
Journal of Physics: Condensed Matter

PAPER • OPEN ACCESS

Dynamics of active particles with translational and
rotational inertia
To cite this article: Alexander R Sprenger et al 2023 J. Phys.: Condens. Matter 35 305101

 

View the article online for updates and enhancements.

You may also like
Confined active Brownian particles:
theoretical description of propulsion-
induced accumulation
Shibananda Das, Gerhard Gompper and
Roland G Winkler

-

Universal framework for the long-time
position distribution of free active particles
Ion Santra, Urna Basu and Sanjib
Sabhapandit

-

How to derive a predictive field theory for
active Brownian particles: a step-by-step
tutorial
Michael te Vrugt, Jens Bickmann and
Raphael Wittkowski

-

This content was downloaded from IP address 134.99.64.186 on 20/07/2023 at 13:26

https://doi.org/10.1088/1361-648X/accd36
https://iopscience.iop.org/article/10.1088/1367-2630/aa9d4b
https://iopscience.iop.org/article/10.1088/1367-2630/aa9d4b
https://iopscience.iop.org/article/10.1088/1367-2630/aa9d4b
https://iopscience.iop.org/article/10.1088/1751-8121/ac864c
https://iopscience.iop.org/article/10.1088/1751-8121/ac864c
https://iopscience.iop.org/article/10.1088/1361-648X/acc440
https://iopscience.iop.org/article/10.1088/1361-648X/acc440
https://iopscience.iop.org/article/10.1088/1361-648X/acc440


Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 35 (2023) 305101 (12pp) https://doi.org/10.1088/1361-648X/accd36

Dynamics of active particles with
translational and rotational inertia

Alexander R Sprenger1,2, Lorenzo Caprini1,∗, Hartmut Löwen1

and René Wittmann1

1 Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225
Düsseldorf, Germany
2 Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, D-39106
Magdeburg, Germany

E-mail: lorenzo.caprini@gssi.it

Received 4 January 2023, revised 24 March 2023
Accepted for publication 14 April 2023
Published 27 April 2023

Abstract
Inertial effects affecting both the translational and rotational dynamics are inherent to a broad
range of active systems at the macroscopic scale. Thus, there is a pivotal need for proper models
in the framework of active matter to correctly reproduce experimental results, hopefully
achieving theoretical insights. For this purpose, we propose an inertial version of the active
Ornstein–Uhlenbeck particle (AOUP) model accounting for particle mass (translational inertia)
as well as its moment of inertia (rotational inertia) and derive the full expression for its
steady-state properties. The inertial AOUP dynamics introduced in this paper is designed to
capture the basic features of the well-established inertial active Brownian particle model, i.e. the
persistence time of the active motion and the long-time diffusion coefficient. For a small or
moderate rotational inertia, these two models predict similar dynamics at all timescales and, in
general, our inertial AOUP model consistently yields the same trend upon changing the moment
of inertia for various dynamical correlation functions.

Keywords: active matter, self-propelled particles, active Brownian particles,
active Ornstein-Uhlenbeck particles, rotational inertia, inertial effects

(Some figures may appear in colour only in the online journal)

1. Introduction

Activemotion can be observed at bothmicroscopic andmacro-
scopic scales [1–3], with typical examples ranging from birds,
fish and insects to colloids and bacteria or cell monolayers.
A common feature of such active systems is the capability
to convert energy from the environment to produce directed
motion [3, 4], which allows them to swim, move or fly in their
environment. As a consequence, their dynamics qualitatively
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differs from that of ‘passive’ Brownian particles, originally
introduced to describe the random motion of pollen grains in
water solution [5] and extensively employed to model col-
loidal particles. While the (overdamped) passive motion of
passive colloids is characterized by random (Brownian) tra-
jectories, showing a pure diffusive behavior, active motion
generally gives rise to persistent single-particle trajectories [3,
6]: an active particle typically moves persistently in one spatial
direction with a typical velocity, known as the swim velocity,
and only after a typical time, known as persistence time, ran-
domizes its direction of motion.

These features have been identified as the basic ingredi-
ents to build coarse-grained models in the framework of
stochastic processes, able to capture the essential behavior of
this class of active systems. Among them, the famous model
of active Brownian particles (ABPs) [7–15] introduces the
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‘activity’ as a time-dependent force of constant magnitude
with a stochastic evolution of its direction. It is commonly
used due to its simplicity while it also presents an accurate
representation of active colloids [16–20] subject to both trans-
lational and rotational Brownian motion. Recently, an altern-
ative model, known as active Ornstein–Uhlenbeck particles
(AOUPs) [21–25], has been introduced, firstly, to describe
the motion of a passive colloid in a bath formed by active
bacteria [26–29], and, secondly, to further simplify the ABP
dynamics in terms of Gaussian correlations [30–32], which
allows to obtain exact analytical predictions [33–36] or devise
approximate theories [37–39]. The two models show con-
sistent results, being both able to reproduce the typical non-
equilibrium phase coexistence of active particles, known as
motility-induced phase separation (MIPS) [14, 16, 30, 40–45],
as well as the accumulation or wetting at boundaries or generic
obstacles [46–50]. Beyond the qualitative level, the results of
the twomodels have been compared in several cases of interest
[32, 51, 52], and, recently, their relation has been comprehens-
ively investigated in [53].

Both ABPs and AOUPs have been originally developed
to model the overdamped dynamics of microscopic active
particles. However, also macroscopic active ‘particles’ are
rather common in the animal world, such as birds [54], fish
[55] and insects [56, 57], as well as in the inanimate world,
such as walking droplets [58], flying whirling fruits [59]
and active granular particles [60–66]. The recent signific-
ant increase of interest in these systems generates the need
to develop manageable generalized theoretical descriptions
including inertial effects [67].

