respective axis e1 = [cos(ϕ1), sin(ϕ1)]T

and e2 = [cos(ϕ2), sin(ϕ2)]T , where ϕ1 and ϕ2 are the angles
with respect to the x axis in a Cartesian coordinate frame and
( )T denotes the matrix transpose. The forces of circle i acting
on circle j are denoted by F i→ j where i and j run through all
respective circles [see Fig. 2(a), i, j ∈ {a1, a2, b1, b2})] and γ

is the friction coefficient. The orientational dynamics taking
into account the torques on the center of mass positions of the
particles are given by

dϕ1

dt
= r0

γr

[
e⊥

1 × (
Fb2→b1 + Fa2→b1

)
− e⊥

1 × (
Fa2→a1 + Fb2→a1

)] + T, (3)
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dϕ2

dt
= r0

γr

[
e⊥

2 × (
Fa1→a2 + Fb1→a2

)
− e⊥

1 × (
Fb1→b2 + Fa1→b2

)] + T, (4)

where e⊥
1 = [−sin(ϕ1), cos(ϕ1)]T is the vector perpendicular

to e1 and e⊥
2 = [−sin(ϕ2), cos(ϕ2)]T the vector perpendic-

ular to e2. Here, r0 is the radius of a monomer, and γr

is the rotational friction coefficient. The constant T stems
from a torque, which may arise in an experiment from a
slight asymmetry of the two circles, giving rise to con-
stant rotation of a dumbbell. The two dimensional cross
product is defined here as a × b = axby − aybx where ax is
the first component of a vector a, and ay is the second
component.

As a first step of the stability analysis a configuration of the
dumbbells needs to be found where the forces on each particle
are zero, explicitly,

0 = v0e1 + 1

γ

(
Fa2→a1 + Fa2→b1 + Fb2→b1 + Fb2→a1

)
, (5)

0 = v0e2 + 1

γ

(
Fa1→a2 + Fb1→a2 + Fb1→b2 + Fa1→b2

)
. (6)

These equations are solved for R1 and R2 (note that the forces
Fi→ j are functions of the positions) to find positions R1,s and
R2,s with no net force acting on the dumbbells. Without re-
striction of generality the directions displayed in Fig. 2(a) with
angles ϕ1 = ϕ1,s = 3

2π and ϕ2 = ϕ2,s = 1
2π are used to solve

Eqs. (5) and (6). Furthermore, R2,s = 0 can be used because
of translational invariance of the system such that only R1,s

needs to be found. Typically, there are several solutions for
R1,s but only one corresponds to an interlocked dumbbell as
in Fig. 2(a). This tetramer solution also yields a condition on
v0.

We continue by making a linear stability analysis around
the zero force state. By using the coordinates,

RCOM = 1
2 (R1 + R2), (7)

RREL = 1
2 (R1 − R2), (8)

for the tetramers center of mass RCOM and the relative coordi-
nate of the dumbbells RREL Eqs. (1) and (2) become

dRCOM

dt
=1

2
v0(e1 + e2), (9)

dRREL

dt
= 1

2
v0(e1 − e2)

+ 1

γ

(
Fa2→a1 + Fa2→b1 + Fb2→b1 + Fb2→a1

)
.

(10)

Here, only the equation for RREL needs to be taken into
account in the stability analysis since RCOM is stable due to
translational symmetry. Next, the relative coordinate RREL is
decomposed into polar coordinates,

RREL = R

(
cos(θ )

sin(θ )

)
. (11)

This results in four equations (one for each coordinate R, θ ,
ϕ1, and ϕ2) that are expanded around the zero force state. The

result is a 4 × 4 matrix whose eigenvalues ωi (i ∈ {1–4}) give
the stability of the system, which we solve using computer
algebra.

For analytical tractability, the forces between the dumb-
bells circles are modeled by a repulsive inverse power law
potential,

�i→ j = ε
σ k

|ri − r j |k , (12)

where the exponent k determines the softness of the inter-
action, ri is the position of circle i, and r j is the position
of circle j. Here, σ = 2r0 is the diameter of a circle, and
ε is the energy scale. The forces are then calculated using
F i→ j = −∇i�i→ j .

