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Colloidal smectics in button-like confinements: Experiment and theory
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Liquid crystals can self-organize into a layered smectic phase. While the smectic layers are typically straight,
forming a lamellar pattern in bulk, external confinement may drastically distort the layers due to the boundary
conditions imposed on the orientational director field. Resolving this distortion leads to complex structures
with topological defects. Here, we explore the configurations adopted by two-dimensional colloidal smectics
made from nearly hard rod-like particles in complex confinements, characterized by a button-like structure with
two internal boundaries (inclusions): a two-holed disk and a double annulus. The topology of the confinement
generates new structures which we classify in reference to previous work as generalized laminar and generalized
Shubnikov states. To explore these configurations, we combine particle-resolved experiments on colloidal rods
with three complementary theoretical approaches: Monte Carlo simulation, first-principles density functional
theory, and phenomenological Q-tensor modeling. This yields a consistent and comprehensive description of
the structural details. In particular, we characterize a nontrivial tilt angle between the direction of the layers and
symmetry axes of the confinement.
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I. INTRODUCTION

Liquid crystals [1,2] have proven to be an important tool
in the investigation of various topological phenomena. In ne-
matic liquid crystals, topological defects reflect the frustrated
orientational order due to, e.g., confining geometries [3–11],
active dynamics [12–16], or a combination of both [17–19].
This diversity of defects and formation pathways has led to
extensive research attention devoted to understanding and ac-
curately modeling the emerging topological defect structures
[20–26].

In recent years, there has been an increasing interest in
layered liquid crystals [27] and, in particular, smectic phases
[28–31], which possess both orientational order and a peri-
odic modulation of the center-of-mass density in the form of
layers. This development owes to progress in (i) advances
in experiments [32–45], (ii) continuum modeling [46–49],
and (iii) first-principles theory [50–52], complemented by
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(iv) topological insight [53–56] reinforced by (v) simulating
particle-resolved defect structures [57–60]. Despite these ad-
vances, further interdisciplinary efforts are needed to achieve
a comprehensive understanding of smectics and to bridge
the gap between different (model) systems showing smectic
layering and theoretical approaches of all kinds. For example,
different classes of experimental smectics range from ther-
motropic molecular liquid crystals with highly elastic layers
to colloidal smectics, whose internal structure, being governed
by packing effects, is more rigid. A particular challenge is
thus to identify and develop universal structural and topolog-
ical classification concepts that are applicable to all kinds of
smectic layering.

In this paper, we bring four complementary approaches
together to understand the structure of colloidal smectics,
confined to two-dimensional domains with a complex topol-
ogy involving two holes. We use particle-resolved colloidal
experiments on silica rods [43], Monte Carlo simulations
of a hard-rod model [58], microscopic density functional
theory (DFT) for hard rods [52], and a recent continuum
Q-tensor model extending the Landau–de Gennes theory for
nematics [48].

The goal of our work is twofold. First, we provide a
more profound topological understanding of colloidal smec-
tics by exploring more complex confinements that allow for
a larger structural variety. Second, we bring together four
different approaches to both demonstrate the general applica-
bility of our topological concepts and exploit their synergies
when it comes to a detailed structural analysis. We will thus
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demonstrate that our methods not only yield consistent pre-
dictions of the properties of different topological states but
also allow us to tackle the problems from different viewpoints.
In particular, we investigate responses of the system to both
changes of the confining geometry and variation of interac-
tion parameters. This allows us to systematically explore the
ranges of stability of different topological states as well as
different alignment phenomena and structures in the absence
of a continuous rotational symmetry.

This paper is arranged as follows. We provide details on the
confining geometries, methods, and topological classification
scheme in Sec. II, before discussing our results in Sec. III.
After summarizing our observations, we conclude in Sec. IV.