The first, and most obvious, step to model inertial active
systems, is to account for a larger particle’s mass or, equival-
ently, a smaller translational friction coefficient. Such inertial
forces are easily included in an underdamped description for
the translational motion of ABPs [68–75] and AOUPs [76–81]
to obtain fully consistent results for dynamical observables
like theMSD [82, 83], which reveals amass-independent long-
time diffusive behavior of the single particle. Moreover, these
theoretical models have been employed to evaluate the effect
of inertia on the collective phenomena typical of active mat-
ter. It was found that (translational) inertia reduces MIPS [71,
84–88], hinders the crystallization [89, 90], promotes hexatic
ordering [91] in homogeneous phases and, in general, reduces
the spatial velocity correlations characterizing dense active
systems [92–94] both the liquid and solid state.

The second, and arguably the more critical, step is to
include the effect of a non-vanishing moment of inertia affect-
ing the rotational motion. This ingredient is fundamentally rel-
evant in granular experiments to reproduce the inertial delay,
i.e. the temporal delay between the active force and particle
velocity observed for a single active granular particle [95].
To model such a generic inertial active particle not only the
overdamped translational equation of motion but also the
stochastic process describing the dynamics of the active velo-
city (or active force) itself needs to bemodified. Again, this can
be quite naturally achieved by a second extension of the ABP
dynamics through including inertia on the rotational velocity
[95–100]. Using this inertial ABP (or active Langevin) model,

Figure 1. Schematic comparison of two models for active particles
displaying both translational and rotational inertia. The left panel
shows an inertial active Brownian particle (ABP) [99], while the
right panel shows an inertial active Ornstein–Uhlenbeck particle
(AOUP), introduced here through equations (1) and (11). Top: both
models display persistent trajectories with inertial delay (the particle
velocity v(t) lags behind the self-propulsion vector n(t)). Middle:
the overall velocity distribution P(v) of the inertial AOUP has the
advantageous Gaussian form, while that of the inertial ABP is
bimodal. Bottom: the autocorrelation functions ⟨n(t) · n(0)⟩ of the
self-propulsion vector have a different form, contrast the recursive
exponential decay (equation (5)) with the additive exponential decay
(equation (14)), but each model incorporates three characteristic
time scales of inertial active motion, see equation (3) or also
equation (16a).

it has been found that the long-time dynamics are strongly
affected by a nonzero moment of inertia. Successively, the
effect of rotational inertia in systems of interacting particles
has been investigated and identified as a strategy to promote
collective phenomena [101, 102]. Finally, rotational inertia
has been recently considered also in macroscopic descriptions,
such as active phase crystal model [103, 104], to investigate
sound waves in active matter.

Despite the success of AOUPs for describing overdamped
active particles or active particles with translational inertia, a
comprehensive inertial AOUP model, i.e. a Gaussian process
for the active velocity also accounting for rotational inertia,
has not been properly introduced. While such an achievement
would be helpful in view of making further theoretical pro-
gress, this challenge is complicated by the intrinsic coupling
between the angular dynamics and those of the modulus of
the active velocity [53], preventing conformance with inertial
ABPs. A first attempt to do so has been introduced in [105]
by mapping rotational inertia onto effective parameters of the
AOUP model.

In this paper, we propose a generalization of the inertial
AOUP model incorporating the characteristic time scales of
active particles with both translational and rotational inertia.
As illustrated in figure 1, this ensures that, in analogy to the
inertial ABP, the decay of the autocorrelation function of the

2



J. Phys.: Condens. Matter 35 (2023) 305101 A R Sprenger et al

self-propulsion vector takes longer that the single-exponential
decay for zero moment of inertia [95]. As a result, both mod-
els consistently predict persistent trajectories, which also show
inertial delay [95, 99]. However, the velocity distribution of
the inertial AOUP has, by construction, a Gaussian shape at
variance with the bimodal shape of the inertial ABP [98].

The paper is structured as follows. We first provide in
section 2 a rundown of the inertial ABP model and discuss
briefly the effect of rotational inertia on the persistence time
of the active motion. Then, in section 3, we extend the iner-
tial AOUP to account for rotational inertia. Subsequently, in
section 4 we discuss the dynamical predictions for the time-
dependent orientational correlation, velocity autocorrelation,
delay function, as well as the mean and mean-square displace-
ment (MSD). To validate the inertial AOUP model introduced
in this paper, we compare the results for appropriately iden-
tified parameters to those of the inertial ABP. Finally, we
present a conclusive discussion in section 5.

2. Inertial ABP model

We consider an inertial self-propelled particle in two spatial
dimensions, characterized by its mass m and moment of iner-
tia J. The particle dynamics is described by stochastic evol-
ution for the center-of-mass velocity v= ṙ (with r being the
center-of-mass position) and the angular velocity ω = ϕ̇ (with
ϕ being the orientational angle of the particle). The transla-
tional motion is governed by Newton’s second law of motion

ṙ= v , (1a)

m v̇=−γ v+F(r)+ γ
√
2Dtξ+ γv0n , (1b)

where the acceleration termm v̇ accounts for translational iner-
tia. The total force on the right-hand-side of equation (1b) is
given by the sum of the friction force−γv, proportional to the
translational frictions coefficient γ, a conservative force F(r),
which describes the interactions with other particles or in an
external field, and the thermal force γ

√
2Dtξ, whose intensity

is given by the translational diffusion coefficient Dt and dis-
tributed like a zero-mean unit variance Gaussian white noise ξ.
Finally, the active force γv0n couples via the orientation vec-
tor, n= (cosϕ,sinϕ), the translational motion to a rotational
degree of freedom. Our main objective is here to provide a
convenient model for the self-propulsion vector n, such that
we set F(r) = 0 in the remainder of this work.