Figure 2(b) shows the four eigenvalues resulting from the
stability analysis with a potential softness k = 9. The interval
for v0 that is shown is the range in which there is a tetramer
solution to the zero force condition Eqs. (5) and (6) resem-
bling Fig. 2(a). Within this region, there are three eigenvalues,
which are negative and one eigenvalue that is zero. The zero
mode gives rise to a constant rotation of the dumbbells around
each other, whereas the negative eigenvalues imply that the
tetramer is stable. Outside of the region shown for v0 in
Fig. 2(b) there is no hexamer solution of Eqs. (5) and (6).
Furthermore, the stability analysis for all other solutions to
Eqs. (5) and (6) yields, at least, one positive eigenvalue and,
therefore, these solutions are unstable.

The softness of the repulsive potential is controlled by the
exponent k, which has a strong impact on the stability of the
tetramer. For an exponent k = 1 the system is always unstable,
i.e., there is, at least, one positive eigenvalue [see Fig. 2(c)],
whereas increasing the exponent leads to a larger stable region
[Fig. 2(c)]. In fact, within the region where a tetramer config-
uration is found using Eqs. (5) and (6), the tetramer is always
stable. Conversely, once no tretramer solution of Eqs. (5) and
(6) that is akin to Fig. 2(a) is found, the system is unstable
since it has, at least, one positive eigenvalue. The stability of
the tetramer is not affected by the constant rotation mediated
by T .

The spinning frequency ϕc of a tetramer has two contribu-
tions: the constant rotation mediated by T and an emergent
rotation due to the dumbbells active motion. The tetramers
spinning frequency has also been measured in Ref. [29]. To
compare these experimental measurements of the spinning
frequency, the energy scale ε has the be estimated. Assuming
that the force exerted by colliding colloids balances the steric
forces obtained from the colloids potential gives the estimate
ε = vγ σ . In the experiments a typical velocity at which parti-
cles start jamming is v ≈ 40σ/s (estimated from Ref. [29]),
the friction coefficient is estimated by γ = 3πησ with the
viscosity of water η ≈ 10−3 Pas and the diameter of a colloid
σ ≈ 3 µm. This yields an energy scale of ε ≈ 2.7 × 103kb T.
The spinning frequency of a single dumbbell was experi-
mentally measured as T = 20 Hz ≈ 0.5ε/(γ σ 2) (estimated
from [29]). Figure 2(d) shows the experimentally measured
spinning frequency of tetramers (data from Ref. [29]) com-
pared to the theoretical prediction (orange line), which match
qualitatively and lie in the right order of magnitude without
any fitting parameters.
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III. EXPERIMENTS AND SIMULATIONS

A. Experiments

We prepare the colloidal dumbbells as follows. We use
polystyrene beads (Fluoro-Max, Thermo Fischer) of size σ =
3.1 µm, and polydispersity 5%. The initial suspension is aque-
ous. Colloids are repeatedly washed with a 0.15-M solution
of dioctyl sodium sulfosuccinate surfactant in hexadecane. In
the absence of a stabilizing layer, colloidal clusters form due
to van der Waals attractions. We obtain a mixture of clusters
as the aqueous solvent is replaced by the low polar solution.
Centrifugation is used to separate small dumbbells from the
rest of the suspension.

For imaging, a dilute mixture of clusters is loaded
into a sample cell fabricated with conductive indium tin
oxide-coated glass slides. Two slides are separated by a
30 µm-thickness spacer made of optical glue and larger beads.
A DC electric field E is applied to the suspension to observe
the Quincke rotation of colloids [46]. Image sequences are
obtained at 660 fps using bright-field microscopy. Further
details of the experiments may be found in Ref. [29].