II. CONFINED SMECTIC STATES

Our goal is to identify the structure and topology of the
smectic states emerging in various two-dimensional confine-
ments. The complexity of a confining domain can be either
of explicit geometrical origin, related to the curvature of the
walls, or of topological origin. The latter can be quantified
by the Euler characteristic χ , which counts the number of
connected components minus the number of holes in two
dimensions, irrespective of the particular geometric shape of
the domain. In the following, we elaborate on the relevant
geometrical parameters (Sec. II A), describe how we resolve
smectic structures in experiments and three theoretical ap-
proaches (Sec. II B), and provide details on the topological
analysis (Sec. II C).

A. Button-like confinements

As confining domains, we consider two generalizations of
an annular geometry (central drawing in Fig. 1). This allows
us to compare against solutions characterized for an annulus in
previous work [61]. An annulus is composed of a large circle
of radius Rout > 0 with a single circular hole (inclusion) of
radius Rin < Rout in the center. This topology has an Euler
characteristic χ = 0, which allows for a structure free of ori-
entational topological defects at the cost of forming an array
of edge dislocations to relax the deformation of the layers
imposed by the curved confinement (Shubnikov state, named
following the structural analogy to type-II superconductors
[33,62]). Depending on the particular geometry, this structure
competes, among others, with an undeformed structure (lam-
inar state), which comes at the cost of the formation of grain
boundaries, i.e., defects in both orientational and positional
order [61].

The central geometrical parameter which determines the
stability of a structure emerging in annular geometry is the
inclusion size ratio b = Rin/Rout. For each of our two related
geometries, further specified below, we add a second inclusion
of the same inclusion size ratio b and introduce the geometri-
cal parameter C = cRout, which denotes the distance between
the centers of the two inclusions. In general, for small enough
relative distance c � 2b the inclusions intersect, resulting in
a distorted annulus with an effectively stretched inclusion
(χ = 0), while for larger distances c, there are two separated
holes such that the Euler characteristic equals χ = −1.

FIG. 1. Schematic depiction of the button-like confining geome-
tries investigated in this work generalizing an annulus (middle) with
inclusion size ratio b = Rin/Rout, where Rout is the radius of the outer
confining wall and Rin is the radius of the circular wall in the interior,
called inclusion [61]. Here, we consider two inclusions at distance
C, introducing the inclusion distance ratio c = C/Rout. In detail, we
define the two-holed-disk geometry (top), where the outer wall is
always circular, and the double-annulus geometry (bottom), where
the outer wall is defined via two intersecting circles at the same
distance C. The outer radius Rout is kept at a fixed value throughout
the paper, which corresponds to about five smectic layers. Further
details are provided in Sec. II A.

First, we consider the two-holed-disk geometry (top draw-
ing in Fig. 1), made of a single outer circle of radius Rout,
and two inclusions whose centers are shifted away from each
other in opposite directions with the mutual distance C, such
that the distance to the center of the outer disk is C/2 in
each case. Regarding the region accessible to the particles,
the shortest distance between outer and inner walls varies
upon circling along the outer wall. Note that, for extreme
distances c � 2 − 2b, the inclusions are in contact with the
outer wall, such that the geometry becomes simply connected
again (χ = 1).

Second, we consider the double-annulus geometry (bottom
drawing in Fig. 1), composed of two outer circles, which are
shifted alongside the two inner circles, such that each pair
of inner and outer circles has the same center with a mutual
distance of C. Consequently, each point of the outer confining
wall has the same shortest distance (1 − b)Rout to one of the
inclusions.

To summarize, each geometry in Fig. 1 is fully determined
by three parameters: the inclusion size ratio b, the inclusion
distance ratio c, and the total size of the confining domain
specified by the radius Rout of the outer wall. Throughout the
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FIG. 2. Example structures in the two confining geometries
shown in Fig. 1 with two inclusions. The left and right columns
depict the two-holed-disk geometry for b ≈ 0.25 and c ≈ 1.0 and
the double-annulus geometry for b ≈ 0.3 and c ≈ 1.2, respectively.
In both geometries we show (from top to bottom) typical particle
configurations in colloidal experiments, Monte Carlo simulations of
rod-like particles, density profiles and director fields from hard-rod
density functional theory (DFT), and Q-tensor theory with suitably
adapted parameters (see text).

paper, we keep Rout ≈ 5λ fixed, where λ is the layer spacing
of the smectic.