In the ABP model the modulus of the active force is con-
stant and sets the self-propulsion speed v0. In a similar manner,
the rotational motion

ϕ̇= ω , (2a)

J ω̇+ γrω = γr
√
2Drη , (2b)

involves a friction torque −γrω with the rotational friction
coefficient γr and a stochastic torque γr

√
2Drη, where the

effective rotational diffusion coefficientDr quantifies the rota-
tional noise strength and the Gaussian noise η has zero-mean
and unit variance. Here, the angular acceleration term J ω̇
accounts for rotational inertia. Overall, the inertial ABP is
characterized by three typical times

τ :=
1
Dr

, τJ :=
J
γr

, τm :=
m
γ
, (3)

representing rotational diffusion, translational memory and
rotational memory, respectively. In what follows, we use τ as
the unit time.

By taking a closer look at equation (2b), we see that the
angular velocityω is described by anOrnstein–Uhlenbeck pro-
cess such that

⟨ω(t)ω(0)⟩= 1
ττJ

e−t/τJ . (4)

Thus, the time scale τ J , entering in equation (4), introduces
memory in the angular velocity, such that the orientational cor-
relation function

⟨n(t) ·n(0)⟩= e−(t/τ−τJ/τ(1−e−t/τJ )) (5)

exhibits arecursive exponential decay (see footnote [106] for
a clarification of the use of the term ‘recursive’), instead of
the single-exponential decay in the absence of rotational iner-
tia, τJ → 0. In particular, this orientational correlation decays
quadratically for short times,

⟨n(t) ·n(0)⟩= 1− t2/(2ττJ)+O
(
t3
)
, (6)

and the overdamped result τp = τ for the characteristic persist-
ence time τp =

´∞
0 ⟨n(t) ·n(0)⟩dt generalizes to

τp = τJ e
τJ/τ (τJ/τ)

−τJ/τ Γ(τJ/τ,0, τJ/τ) , (7)

where Γ(x,z0,z1) =
´ z1
z0
tx−1e−t dt is the incomplete gamma

function.
In general, the persistence time τp increases when τ is

increased. Compared to the overdamped case, this increase
is more significant when the typical time τ J (or the moment
of inertia) is increased. Therefore, it is apparent that inertial
effects hinder the particle’s ability of changing the direction of
its self-propulsion vector in response to an applied torque. Fur-
ther results for an inertial ABP are contained in appendix A. It
should be noted that, due to the implicit dependence of most
quantities on τ J , such as τp in equation (7), a comprehensive
analytical picture is impaired. Explicit analytical insight can
be obtained in the small-rotational-inertia limit.

2.1. ABP for small rotational inertia

Neglecting rotational inertia, τJ → 0, the rotational dynamics
of the inertial ABP coincides with the usual ones, expected for
overdamped ABP. In this limit, the angular velocity ω con-
verges onto a zero-mean δ-correlated Gaussian white noise
with

⟨ω(t)ω(t ′)⟩ ∼ 2
τ
δ(t− t ′) (8)
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as a result of the asymptotic limit of equation (4). Secondly,
expanding equation (5) in powers of τ J , the autocorrelation of
the orientational vector, n, reads

⟨n(t) ·n(0)⟩= e−t/τ
(
1+ τJ/τ +O

(
τ 2J
))

(9a)

= e−t/τ
(
1+ τJ/τ(1− e−t/τJ)+O

(
τ 2J
))

,

(9b)

where the second equality conveniently retains τ J as a typical
exponential decay time. From equation (9), we can naturally
identify the persistence time, τp, as the inverse of the rotational
diffusion coefficient, τ , in the overdamped limit τJ → 0. This
can be explicitly verified by expanding equation (7) in powers
of τ J , such that

τp = τ + τJ−
τ 2J
2τ

+O
(
τ 3J
)
, (10)

and then considering the limit τJ → 0.

3. Fully inertial AOUP model

Despite the simplicity and intuitive nature of the ABP model,
obtaining analytical results that go beyond the potential-free
particle is not an easy task [107], even more so, in the presence
of rotational inertia. The AOUP model, initially proposed in
overdamped systems (without inertia) represents an alternative
and simplified model to the ABP which is obtained by repla-
cing the orientation vector n in equation (1b) by an Ornstein–
Uhlenbeck process with correlation time τ and unit variance.
This simple approach works well because the autocorrelation
⟨n(t) ·n(0)⟩ of both an (overdamped) ABP and AOUP has the
same exponential shape decaying with a typical correlation
time, that coincides with the common persistence time. To get
consistent results, it is merely required to ensure that τ ≡ 1/Dr

describing the AOUP dynamics represents the inverse rota-
tional diffusion coefficient of the ABP in two dimensions [32],
as we imply here through equation (3). In the AOUP case, the
whole stochastic process modeling the active self-propulsion
vector n is Gaussian, thus offering a simplified platform to
derive analytical results in the presence of interactions and
external potentials [53].

The inclusion of translational inertia in the AOUP model
has been proposed and investigated [78, 79], and, in general,
does not present any additional conceptual or technical diffi-
culties compared to the ABP model. This is because transla-
tional inertia does not affect the dynamics of the active force,
i.e. the orientational angle ϕ in the ABP case or the Ornstein–
Uhlenbeck process for the self-propulsion vector n (see below)
in the AOUP case. In the presence of rotational inertia, pur-
suing a similar strategy of deriving a Gaussian approxima-
tion to the ABP dynamics is not straightforward because of
the intricate structure of equation (5), which does no longer
posses a single-exponential shape as in the overdamped case,
equation (9a). Intuitively, a minimal description of rotational

inertia requires (i) an additional time scale, τ J , and (ii) an addi-
tional scaling factor, τJ/τ , both related to the moment of iner-
tia, which affects the angular velocity autocorrelation.