B. Brownian dynamics

To incorporate thermal fluctuations, two dimensional
Brownian dynamics simulations are employed with the fol-
lowing equations of motion for the dumbbell’s center of mass
positions,

dR1

dt
= v0e1 + 1

γ
F tot,1 +

√
2Dt

‖η1‖e1 +
√

2Dt
⊥η1⊥e⊥

1 , (13)

dR2

dt
= v0e2 + 1

γ
F tot,2 +

√
2Dt

‖η2‖e2 +
√

2Dt
⊥η2⊥e⊥

2 . (14)

Here, the total forces are given by F tot,1 = Fa2→a1 +
Fa2→b1 + Fb2→b1 + Fb2→a1 and F tot,2 = Fa1→a2 + Fb1→a2 +
Fb1→b2 + Fa1→b2 for dumbbells 1 and 2, respectively.
Furthermore, fluctuations with zero mean and correlator
〈ηi(t )η j (t ′)〉 = 2δi jδ(t − t ′) with i, j ∈ {1 ‖, 1 ⊥, 2 ‖, 2 ⊥}
are included. The fluctuations along the orientations ei have
a translational diffusion coefficient Dt

‖ and perpendicular the
orientation the diffusion coefficient is Dt

⊥. The orientational
dynamics of the two dumbbells are given by

dϕ1

dt
= r0

γr
T1 +

√
2Drξ1, (15)

dϕ2

dt
= r0

γr
T2 +

√
2Drξ2, (16)

where T1 = e⊥
1 × (Fb2→b1 + Fa2→b1 ) − e⊥

1 × (Fa2→a1 +
Fb2→a1 ) and T2 = e⊥

2 × (Fa1→a2 + Fb1→a2 ) − e⊥
1 ×

(Fb1→b2 + Fa1→b2 ) summarize the effects of torques acting
on the dumbbells. Furthermore, fluctuations are included with
zero mean, correlations 〈ξi(t )ξ j (t ′)〉 = 2δi jδ(t − t ′) and the
rotational diffusion coefficient Dr .

The forces between the dumbbell’s circles are calculated
using a Weeks-Chandler-Andersen (WCA) potential [47],
which is a common model potential for colloidal particles.
Note that in the theoretical treatment a repulsive power law
potential was used for analytical tractability, whereas in the
simulations a more realistic WCA potential can be used.

FIG. 3. (a) Lifetime distribution P(τ ) for different Péclet num-
bers (color code). (b) Mean lifetime as a function of inverse Péclet
number (orange circles). Blue line shows a linear fit to the mean
lifetimes, which is used to extrapolate the lifetime in an experiment
with Quincke rollers (≈103 days).

Explicitly, the potential used in the simulations reads

�(ri j ) = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

+ ε, (17)

if ri j < 21/6σ , and �(ri j ) = 0 otherwise, where σ = 2r0 is
the diameter of a dumbbell’s circle and ε = kBT is the en-
ergy scale, which is connected to the translational diffusion
coefficient of a single circle by Dt = kBT/γ .

To simplify the parameter space the diffusion coefficients
Dt

‖ = λ‖Dt , Dt
⊥ = λ⊥Dt , and Dr = 3Dt/(4r2

0 ) are used, where
the last relation stems from the translational and rotational
friction coefficient of a sphere. By that simplification the
system is characterized by a single dimensionless number,
which is the Péclet number P = 2r0v0/Dt . The parameters
λ‖ = 0.783 and λ⊥ = 0.703 were explicitly measured in ex-
periments (see [TODO, Paddy]).

The simulations are started with a stable configuration as
depicted in Fig. 2(a). Each simulation is run until the cen-
ter of mass positions (R1 and R2) of the two dumbbells are
separated from each other by a distance dsep = 3σ . Although
the dumbbells are in contact they perform a rotation around
each other as theoretically predicted. The time at which dsep

is reached is defined as the lifetime τ of a tetramer. The
distribution of tetramer lifetimes is shown in Fig. 3(a) for
different Péclet numbers. Irrespective of the Péclet number the
lifetime distribution first shows a maximum and then drops
with an exponential tail. Clearly, low Péclet numbers show
(on average) a large tetramer lifetime, whereas large Péclet
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FIG. 4. (a) Top view of the hybrid MPCD-MD simulation of rollers where a tetramer (combination of blue and orange dumbbells) breaks
up due to the long-ranged hydrodynamic interaction of the third dumbbell passing by. (b) Experiments with Quincke rollers showing the
breaking of a tetramer after other Quincke rollers passed by (blue arrows indicate the dumbell’s direction of motion). Here the diameter of the
monomers is 3.0 µm.