B. Complementary methods

Next we briefly introduce our methods to generate two-
dimensional smectic states in extreme confinement and
describe how to interpret the final smectic structures depicted
in Fig. 2. In general, smectic order is characterized by posi-
tional order of the particle centers in equidistant layers and
orientational order along a director at a constant angle to
these layers. Confinement induces frustration of this preferred
alignment in the form of deformations or discontinuities of
the layers and/or the director field. The complementary use
of our different approaches allows us to optimally exploit their
advantages when it comes to understanding the driving forces
behind the formation, the stability range, and the topology of
the emerging structures. Further details on each method are
provided in the Appendix.

Our experiments exploit the sedimentation equilibrium
of silica rods in an aqueous solution, as described in
Appendix 1. The particle-resolved optical micrographs, dis-
played in the first row of Fig. 2, are then taken from the
bottom, where the rods settle within tailor-made cavities.
These quasi-two-dimensional smectic structures can then be
analyzed by direct optical inspection or reading out indi-
vidual particle coordinates and orientations from processed
images.

We also perform Monte Carlo simulations on confined
systems of rods modeled as hard discorectangles in the canon-
ical ensemble, as described in Appendix 2. The simulation
snapshots, as displayed in the second row of Fig. 2, can be
analyzed in the same manner as those from the experiments,
while this particle-resolved numerical method leaves us in full
control of the particle shape, number density, and geometrical
parameters. This allows us to gather a large amount of statis-
tics for any prescribed geometry. From that we can further
locate the grain boundaries by sampling a local version (cf.
Fig. 9) of the two-dimensional orientational order parameter
S(r) = |〈exp(i2φ(r))〉|, where φ denotes the orientation angle
of the individual rods within a local environment around the
position r.

On the theory side, we employ classical DFT [63] for
hard discorectangles, as described in Appendix 3. In DFT, all
structural information is comprised within the number den-
sity ρ(r, φ) found by minimizing an appropriate functional
�[ρ]. This central quantity reflects the probability of finding
a particle with the center-of-mass position r and its long axis
oriented in a direction given by the angle φ. The typical den-
sity profiles, as displayed in the third row of Fig. 2, indicate
both the smectic layers by a color plot of the local density
(averaged over all orientations) and the director by green bars.
In the employed version of DFT [52,61] based on funda-
mental measure theory [64,65], the interactions are treated
on a microscopic level through the geometry of individual
particles, such that the density profiles reflect the particle
dimensions. As DFT is founded in statistical mechanics, no
additional averaging is required and the most stable state can
be identified among multiple solutions from the minimal value
of the corresponding free energy.

Furthermore, we study a recent phenomenological model
for smectic layering, based on an extension of Landau–de
Gennes theory to smectics, as described in Appendix 4. It
minimizes a total free energy J (u, Q) of the local density
perturbation u(r) for smectic phases and a tensorial order pa-
rameter Q(r) encoding the orientational order. As displayed in
the fourth row of Fig. 2, typical profiles of the smectic density
variation u exhibit maxima (light yellow) and minima (light
blue) which both can be interpreted as the smectic layers,
while the orientational director field (gray rods) corresponds
to the eigenvector of tensor Q with the largest eigenvalue. In
this smectic Q-tensor theory, the interactions are implicitly
described through a range of phenomenological parameters.
To connect to our other approaches, we consider two of these
parameters as free variables: the elasticity parameter K of the
director field and the anchoring parameter w, which indicates
the strength of tangential alignment of directors at the outer
wall. As the latter depends on curvature, the alignment at the
inner wall is accordingly weaker (see Appendix 4 for further
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FIG. 3. Illustrative overview of topological structures. The rows
show different realizations of generalized laminar (L, two +1/2
and four −1/2 charges), composite (C, one +1/2 and three −1/2
charges), and generalized Shubnikov (S, two −1/2 charges) states.
The first three rows display the structures with a continuous central
domain which is tilted by the angle α relative to the axis that connects
the two inclusion centers, as annotated (the definition of α is included
in the first illustration of the second row). The fourth row displays the
structures for α = π/2 with the central domain interrupted by a few
layers spanning between the two inclusions, which we refer to as
an inclusion tunnel. The illustrations depict the typical appearance
of these generalized states in the two-holed-disk geometry (where
we also speak of dual laminar and stretched Shubnikov states), but
the same general classification also holds for the double-annulus
geometry. Further details are provided in Sec. II C.