To generalize the AOUP model to the presence of rota-
tional inertia, we introduce an additional colored noiseχ in the
dynamics of the self-propulsion vector n, characterized by its
own rotational memory time τχ and the noise strengthDχ/τ

2
χ,

so that n evolves as

ṅ=−n
τ
+

√
1
τ
χ, (11a)

χ̇=− χ

τχ
+

√
2Dχ

τχ
ζ . (11b)

This model ensures that equation (11a) formally coin-
cides with the overdamped AOUP model, i.e. when the
auxiliary process χ is a white noise. Here, the additional
Ornstein–Uhlembeck process for χ, evolving according to
equation (11b), prescribes a more general colored noise. As
a consequence, the rotational AOUPmodel is not only charac-
terized by one typical time τ (which in overdamped systems
coincides with the persistence time), but also by an additional
time τχ and the inertial diffusivity Dχ. The latter can be con-
veniently determined as

Dχ =
τ + τχ
2τ

(12)

from the condition

⟨n(0) ·n(0)⟩= 1 , (13)

ensuring the unitary normalization of n(t) (which is a unit vec-
tor in the ABP case) to set the velocity scale by v0 without
ambiguity [53].

The standard AOUP model in the overdamped limit is nat-
urally achieved by requiring τχ → 0 and Dχ → 1/2 such that
equation (11b) reduces to a white noise with zero average and
unit variance. Moreover, the linearity of equation (11) allows
us to analytically derive the autocorrelation function

⟨n(t) ·n(0)⟩= 2Dχτ

τ 2 − τ 2χ

(
τ e−t/τ − τχ e

−t/τχ
)

(14)

of the self-propulsion vector n, which is characterized by
anadditive exponential decay (see footnote [106] for a cla-
rification of the use of the term ‘additive’), i.e. the super-
position of two exponential functions with the correlation
times τ and τχ. Comparing this result to the expansion in
equation (9b) for the inertial ABP, we deduce that the struc-
ture of equation (14) with two different decay times consti-
tutes the minimal ingredient to account for rotational iner-
tia. In the rest of this work, we validate the inertial AOUP
model by establishing a suitable relation between the para-
meters τχ and Dχ in and those, τ and τ J , of the inertial
ABPmodel to quantify the impact of rotational inertia through
equation (11).
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Figure 2. Additional parameters of the inertial AOUP model, τχ/τ
(blue curve) and Dχ (red curve), related to the inertial ABP model
through equation (16) as a function of the normalized rotational
memory time τ J of the inertial ABP. Dashed black lines indicate the
scaling ∼√

τJ occurring for large τ J while for τJ → 0 the limiting
values Dχ → 1/2 and τχ → 0 are approached and τχ scales as ∼τJ
(dotted black line).

3.1. Relation to inertial ABP model

Comparing the full predictions of the two models for the
autocorrelation function given by equations (5) and (14), it
becomes apparent that, at variance with the overdamped limit
(τχ → 0 or τJ → 0), the shape of ⟨n(t) ·n(0)⟩ does not coin-
cide, see also figure 1. To provide a coherent scheme for identi-
fying the rotational memory time τχ of our inertial AOUP
model, we impose here, in addition to equation (13), the
second natural condition

ˆ ∞

0
⟨n(t) ·n(0)⟩dt= τp (15)

satisfied by the inertial ABP model, which enforces that both
models have the same autocorrelation time and, thus, predict
the same long-time diffusion behavior. Thus we can identify
the parameters of both models according to

τχ = τp − τ = τJ+O
(
τ 2J
)
, (16a)

Dχ =
τp
2τ

=
1
2
+

τJ
2τ

+O
(
τ 2J
)
, (16b)

where the provided small-τ J expansions are apparent from
equation (10).

To understand the meaning of the new inertial parameters
τχ and Dχ of our generalized AOUP model, their values are
shown in figure 2 as a function of the rotational memory time
τ J of the inertial ABP. It can be seen that both parameters τχ
and Dχ are increasing functions of τ J . They scale as ∼

√
τJ/τ

for τJ/τ ≫ 1, as can be deduced from the function τp given by
equation (7). Moreover, the limit of vanishing rotational iner-
tia, τJ → 0, is consistent with the overdamped AOUP, since

according to equation (10) the persistence time τp reduces
to τ , such that we observe the limits τχ → 0 and Dχ → 1/2.
As a consequence, equation (11a) reduces in the overdamped
limit to a standard Ornstein–Uhlenbeck process, employed to
describe active particles without rotational inertia, as χ= ζ
becomes a white noise upon setting τχ → 0 in equation (11b).
Further aspects of the small-rotational-inertia limit are dis-
cussed in section 3.3. In the opposite limit, τJ →∞, the iner-
tial AOUP persistently moves along a straight line, which is
consistent with the inertial ABP. Thus our model accurately
includes both limits of vanishing and infinite rotational inertia.