numbers yield shorter tetramer lifetimes. This trend is also
observed in the mean lifetime 〈τ 〉 [see Fig. 3(b)]. Extrapolat-
ing from Fig. 3(b) gives an estimate of the expected lifetime
for Quincke rollers in an experimental setting. The experi-
mentally measured self-propulsion velocity is v0 = 200 σ/s.
Using the translational diffusion coefficient Dt = kBT

3πησ
with

room temperature T = 293 K and the viscosity of water η =
1 mPas, the Péclet number of a Quincke roller dumbbell is
P ≈ 104. Using a linear extrapolation from the simulation
data in Fig. 3(b) then yields a lifetime of 〈τ 〉 ≈ 103 days,
which is orders of magnitude larger than the experimentally
measured lifetimes. Hence, thermal fluctuations alone are not
enough to explain the breaking up of tetramers in an exper-
imental setting. [TODO: add more about experiments here!!
longest lifetime measured; time until other roller passes by].

C. Hydrodynamic interactions

In order to assess the effect of hydrodynamic interactions
between the rollers, we employ a hybrid simulation technique
using multiparticle collision dynamics [35,48] (MPCD) and
molecular dynamics (MD) (see Appendix for details of the
simulation method [9,49]). The MPCD part of the simula-
tion method solves the Navier-Stokes equations to obtain the
hydrodynamic interactions between rollers, whereas the MD
part of the simulation takes care of the rigid body dynamics
and steric interactions. The rollers are modeled as three di-
mensional dumbbells in a container with no-slip walls a the
top and bottom and periodic boundary conditions otherwise.
By means of a gravitational force the rollers sediment to the
bottom plane. The Quincke rolling is taken into account in
an effective manner, by giving the roller an active torque that
points along the rollers long axis in its body frame. Thereby,

the roller effectively generates a hydrodynamic rotlet moment.
Through the hydrodynamic coupling of the rotlet to the bot-
tom wall the roller experiences a net flow, which, in turn, leads
to a self-propulsion of the roller. The self-propulsion velocity
increases with external torque (see Fig. 5) and the simulation
parameters were matched to obtain the experimental Péclet
number P ≈ 104 (see also Appendix A 6).

First two dumbbells that initially rest on the bottom plane
and are in a configuration akin to Fig. 2(a) are simulated.
The tetramer was stable until the end of the simulation time
(5 × 104τMPCD), whereas performing a total of 27 rotations
around each other. Hence, the hydrodynamic interactions be-
tween two dumbbells are also not enough to explain the
break up of tetramers observed in experiments. Here, τMPCD

is the time unit of the MPCD simulation method (see also
Appendix 5).

FIG. 5. Self-propulsion velocity as a function of active torque.
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Second, a third dumbbell that passes by the tetramer was
included into the simulation. Here, the tetramer breaks up due
to long-ranged hydrodynamic interactions mediated by the
roller passing by [see Fig. 4(a)], a situation that is typically
observed in our experiments [see Fig. 4(b)]. In total 16 passing
by events [as in Fig 4(a)] were simulated where 12 times the
tetramer broke up due to long-ranged hydrodynamic inter-
action from the third dumbbell passing by. In thefour other
cases, all three dumbbells collide and break up due to steric
interactions. Mostly, (in 8 out of 12 cases) the long-ranged
hydrodynamic interactions are strong enough to break up the
tetramer after the other dumbbell passes by for the first time.
Here, the tetramer is able to perform half of a rotation around
itself. In all other cases (4 out of 12) the tetramer breaks
up after the other dumbbell passes by for the second time
(due to periodic boundary conditions), whereas the tetramer
approximately performs one rotation around itself.