details). When choosing K = 0.5 and w = 5 (two-holed disk)
or K = 1 and w = 10 (double annulus) we find convincing
agreement with our other methods in Fig. 2.

C. Topological classification

The hard rods described in our particle-based approaches
favorably align parallel to the system walls. This exter-
nally imposed boundary condition competes with the intrinsic
smectic structure favoring defect-free, undeformed, parallel,
and equidistant layers. The resulting (stable or metastable)
equilibrium structures are thus governed by a balance be-
tween elastic deformations and topological defects. The type,
location, and shape of the emerging topological defects pro-
vide a convenient way to classify and distinguish between
the observed smectic states, as illustrated in Fig. 3 [58,61].
In smectics, we typically observe spatially extended grain

boundaries or virtual boundary defects (misalignment of rods
at the wall), whose orientational frustration can be quantified
by a topological charge Q in analogy to nematic disclina-
tions [58,59]. The Poincaré-Hopf theorem gives rise to a
fundamental law of charge conservation for two-dimensional
smectic structures: the total sum of topological charges∑

Q = χ in a confined system must equal the confining do-
main’s Euler characteristic χ . The two main types of grain
boundaries relevant in our study possess a Q = +1/2 or a
Q = −1/2 topological charge, associated with a clockwise
and counterclockwise rotation of the director field around the
defect, respectively. In both cases, the main rotation occurs
at the end points of the grain boundaries, which can then
be identified as point-like tetratic defects of quarter-integer
magnitude [58].

As a first step of our topological analysis, we focus on
the structural properties on the largest scale and ignore the
details in the region between the two inclusions. By doing so,
we can classify the overall smectic states in the same spirit
as in an annular geometry [61], i.e., by considering an effec-
tive geometry with Euler characteristic χeff = 0, obtained by
formally replacing the two inclusions with a single inclusion
given by their convex hull (indicated by the magenta shaded
areas in Fig. 1). Following the nomenclature of Ref. [61], we
classify solutions into (i) generalized laminar states, with two
Q = +1/2 defects close to the outer wall and two Q = −1/2
defects at the effective inclusion, (ii) generalized compos-
ite states, combining features of both (one Q = +1/2, one
Q = −1/2 defect and edge dislocations), or (iii) generalized
Shubnikov states, with no topological charges but edge dislo-
cations of the layers, as sketched in the different columns of
Fig. 3. Due to the particular appearance of these states in the
two-holed-disk geometry, we also speak of dual laminar and
stretched Shubnikov states in this case.

As a second step, we account for the broken continuous
rotational symmetry for a nonzero inclusion distance c > 0.
We introduce the tilt angle α ∈ [0, π/2] of the central domain
with respect to the axis that connects the two inclusion centers
(cf. the second row in Fig. 3) as an additional structural quan-
tifier. The rows of Fig. 3 depict the different states for α = 0
(layers parallel to the connecting axis), an intermediate value
of α, and α = π/2 (layers perpendicular to the connecting
axis).

The third step of our topological analysis concerns the
fine structure between the inclusions, i.e., the location and
shape of the two additional Q = −1/2 defects required by the
charge conservation to match the overall Euler characteristic
χ = −1 in the presence of two holes. In general, there are
two possibilities. First, the layers between the inclusions can
align with the adjacent layers outside to become part of a
larger domain, comparing the first three rows in Fig. 3. In
this case, the two Q = −1/2 defects are directly located at
the inclusions. Second, if α � π/4, it is also possible that
the two inclusions are connected by one or more isolated
smectic layers, such that the rods in the central region fulfill
the parallel wall anchoring condition. However, this inclusion
tunnel then interrupts the central domain (compare the last
row in Fig. 3), which results in two grain boundaries with
Q = −1/2, parallel to the line connecting the inclusions. Note
that for α � π/4, the anchoring condition can be fulfilled
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without forming an inclusion tunnel, i.e., when the layers
connecting the inclusions are part of the defect-free central
domain.