3.2. Probability densities for inertial AOUPs

One of the main advantages of the inertial AOUP model,
defined by equations (1) and (11), is that the stationary prob-
ability density P(v,n,χ) can be explicitly derived via its cor-
relation matrix. We list these results in appendix B. Here, we
discuss the reduced probabilityP(v,n) to find a given velocity
v and self-propulsion nwhich is obtained via integration of the
full probability density with respect to the auxiliary processχ.
The distribution P(v,n) can be expressed as

P(v,n) = P(v|n)P(n), (17)

where P(n) is the marginal probability density of the self-
propulsion vector n with unit-variance, thus

P(n)∝ exp
(
−n2

)
, (18)

andP(v|n) defines the conditional probability to find a particle
at a velocity v with prescribed n. Using the time scales τ and
τm from equation (3) and the rotational memory time τχ of the
inertial AOUP, we have

P(v|n)∝exp

(
−
(
v−⟨v|n⟩

)2
σ(v|n)

)
, (19a)

⟨v|n⟩= v0
τ − τχ

(
τ 2

τ + τm
−

τ 2χ
τχ + τm

)
n, (19b)

σ(v|n) =2Dt

τm
+
v20τ

2
m(ττm+ τmτχ + ττχ)

(τ + τm)2(τχ + τm)2
, (19c)

whereP(v|n) is centered around the conditional average ⟨v|n⟩
of v at given n with its corresponding conditional variance
σ(v|n).

By integrating the distributionP(v|n) in equation (17) over
n, we derive the velocity distribution of a system of ideal iner-
tial AOUPs

P(v)∝ exp

(
− v2

⟨v2⟩

)
, (20a)

⟨v2⟩= 2Dt

τm
+

v20
τ − τχ

(
τ 2

τ + τm
−

τ 2χ
τχ + τm

)
, (20b)

with the mean-square velocity ⟨v⟩2. Such a distribution has a
typical Boltzmann-like shape as illustrated in figure 1, with an
effective temperature determined by the swim velocity v0 and
the three typical time scales τ , τm, and τχ.

5
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3.3. AOUP for small rotational inertia

In the absence of rotational inertia, the inertial AOUP model
converges onto the standard AOUP model employed to
describe overdamped active particles or active particles with
translational inertia only. This is evident by taking the over-
damped limit in equation (11b), i.e. considering τχ → 0. The
nature of the Ornstein–Uhlenbeck process χ allows us to
derive the steady-state autocorrelation

⟨χ(t) ·χ(0)⟩= 2
Dχ

τχ
e−t/τχ =

τ + τJ
ττJ

e−t/τJ +O
(
τ 2J
)
, (21)

where, in the last equality, we have used equations (16) hold-
ing at first order in τ J . This shape links the correlator of χ to
the correlator, equation (4), of the angular velocity ω in the
inertial ABP model. This confirms our identification of the
additional degree of freedom χ in the inertial AOUP model as
the key dynamical variable able to capture the effects of rota-
tional inertia. To see this, we further note that, in Cartesian
coordinates, the dynamics of the self-propulsion vector n can
be expressed as ṅ= n× zω, where z is the unit vector per-
pendicular to the two-dimensional plane of motion [99]. Sim-
ilarly to the overdamped case [53], the AOUP approximation
can then be imagined as replacing this term by an Ornstein–
Uhlenbeck process.

In the same spirit, the autocorrelation (14) of the self-
propulsion vector n can be expanded with the help of
equation (16) as

⟨n(t) ·n(0)⟩= 1
τ − τJ

(
τ e−t/τ − τJ e

−t/τJ
)
+O

(
τ 2J
)
. (22)

By additionally setting τ ≫ τJ for small moment of inertia, we
recover equation (9b). Thus, our model goes beyond a naive
mapping of this small-rotational-inertia limit.

In addition, the probability distribution P(v|n) in
equation (19) converges to the one found in [78] without rota-
tional inertia. By expanding for small τ J , mean and variance
of the Gaussian distribution reads

⟨v|n⟩= v0τ
τ + τm

n+
v0τJ

τ + τm
n+O

(
τ 2J
)
, (23a)

σ(v|n) =2Dt

τm
+

v20τmτ
(τ + τm)2

− v20(τ − τm)τJ
(τ + τm)2

+O
(
τ 2J
)
, (23b)

where we have neglected order τ 2J . The zero-order result in
equation (23) coincides with the variance calculated in [78],
while the first correction in τ J decreases the velocity variance
if τ > τJ (long-persistent regime) and increases the variance in
the opposite limit.

4. Comparison between inertial ABP and inertial
AOUP

The inertial AOUP model introduced in section 3 defines
a purely Gaussian process which in general significantly

simplifies the theoretical analysis compared to the inertial
ABP model, specified in section 2. However, at variance with
the overdamped case, there is no one-to-one identification of
the parameters in these two models, since the shape of the
autocorrelations, equations (5) and (14), does not coincide.
Therefore, a careful comparison between the inertial ABP
and inertial AOUP is needed. To this end, we evaluate in the
following several observables for different values of the rota-
tional memory time τ J of the inertial ABP which sets the cor-
responding rotational memory time τχ of the inertial AOUP
through equations (16a) and (7). We thus explore all regimes
where the rotational inertia plays a marginal (τJ ≪ τ ), inter-
mediate (τJ ≈ τ ) and relevant (τJ ≫ τ ) role.

In the upcoming comparison, we keep the mass m fixed by
setting the translational time scale τm = τ and omit transla-
tional diffusion by setting Dt = 0. A detailed discussion of the
role of τm can be found in [78, 79, 99]. The relative importance
of activity versus translational diffusion can be characterized
in terms of the Péclet number Pe= v0

√
τ/2Dt. A finite Péclet

number improves agreement between the ABP and AOUP
models, as both share the same passive dynamics. As a res-
ult, our focus in this paper is on pure active dynamics to better
benchmark the AOUP with the ABP model (i.e. Pe→∞). To
give context for our selected parameter values, we provide rep-
resentative orders of magnitude for macroscopic active granu-
lar particles τm ∼ 0.1 τ , τJ ∼ 0.1 τ , and Pe∼ 10 [95].