IV. CONCLUSIONS

In conclusion, by a combination of analytical theory
and computer simulations, we have explored the stability
of dumbbell-like active particles which interlock to form a
jointly spinning pair. Our results show that for geometric inter-
locking stability is enhanced but depends on the activity. For
weaker interlocking governed by soft monomeric interactions,
stability is always lost. Our results were compared to exper-
imental data on dumbbell-like Quincke rollers. It was also
shown that the stability can be lost due to hydrodynamic inter-
actions of approaching neighboring particles. For the future,
more complex particle shapes, such as snowman [50,51], col-
loidal bananas [52], colloidal “dolls” [53], or mickey-mouse
[54] particles should be considered, which provide more com-
plex ways of activity-induced interlocking. The dependence
on the direction of the self-propulsion relative to the parti-
cle orientation is another degree of freedom, which should
be analyzed and optimized. Also the most probable path of
the dumbbells taken along the destabilization process should
be analyzed by simulation, theory, and experiment following
recent ideas [55–57]. Finally, clusters with more than two par-
ticles should be analyzed with a systematic stability analysis,
which could provide a systematic understanding of the initial
stages of motility-induced phase separation.
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APPENDIX: SIMULATION WITH HYDRODYNAMIC
INTERACTIONS

In order to simulate the hydrodynamic interactions be-
tween dumbbells a hybrid simulation scheme using a combi-
nation MD and MPCD is used. Each dumbbell is considered
as a ridig body with center of mass position R, mass M,
and orientation q, where q’s are quaternions (see below for
a detailed explanation). A similar simulation method to the
one presented here has been used in Refs. [9,49].

1. Rigid-body dynamics of rollers

The rigid-body dynamics of the rollers are determined
by Newtons’ equations and equations for the roller’s rota-
tional degrees of freedom. Typically, the rotational degrees
of freedom are parametrized by Euler angles, however,
these are numerically unstable. Instead it is convenient to
use another representation of the Euler angles (which is
mathematically equivalent), which is given by quaternions
q = (q0, q1, q2, q3)T , where T matrix transposition (see also
Ref. [58]). The equations of equations of motion for a rigid
body then read [59]

mR̈ = F − gMez, (A1)

q̈ = 1

2

[
W(q̇)

(
0

Ψ b

)
+ W(q)

(
0

Ψ̇
b

)]
, (A2)

q̇ = 1

2
W(q)

(
0

Ψ b

)
, (A3)

�̇b
α = (

Ib
m

)−1

α

{
T b

α + [(
Ib
m

)
β

− (
Ib
m

)
γ

]
�b

β�b
γ

}
. (A4)

Here, Ib
m is the moment of inertia tensor of the roller in the

body frame and � is the angular velocity of the roller. The
indices (α, β, γ ) take values of the cyclic permutations of
(x, y, z). In Eq. (A1), the steric forces are calculated from
a potentials �pp, for particle-particle interactions and �wall

for wall interactions with F = −∇(�pp + �wall ) and T is
the torque acting on a dumbbell. Furthermore, a gravitational
force acts on the dumbbells center of mass [second term on the
right hand side of Eq. (A1)], which has a strength g and points
into the negative z direction denoted by −ez. The forces and
torques that stem from steric interactions between rollers are
mediated by a WCA potential [47], explicitly

�pp(ri j,ab) = 4ε

[(
σab

ri j,ab

)12

−
(

σab

ri j,ab

)6
]

+ ε, (A5)

if ri j,ab < 21/6σab, and �(ri j,ab) = 0, otherwise, where σab is
the sum of the radii of sphere a and sphere b, ε is the energy
scale, and ri j,ab ≡ |ria − r jb| is the distance between sphere a
of roller i and sphere b of roller j. The steric interactions with
the walls at the top and bottom of the simulation box are also
calculated through a WCA potential, which reads

�wall(zi) = 4ε

[(
σa

|zi − zvirt|
)12

−
(

σa

|zi − zvirt|
)6

]
+ ε,

(A6)

if |zi − zvirt| < 21/6σa, and �(ri j,ab) = 0, otherwise, where
zvirt = zbottom − σa/2 for the bottom wall and zvirt = ztop +
σa/2 for the top wall. Here, ztop and zbottom are the positions of
the top and bottom walls, respectively, and σa is the diameter
of sphere a.