We comment that the stretched Shubnikov state in the
two-holed-disk geometry cannot be realized for small tilt
angles. When decreasing the tilt angle α of a structure be-
low α � π/4, the central domain eventually fulfills the first
criterion for an inclusion tunnel (layers connecting the inclu-
sions), comparing with the generalized laminar state in the
top-right illustration of Fig. 3 for α = 0. In turn, a general-
ized Shubnikov state is only possible if the second criterion
for an inclusion tunnel is also fulfilled, i.e., that there exists
a larger domain outside the convex hull of the inclusions
which has a tilt angle α � π/4 and is separated from the
inclusion tunnel by two grain boundaries, comparing with the
bottom-right illustration of Fig. 3 for α = π/2. Combining
these two structures, the composite state depicted in Fig. 3 for
α = 0 constitutes a particular example with two domains of
comparable size.

III. RESULTS

A. Two-holed disk

We focus first on the two-holed-disk geometry. As in the
annulus, the circular shape of the outer confining wall remains
invariant for all choices of the geometrical parameters b and
c, where an annular geometry is recovered for c = 0. To
quantify the emerging structures in full detail, we proceed
stepwise. First, in Sec. III A 1, we study the transition between
the generalized laminar and Shubnikov states, focusing only
on the smectic structures outside the convex hull of the two
inclusions. Then, we use these insights to explain our general
observations in experiments and Monte Carlo simulations in
Sec. III A 2 before quantifying the two structural aspects in-
dicated in Fig. 3. In particular, we study the tilt angle α of
the central smectic domain in Sec. III A 3 and investigate the
locations of the topological defects in the region between the
inclusions in Sec. III A 4.

1. Theoretical laminar-Shubnikov transition

We start by systematically mapping out a simple state
diagram using DFT, which gives us full control over the
structures we wish to compare. In particular, to understand
the general structural response upon varying both b and c,
we focus on (dual) laminar and (stretched) Shubnikov states,
as specified in Sec. II C. Moreover, we restrict ourselves to
(fairly) axially symmetric structures; i.e., we impose the two
extreme tilt angles α = 0 or α = π/2 in the laminar case and
just α = π/2 in the Shubnikov case.

Our results are compiled in Fig. 4. We find that the laminar
state is destabilized in favor of the Shubnikov state upon
increasing the inclusion size ratio b, as in the special case
c = 0 of an annulus [61]. The laminar state is also destabilized
upon increasing the spacing c between the inclusions for a
fixed value of b. This behavior matches expectations, since
the size of the effective inclusion increases when the two
inclusions have a larger distance, such that Shubnikov struc-
tures, characterized by layers spanning from the inclusions
to the outer wall, become generally more favorable. Since

FIG. 4. DFT state diagram in the two-holed-disk geometry in-
dicating the stable laminar (square symbols) or Shubnikov (round
symbols) states for different inclusion distance ratios c and inclusion
size ratios b. The data for c = 0, indicating the special case of
annular confinement, are taken from Ref. [61]. The color denotes
the relative free energy difference 	Frel := (F (L)

0 − F (S )
0 )/F0 be-

tween the optimal laminar (L) and Shubnikov (S ) states, where
F0 := min{F (L)

0 ,F (S )
0 } is the free energy of the overall optimal state.