In particular, we compare here the autocorrelation of the
self-propulsion vector, velocity correlations and the cross cor-
relation between self-propulsion vector and velocity, known
as delay function. Finally, we consider the MSD and the long-
time diffusion coefficient. The implicit analytic reference res-
ults for the inertial ABP model are listed in appendix A.

4.1. Orientational correlation function

Having established in section 3.3 that both inertial ABP and
AOUP models yield the same autocorrelation function ⟨n(t) ·
n(0)⟩ of the self-propulsion vector n for small rotational iner-
tia, we provide in figure 3(a) comparison for different reduced
moments of inertia τJ/τ . As expected, for τJ ≪ τ and τJ ≈ τ ,
a good agreement is obtained on all timescales (see the com-
parison between solid and dashed lines). However, for τJ ≫
τ , we observe small deviations between the two models. In
particular, the inertial AOUP model predicts a faster early
decay, which we understand from comparing the short-time
expansion

⟨n(t) ·n(0)⟩= 1− t2

2ττχ
+O

(
t3
)

(24)

to the ABP result in equation (6) and recognizing that τχ ⩽ τJ
(see figure 2). At later times, there is a crossover between τχ ≲
t≲ τJ as the autocorrelation of the inertial AOUP has a longer
decay tail, which reflects the nature of the additive exponential
decay, compared to the faster recursive exponential decay the
of inertial ABP.

6
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Figure 3. Orientational correlation ⟨n(t) · n(0)⟩ as a function of
time t/τ for different moments of inertia given through τJ/τ (as
labeled). Solid and dashed lines correspond to an AOUP and ABP,
respectively. Vertical dotted lines indicate the rotational memory
time τχ of the inertial AOUP.

4.2. Velocity correlation function

The velocity correlation of the inertial AOUP reads

⟨v(t) · v(0)⟩= 2Dt

τm
e−t/τm +

v0
2

(
⟨v(t) ·n(0)⟩+ ⟨v(0) ·n(t)⟩

)
,

(25)
with

⟨v(t) ·n(0)⟩= v0
τ − τχ

(
τ 2e−t/τ

τ − τm
−

τ 2χe
−t/τχ

τχ − τm

)
+

2v0τ 3m(τ + τχ)e−t/τm

(τ 2 − τ 2m)(τ
2
χ − τ 2m)

, (26a)

⟨v(0) ·n(t)⟩= v0
τ − τχ

(
τ 2e−t/τ

τ + τm
−

τ 2χe
−t/τχ

τχ + τm

)
. (26b)

This result serves as a closed-form approximation for the
inertial ABP result. As shown in figure 4, our model consist-
ently predicts stronger velocity correlations for all times when
the rotational inertia is increased. The small deviations for
large moment of inertia and the crossover of the decay beha-
vior are quite similar to those discussed in section 4.1 for the
orientational correlation function.

In addition, we observe in figure 4 an offset at t= 0 between
the two models, i.e. they predict a distinct mean-square velo-
city ⟨v2⟩ ≡ ⟨v(0) · v(0)⟩. For the inertial AOUP, we recover
the result for ⟨v2⟩ given by equation (20b). We can thus con-
clude that rotational inertia increases the translational kinetic
temperature (which is proportional to ⟨v2⟩). Taking the limit
τJ →∞ in equation (20b), we find that ⟨v2⟩ → 2Dt/τm+ v20
reaches a plateau value which is the same as found for an iner-
tial ABP.

Figure 4. Velocity correlation function, ⟨v(t) · v(0)⟩, as a function
of time t/τ for a fixed mass m given through τm/τ = 1 different
moments of inertia J given through τJ/τ (as labeled). Solid and
dashed lines correspond to an AOUP and ABP, respectively.

4.3. Delay function

Next we consider the delay function between the velocity and
orientation of the inertial active particle, defined as [95, 99]

d(t) = ⟨v(t) ·n(0)⟩− ⟨v(0) ·n(t)⟩ . (27)

The two required correlation functions are given by
equation (26) for the inertial AOUP. The inertial delay d(t) has
been introduced in [95] as one of the main dynamical effects
characterizing ABP with inertia: the velocity v tends to lag
behind the self-propulsion n at a typical delay time.

We see in figure 5 that our model also provides an accurate
qualitative picture of effect of rotational inertia on the delay
function, regarding both the maximal delay and the character-
istic duration of this effect. Comparing the prediction to the
inertial ABP, we find two crossover regimes for large moment
of inertia: the inertial AOUP predicts a stronger delay at both
short and long times.

Another benefit of our closed AOUP result is that the
total inertial delay dtot :=

´
dtd(t), i.e. the time integral of

equation (27), can be determined in the compact form

dtot =
2v0τm(ττχ + ττm+ τχτm)

(τ + τm)(τχ + τm)
, (28)

which immediately reveals that the delay effect is enhanced by
increasing either of the relevant time scales of inertial active
motion, given by equation (3).

4.4. Positional correlation functions

The conditional mean displacement for a given initial value
n0 = n(0) of the self-propulsion vector can be calculated for
an inertial AOUP as

7
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Figure 5. Delay function, d(t), defined in equation (27), shown in
the same style and for the same parameters as in figure (4).