In the simulation, vectors need to be transformed between
the body frame and the laboratory frame. A vector in the
laboratory frame f which is transformed to the body frame
vector f b is given by

f b = D f , (A7)
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where the matrix D(q) is constructed from the quaternions, explicitly (see also Ref. [58])

D =
⎛
⎝q2

0 + q2
1 − q2

2 − q2
3 2(q1q2 + q0q3) 2(q1q2 − q0q2)

2(q2q1 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)
2(2q3q1 + q0q2) 2(q3q2 − q0q1) q2

0 − q2
1 − q2

2 + q2
3

⎞
⎠. (A8)

The orientation of the roller can then be found by
D−1[q(t )](0, 0, 1)T . In the following, all quantities with an
index b are computed in the body frame, all other quantities
are in the laboratory frame. Furthermore, the matrix W is
given by (see also Ref. [58])

W(q) =

⎛
⎜⎜⎝

q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

⎞
⎟⎟⎠. (A9)

The rotation each roller, mediated by the Quincke effect, is
included in an effective manner by a constant torque acting on
each roller. This torque is chosen to be along the z axis in the
rollers body frame. Hence, the torque in the body frame T b =
T b

steric + T b
active has two contributions, the torque stemming

from steric interactions T b
steric = DRF × F, and the torque

stemming from the Quincke rotation T b
active = (0, 0, T b

active ).
Here, the vector RF is connecting the center of mass of the
roller to the point of contact with the neighbor or wall.

To intergrate Eqs. (A1)–(A4), a Verlet algorithm [59] is
used (see also Refs. [9,49]).

2. Center of mass and moment of inertia

The roller has two spheres which are slightly unequal in
size due to experimental limitations. In the simulations, this
asymmetry is taken into account and, hence, sphere a has a
diameter σa and sphere b a diameter σb. The center of mass
then changes because of the asymmetry and is shifted into the
larger sphere. In the body frame, the roller is aligned with the
z direction, and the coordinates of the centers of the a and b
spheres are za and zb, respectively. The z component of the
center of mass of the roller is then given by

zCoM = Vaza + Vbzb

Va + Vb
, (A10)

Vi are the volumes of the respective spheres.
Furthermore, the moment of inertia of the dumbbell is

needed in the simulations. The moment of inertia of a sphere is
given by ISpi = 8

15ρsπ (di/2)5, where ρs is the sphere’s density,
and di is its diameter. By using the parallel axis theorem the
moments of inertia of the roller are

I(x,y) = ISp1,(x,y) + ρ(V1)x2
1, (A11)

Iz = ISp1,z + ISp2,z. (A12)

3. Multiparticle collision dynamics

To simulate the hydrodynamic interactions between roller
the multiparticle collision dynamics [48] technique, which
is a mesoscale method that solves the Navier-Stokes equa-
tions used. The simulated fluid has a density ρ and tem-
perature T . An Andersen thermostat and angular momentum

conservation is used in the simulation, and the specific algo-
rithm is called MPC-AT + a [35,60,61].

In MPCD, Nfl pointlike particles of mass m that perform
a streaming step and a collision step are used as an effective
representation of the fluid. The particles have positions ri, i ∈
[1, Nfl] and during the streaming step are advected by

ri(t + δt ) = ri(t ) + vi(t )δt, (A13)

where vi(t ) are the particles velocities and δt is the MPCD
time step.

During the collision step, the fluctuating part of the
particle’s velocity is randomized, which effectively models in-
teractions with other particles. The collision step is performed
on a grid with Nc collision cells and a lattice constant a. The
set of particles that is in the same cell as particle i is denoted
by C(i). The center of mass velocity in the cell C(i) is kept
constant whereas the fluctuating part randomized, explicitly
each particle velocity is updated by [60]

v′
i = 1

NC(i)

∑
j∈C(i)

v j + vran
i − 1

NC(i)

∑
j∈C(i)

vran
j

+ m

⎧⎨
⎩�−1

∑
j∈C(i)

[
r j,c × (

vi − vran
i

)]⎫⎬⎭ × ri,c, (A14)

where vran
i is a random velocity drawn from Gaussian distri-

bution with correlations
√

kBT/m. Here, the number of fluid
and ghost particles (see Appendix 4) in cell C(i) is given
by NC(i). Furthermore, �−1 is the inverse of the moment of
inertia tensor � ≡ ∑

j∈C(i) m[(r j · r j )I − r j ⊗ r j] for the fluid
particles in cell C(i) and r j,c is the position of particle j
relative to the center of mass of the cell C(i).