For b = 0.3 and c = 1.4 the inclusions are in contact with the outer
wall, such that no Shubnikov state can exist. The snapshots in the bot-
tom panel depict four representative examples of optimal structures:
laminar structures with tilt angles α = 0 or α = π/2 (intermediate
values of α are examined below in Fig. 7) and Shubnikov structures
without and with an inclusion tunnel.

only the structure outside the convex hull of the inclusions is
relevant for this first part of our discussion, it is not important
whether or not the two inclusions are connected (topological
details arising from disconnected inclusions at c > 2b are
discussed in Sec. III A 4). However, we stress that, as soon
as c � 2 − 2b, the inclusions overlap with the outer confining
wall, such that it is no longer possible to fulfill the criterion to
identify a Shubnikov state (cf. the missing top-right state point
in Fig. 4). In these extreme cases, the confining geometry
is, once again, simply connected and only deformed variants
of a bridge state (laminar state without negatively charged
defects) [61] exist, which are not our main interest here. In
the trivial bounding cases c > 2 + 2b or b = 0 (not shown),
the confinement simply reduces to a disk.

In general, the laminar-Shubnikov transition is driven by
the tendency of the system to achieve an optimal balance
between satisfying the external constraints of the confining
geometry (since the rods preferably align parallel to the
wall) and maintaining the intrinsic smectic structure. This
results in a trade-off between deformations, as dominant in
the Shubnikov structures, and topological defects, governing
the laminar structures.

To better characterize this competition, we employ the
smectic Q-tensor theory to examine how the structural tran-
sitions can be induced by tuning the elastic behavior and the
strength of the tangential wall alignment, determined by the
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FIG. 5. State diagram from Q-tensor theory in the two-holed-
disk geometry for different values of the elastic parameter K and
the wall anchoring parameter w. The inclusion size ratio b = 0.2
and the inclusion distance ratio c = 0.6 are kept fixed. We dis-
tinguish between four different structures: laminar (L), composite
(C), and Shubnikov without (S) and with an inclusion tunnel (S∗).
The bottom panel depicts one representative snapshot for each case
(parameters according to the connected stars).

parameters K and w, respectively. To this end, we fix the
inclusion size ratio b = 0.2 and the inclusion distance ratio
c = 0.6, so as to take values close to the laminar-Shubnikov
transition predicted by DFT in Fig. 4. The state diagram from
Q-tensor theory in Fig. 5 confirms the expectation that Shub-
nikov states are stabilized upon imposing stronger anchoring
conditions (i.e., larger w) to minimize the number of defects.
In particular, the observed laminar states are typically charac-
terized by a single domain with the defects appearing through
a misalignment at the walls (as also frequently observed in
DFT). Moreover, we see that the laminar state is generally
stabilized upon increasing K and thus the bending rigidity of
the layers. For smaller values of K < 0.3, composite struc-
tures are also found and the laminar state becomes compatible
with strongly deformed layers. Such highly elastic behavior
is, however, rather atypical in the context of hard rods. These
results demonstrate a reassuring consistency between the DFT
and smectic Q-tensor results, even without extensive tuning of
the other parameters of the Q-tensor model.

Returning to microscopic DFT structures, we can make
more precise statements regarding the stability of the gen-
eralized laminar and Shubnikov states, by comparing the
examples shown at the bottom of Fig. 4. First of all, both the
number of layers in the central domain and their orientation
in the optimal laminar state (under the symmetry constraints
imposed so far) strongly depend on the geometrical param-
eters. This suggests that by allowing for different values of
the tilt angle α we should find states with an even smaller free
energy, which will be studied in Sec. III A 3. Second, and most

importantly, we notice for α = π/2 that the structural dif-
ferences between states classified as laminar or Shubnikov
become less pronounced upon increasing the inclusion dis-
tance c, due to the larger size of the central domain. This
intuitively explains the destabilization of the laminar state for
increasing c: the number of laminar layers between the inclu-
sions and outer wall decreases, which brings the two defects
closer to annihilation, while the extreme case of zero laminar
layers eventually corresponds to a Shubnikov structure. Third,
for b = 0.1, we even observe in Fig. 4 a particular example of
a reentrant stable laminar state at c = 1.4, in which the spac-
ing between the inclusions and outer wall allows for all layers
being parallel. Finally, we expect that, within a small range of
parameters, there exists a stable intermediate composite state
[61], as in the illustrations in the middle panel of Fig. 3.