⟨∆r(t)|n0⟩= ⟨v|n0⟩τm
(
1− e−t/τm

)
+ v0n0

(
τ + τχ

)
+ v0n0

(
τme−t/τm(ττm− ττχ + τmτχ )

(τ − τm)(τm− τχ )

− τ 3e−t/τ

(τ − τm)(τ − τχ )
− τχ

3e−t/τχ

(τχ − τ)(τχ − τm)

)
,

(29)

where we have used the initial condition χ0 = ⟨χ|n0⟩=
n0/

√
τ for the auxiliary process χ (see equation (B12b)) and

the initial velocity ⟨v|n0⟩ follows from equation (19b). For
t→∞ we find the persistence length

Lp = ⟨v|n0⟩τm+ v0n0
(
τ + τχ

)
, (30)

which has the same form as that of an inertial ABP.
Moreover, the MSD(t) can be expressed as

⟨∆r2(t)⟩= 4DLt+ 2
(
⟨v(t) · v(0)⟩− ⟨v2⟩

)
τ 2m

− 2v20
τ − τχ

(
τ 3(1− e−t/τ )− τ 3χ(1− e−t/τχ)

)
,

(31)

where the velocity correlation ⟨v(t) · v(0)⟩ and the mean-
square velocity ⟨v2⟩ are given by equations (25) and (20b),
respectively. The long-time diffusion coefficient

DL = Dt +
v20
2

(
τ + τχ

)
(32)

is in full agreement with that of an inertial ABP. As shown in
figure 6 the MSD(t) of inertial AOUPs agrees fairly well with
the ABP result also at intermediate times for all considered
values of τ J .

Figure 6. Mean-square displacement, ⟨∆r2(t)⟩, shown in the same
style (mind the logarithmic scales) and for the same parameters as in
figure (4). The curves for the two models cannot be distinguished
here.

5. Conclusions

In this paper, we have generalized the inertial AOUP model to
account for translational and, in particular, for rotational iner-
tia in two spatial dimensions. The inertial AOUP model intro-
duced in this paper goes beyond mapping the rotational iner-
tia onto an effective rotational diffusion coefficient [105] by
incorporating a second characteristic time scale (in addition to
the one related to the inverse rotational diffusion coefficient),
which we have demonstrated to be the crucial ingredient for
describing the proper long-time behavior. As such, our model
matches both the small- and long-time regime with the inertial
ABP model and thus represents a suitable alternative, which
allows to determine closed analytical predictions for dynam-
ical correlations. Indeed, the agreement between inertial ABP
and AOUP models has been certified by comparing velocity
correlations, the delay function and the MSD. For small or
moderate moment of inertia, we have found similar predic-
tions of these two models at all times, while small deviations
only occur at intermediate times for large moment of inertia.
In general, the effect of increasing rotational inertia is qualit-
atively captured well by the inertial AOUP model.

In conclusion, we have introduced and validated a Gaussian
model to describe inertial active matter, which reduces to the
standard AOUP model in the overdamped limit. Specifically,
the inertial AOUP model provides an alternative to the iner-
tial ABP model for describing the active force in the transla-
tional equations of motion, equation (1), while all other terms
remain model-independent. Therefore, it can be readily used
in its own right for future studies of confined or interacting act-
ive particles with inertia. One challenging task for future work
would be to also include torques in our treatment.

In analogy with the overdamped AOUP model, we expect
that the inertial AOUP model presented here will offer an
intriguing platform to provide analytic insight into various

8
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phenomena exhibited by active particles governed by both
translational and rotational inertia. Most notably, future stud-
ies could focus on the generalization of effective-equilibrium
theories with the inertial AOUP as a starting point. The exten-
sion of the unified colored noise approximation [33, 108–110]
or Fox approach [38, 39, 111, 112] will be helpful to under-
stand the behavior of inertial active particles in the presence
of interactions.

While, recently, it was shown that rotational inertia is able
to promote phase separation [101] in purely repulsive sys-
tems, further interesting questions remain to be addressed at
the collective level. For example, the effect of rotational iner-
tia on the (continuous or discontinuous) nature of MIPS [85,
86] or on the kinetic temperature difference between high- and
low-density phases [71] is still unexplored. More generally, it
would interesting to shed light on the effect of inertia on the
recent micro-phase separation observed in field theories [113,
114] and overdamped particle-based simulations of repulsive
ABPs [12, 43] or dumbbells [115]. Further, exploring the inter-
play between inertia and activity in flow-mediated transport
would be an interesting area to investigate in the future [116].
To this end, it will be insightful to apply effective interactions
[32, 48] or hydrodynamics [94, 117] and mean-field methods
[118], to obtain theoretical predictions that take advantage of
the intrinsic simplicity of the inertial AOUP model.
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Appendix A. Results for an inertial ABP

For reference, we summarize here the essential analytic results
of the inertial ABP model. Using methods of stochastic integ-
ration, we obtain the orientational correlation function in the
steady state as

⟨n(t) ·n(0)⟩= e−Dr

(
t−τJ(1−e−t/τJ )

)
. (A1)

A characteristic orientational persistence time τp can be
determined as

τp =

ˆ ∞

0
⟨n(t) ·n(0)⟩dt= τJe

JJ−J Γ(J ,0,J ) (A2)

with the reduced moment of inertia J := τJ/τ .

Similarly, the translational velocity correlation function can
be computed as

⟨v(t) · v(0)⟩= 2Dt

τm
e−t/τm +

v0
2

(
⟨v(t) ·n(0)⟩+ ⟨v(0) ·n(t)⟩

)
,

(A3)
as well as the delay function

d(t) = ⟨v(t) ·n(0)⟩− ⟨v(0) ·n(t)⟩ (A4)

with

⟨v(t) ·n(0)⟩= v0
τJ
τm
eJ
(
J−Ω−Γ(Ω−,J e−t/τJ ,J )

+J−Ω+Γ(Ω+,0,J )
)
e−t/τm , (A5)

⟨v(0) ·n(t)⟩= v0
τJ
τm
eJJ−Ω+Γ(Ω+,0,J e−t/τJ)et/τm (A6)

and Ω± = τJ/τ ± τJ/τm.
Next, we address the mean displacement ⟨∆r(t)|n0⟩ at pre-

scribed initial orientation n0, which reads

⟨∆r(t)|n0⟩= ⟨v|n0⟩τm
(
1− e−t/τm

)
(A7)

+
v0
Dr

J eJ
(
J−JΓ(J ,J e−t/τJ ,J )

+J−Ω−Γ(Ω−,J e−t/τJ ,J )e−t/τm
)
n̂0

with the mean initial velocity

⟨v|n0⟩= v0
τJ
τm
eΩΩ−Ω+Γ(Ω+,0,J )n̂0 (A8)

at given n0. Thus, the long-time limit of equation (A7) yields
the persistence length

Lp = ⟨v|n0⟩τm+ v0n0τp , (A9)

which has the same form as equation (30), while the required
expression for ⟨v|n0⟩ differs.