Finally, to obtain Galilean invariance, a grid shift [62] in
[−a/2, a/2] is performed after every streaming step.

4. Coupling of the roller’s and fluid’s dynamics

On the roller’s surface and on the top an bottom boundary
of the simulation box we apply no-slip boundary conditions
for the fluid.

a. Streaming step

During the streaming step the bounce-back rule [63] is
applied. Hence, when a particle penetrates into a surface (par-
ticle or wall) during the streaming step, it is propagated back
the same distance is traveled within the particle or wall. Fur-
thermore, its velocity is reversed. Note that multiple collisions
[64] are possible and taken into account.

From the collision between fluid particle and roller there
will be a momentum transfer, which reads

Ji = 2m[vi − U − � × (r̃i − R)]. (A15)

054606-7



FABIAN JAN SCHWARZENDAHL et al. PHYSICAL REVIEW E 107, 054606 (2023)

Here, U is the roller velocity, � is its angular velocity, and r̃i

is the position of the fluid particle upon collision. The fluid
velocity then updates to

v′
i = vi − Ji/m. (A16)

Furthermore, the linear and angular velocity of the rollers are
updated to

U ′ = U +
∑

i

Ji/M, (A17)

�′ = � + I−1
m

∑
i

(ri − R) × Ji. (A18)

b. Collision step

It has been shown that placing ghost particles [61] in-
side walls are needed to obtain a no-slip boundary condition.
Therefore, ghost particles rg

i uniformly distributed within the
roller and below the walls. The density of ghost particles
within a roller and below the wall is matched to the fluids
density.

The positions of the ghost particles within the walls are
kept constant, and their velocity is randomized before each
collision step, where the velocities components are drawn
from a Gaussian with zero mean and correlations

√
kBT/m.

The ghost particles, which are inside of the rollers with
velocities v

g
i are updated before each collision step according

to

v
g
i = U + � × (

rg
i − R

) + vran
i , (A19)

where again vran
i are sampled from a Gaussian distribution.

Afterwards, the ghost particles take part collision step accord-
ing to Eq. (A14).

As a result of the collision step, there will be a momen-
tum Jg

i = m(vg′
i − v

g
i ) and angular momentum transfer Lg

i =
(rg

i − R) × Jg
i . Therefore, the rollers [6] velocity and angular

velocity are updated to

U ′ = U +
∑

i

Jg
i /M, (A20)

�′ = � + I−1
m

∑
i

Lg
i . (A21)

5. Computational details

We performed simulations in a three dimensional box with
wall at the top and bottom of the simulation box and pe-
riodic boundary condition in the two other directions. The
simulation container has a size of 50 × 50 × 50a3, where the
walls where placed at zbottom = a and ztop = 49a3, leaving
space for ghost particle below the walls. A total of 〈NC〉 = 20
fluid particles were used per cell and the MPCD time step
was chosen as δt = 10−2τMPCD, whereas the MD time step is
δtMD = 10−4τMPCD, where τMPCD =

√
ma2/(kBT ) is the unit

of time in the MPCD simulation. The kinematic viscosity ν =
η/ρ of the fluid for the MPC − AT + a algorithm (including
both kinetic and collisional contributions) is then given by
ν = 3.88a

√
kBT/m [35,61,65]. The energy scale for steric

interaction was chosen as ε = 200kBT .
The size of the rollers spheres was chosen slightly unequal

to resemble the experiments with σa = 6a and σb = 5.5a. The
strength of the gravitational force is chosen as g = 50kBT/a2

to ensure that the rollers sediment to the bottom wall.

6. Matching parameters to experiments

The experimentally measured Péclet number is P ≈ 104.
To match this number in the simulations, first the translational
diffusion coefficient of a dumbbell without active torque T b

active

was measured, resulting in Dt = 2.3 × 10−5
√

a2kBT/m. Us-
ing the definition of the Péclet number P = v0σ/Dt , the
self-propulsion needed in the simulations to match experi-
ments is v0 = 0.26

√
kBT/m.

Figure 5 shows the self-propulsion of an isolated roller as a
function of active torque. Using this graph we find that an ac-
tive torque T b

active ≈ 120kBT yields the correct self-propulsion
velocity to match the experiments.
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