2. General particle-based observations

In our colloidal experiments, we focus on a few selected
sets of geometrical parameters. Qualitatively inspecting our
snapshots for b ≈ 0.25 and 0.6 < c < 1.2, we arrive at the
following general picture. We predominantly observe the
Shubnikov state, in agreement with the DFT prediction. All of
these Shubnikov structures possess large tilt angles α > π/4
of the central domain. Recalling the discussion in Sec. II C,
such an alignment allows for a larger number of straight layers
in the central domain between the inclusions. Quite remark-
ably, however, only one of our 104 inspected structures depicts
a nearly laminar state (see the second snapshot in Fig. 6),
while only three of them can be clearly identified as composite
states. In all these cases, the laminar parts of the structure
possess a small tilt angle α < π/4. To quantify the tilt-angle
statistics, we measure in Fig. 6 the global orientational distri-
bution of all rods, averaged over all cavities with comparable
geometry. In accordance with the typical orientation α of the
central domain, we find that the most frequent angles are
close to π/2, where the exact location of this peak appears
to depend on the inclusion distance.

Overall, the suppression of the stability of laminar states,
upon increasing the distance between the inclusions, appears
to be even more pronounced in the experiments than predicted
theoretically in Fig. 4. This observation can be explained by
the typically lower number of parallel layers in the experiment
compared to the most stable DFT solution [61] in combination
with the preference of the rods to align in a central domain
at large tilt angles. To understand this, consider, for instance,
the experimental laminar structure depicted in Fig. 6 with
b = 0.25 and c = 1.0. Now imagine, instead, the inclusions
placed over the top and bottom grain boundary. This would
both reduce the defect region and classify the structure as a
Shubnikov state with a significantly increased tilt angle α,
intuitively explaining our predominant observations of large
tilt angles and Shubnikov structures.

Our Monte Carlo simulations of hard rods carried out
for b = 0.25 and c = 1.0 confirm the basic experimen-
tal observations that nearly all identified structures reflect
stretched Shubnikov states and that large tilt angles are fa-
vored. We depict the global orientational distribution and the
typical snapshot at the bottom right of Fig. 6. Moreover,
our particle-resolved simulations allow us to further explore
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FIG. 6. Global orientational distribution in the two-holed-disk
geometry for the inclusion size ratio b = 0.25. As illustrated at the
top right, the relative frequency of individual rod orientations (blue)
reflects the preferred tilt angle α of the layers (gray line) relative
to the axis that connects the two inclusions (dotted line) (see also
Fig. 3). We compare experimental data for different inclusion dis-
tance ratios c ≈ 0.8, c ≈ 1.0, and c ≈ 1.2, averaged over 21, 24,
and 15 available structures, respectively, and Monte Carlo data for
c = 1.0, sampled from 1800 independent simulation runs. For sym-
metry reasons we map orientations with α > π/2 onto π − α and
only consider 0 � α � π/2. The bottom panel depicts one particular
snapshot for each case, where the rods are colored according to their
orientation.

smaller inclusion sizes than those realized experimentally (not
shown). As expected from the discussion above, there is still a
high probability to observe Shubnikov structures for b = 0.1,
while the laminar state becomes dominant for b = 0.05.

3. Orientation of the central domain

Our experimental and Monte Carlo results suggest that the
assumption, made in Sec. III A 1 for DFT, of imposing smectic
structures with the same symmetry as the confining geometry
is not justified in general. While the orientational distribution
in Fig. 6 generally suggests that large tilt angles α > π/4 are
most likely, we also notice that the maximum is not always lo-
cated at the extreme value α = π/2. Even more so, we expect
that the geometrical constraints on laminar structures, arising
from the competition of the preferred layer spacing with both
the distance between the two inclusions and the distance from
each inclusion to the outer wall, can be efficiently relaxed by
aligning the central domain along characteristic tilt angles. A
first evidence for this prediction stems from the DFT results
in Fig. 4, where the tilt angle of the optimal laminar structure
(given the constraint to either α = 0 or α = π/2) strongly
depends on the particular geometry (contrast the two depicted
laminar structures).