Last, the MSD is given by

⟨∆r2(t)⟩= 4DLt+ 2
(
⟨v(t) · v(0)⟩− ⟨v2⟩

)
τ 2m

+ 2v20τ
2
J
eJ

J 2

(
2F2

[
J , J

J + 1, J + 1
;−J

]

− 2F2

[
J , J

J + 1, J + 1
;−J e−t/τJ

]
e−t/τ

)
(A10)

with the long-time diffusion coefficient

DL = Dt +
v20
2
τp (A11)

and the generalized hypergeometric function pFq.
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Appendix B. Stationary probability distribution for
the inertial AOUP model

In this appendix, we derive the stationary probability distri-
bution P(v,n,χ) for the AOUP model with rotational and
translational inertia. First, we note that equations (1b), (11a)
and (11b), can be written in the form

ẇ=−Aw+ση , (B1)

where A and σ are the drift and the noise matrices, respect-
ively, w the vector of dynamical variables, and η a white noise
vector with unit-variance. The stationary probability distribu-
tion of this system is a multivariate Gaussian of the form

P(w)∝ exp
(
−wTC−1w

)
, (B2)

where C−1 is the inverse of the correlation matrix C to be
determined by solving the following matrix equation

AC+CAT = σσT . (B3)

Here, AT and σT the transpose of drift and noise matrix,
respectively.

Applying this general approach forw= (v,n,χ), we obtain

P(v,n,χ)∝ exp

(
−v2

2
C−1
vv − n2

2
C−1
nn − χ2

2
C−1
χχ

)
× exp

(
− v ·nC−1

vn − v ·χC−1
vχ −n ·χC−1

nχ

)
, (B4)

where

C−1
vv =

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5a)

C−1
nn =

τ + τχ
τ

(
2Dt

τm
+ v20

τ 2χτ
2
m+ τ 2(τχ + τm)

2 + ττmτχ(2τm+ 3τχ)

(τ + τm)(τ + τχ )(τχ + τm)2

)(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5b)

C−1
χχ = 2τχ +

v20ττ
2
χτ

2
m

(τ + τm)2(τχ + τm)2

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5c)

C−1
vn =− v0

τ + τm

(
τ +

2τχτm
τχ + τm

)(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5d)

C−1
vχ =

v0
√
ττχτm

(τ + τm)(τχ + τm)

(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

, (B5e)

C−1
nχ =− τχ√

τ

(
2Dt

τm
+

v20τm
(τ + τm)(τχ + τm)

(
τ +

τχτm
τχ + τm

))(
Dt

τm
+

v20τ
3
m(τ + τχ)

2(τ + τm)2(τχ + τm)2

)−1

. (B5f )

The stationary probability distribution P(v,n,χ)
(equation (B4)) can be rewritten as

P(v,n,χ) = P(v|n,χ)P(n,χ) , (B6)

where P(n,χ) is the reduced probability describing the act-
ive self-propulsion and the P(v|n,χ) defines the conditional
probability to find a particle at a velocity v with prescribed n
and χ

P(v|n,χ)∝exp

(
−
(
v−⟨v|n,χ⟩

)2
σ(v|n,χ)

)
, (B7a)

⟨v|n,χ⟩= v0(ττm+ 2τmτχ + ττχ)

(τ + τm)(τχ + τm)
n

− v0
√
ττmτχ

(τ + τm)(τχ + τm)
χ, (B7b)

σ(v|n,χ) = 2Dt

τm
+

v20τ
3
m(τ + τχ)

(τ + τm)2(τχ + τm)2
. (B7c)

The latter distribution fluctuates around the conditional aver-
age ⟨v|n,χ⟩ of v at given n and χ with its corresponding vari-
ance σ(v|n,χ). Integration over the auxiliary process χ yields
the results stated and discussed in section 3.2.

In a similar way, the reduced probability P(n,χ) can be
expressed as

P(n,χ) = P(n|χ)P(χ) (B8)

with

P(n|χ)∝ exp

(
−
(
n−⟨n|χ⟩

)2
σ(n|χ)

)
, (B9a)

10
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⟨n|χ⟩=
√
ττχ

τ + τχ
χ, (B9b)

σ(n|χ) = τ

τ + τχ
(B9c)

and

P(χ)∝ exp

(
− χ2

⟨χ2⟩

)
, (B10a)

⟨χ2⟩= τ + τχ
ττχ

, (B10b)

or alternatively

P(n,χ) = P(χ|n)P(n) (B11)

with

P(χ|n)∝ exp

(
−
(
χ−⟨χ|n⟩

)2
σ(χ|n)

)
, (B12a)

⟨χ|n⟩= n/
√
τ , (B12b)

σ(χ|n) = 1/τχ (B12c)

and

P(n)∝ exp
(
−n2

)
. (B13)

The distribution P(v,n) (see equation (17)) can be derived
via integration of the full probability density P(v,n,χ) (see
equation (B4)) with respect to χ.
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