FIG. 7. Energy landscape for different structures depending on
the tilt angle α of the central domain in the two-holed-disk geometry
for the inclusion size ratio b = 0.25 and the inclusion distance ratio
c = 1.0. According to the legend, we compare different laminar DFT
structures Lab, where the indices a and b denote the number of layers
in the central domain and perpendicular to it, respectively, and sev-
eral minimizers of the energy functional from Q-tensor theory with
K = 1 and w = 5. Exemplary snapshots are shown in the bottom
panel. As only the energy difference is relevant for the stability, the
vertical axis depicts the rescaled difference to the global minimum
(indicated by the dotted line), calculated separately for DFT and
Q-tensor results in arbitrary units. Since the minima for large angles
α are generally deeper, it is more likely to find such structures,
consistent with the observation in Fig. 6.

To learn more about the preferred tilt angle, we com-
pare in Fig. 7 the energy of different states as a function of
α for a fixed geometry with b = 0.25 and c = 1.0. In the
smectic Q-tensor theory, we only find solutions with large
tilt angles α > 0.4π for the intrinsic parameters K = 1 and
w = 5, which demonstrates the instability of structures with
smaller α under these conditions. The corresponding free en-
ergy decreases with increasing tilt angle, such that the global
minimum is found for α � 0.5π , which is in principal agree-
ment with the statistics from experiment and Monte Carlo
simulation.

To systematically study the tilt-angle dependence in DFT,
we restrict ourselves to laminar states. We choose three rep-
resentative template structures with well-defined numbers of
layers both in the central domain and perpendicular to it (cf.
the example structures shown at the bottom of Fig. 7). By
doing so, all structures generated by imposing different tilt
angles remain comparable among each other. For the param-
eters b = 0.25 and c = 1.0, we find that structures with two
layers interrupted by each inclusion are generally favorable.
We further focus in each case on three typical ranges of the
tilt angle, such that there are (with increasing α) three, two, or
one laminar layers between one inclusion and the outer wall,
respectively. These values of α depend on whether the central
point of the geometry is occupied by a layer (central domain
with nine layers in total) or by the void space in between
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two layers (central domain with eight layers in total). The
corresponding free energy landscapes shown in Fig. 7 reveal
that the most stable structures correspond to the minima in
the range of tilt angles with the largest values. This reflects
the intuition that the two inclusions are preferably located
close to (or even on) the edge of the central domain and
not in its center, such that the extent of deformations of the
central smectic layers is reduced. The existence of distinct
local free energy minima in Fig. 7 explains the nonmonotonic
and geometry-dependent experimental distributions in Fig. 6.

4. Fine structure between the inclusions

Having understood the large-scale layering behavior of the
central domain, we now investigate the structure inside the
convex hull of the inclusions in more detail. For c > 2b,
the two inclusions are disconnected and we anticipate two
additional (compared to a single or two overlapping inclu-
sions) topological defects with a negative charge. As generally
described in Sec. II C, there are two possible scenarios, related
to how the smectic layers between the inclusions align. The
first possibility, which has been silently implied so far when
discussing our large-scale results in the previous sections, is
that the central domain and the layers between the inclusions
align with each other (compare the first three rows of Fig. 3).
To be more specific, we can conclude that the layers’ need
to fill the space between the inclusions in an entropically
convenient way is probably one of the main driving forces that
determines the geometry-dependent tilt angle of the central
domain as a whole.

The second possibility of alignment between the inclusions
is an inclusion tunnel (compare the last row of Fig. 3). This
structure is defined by one or more smectic layers spanning
between the two inclusions, irrespective of the orientation of
the central domain. The driving force behind the formation
of an inclusion tunnel is the adherence to the preferred wall
alignment which comes at the cost of a larger grain boundary
within the system. This is nicely reflected by additionally
differentiating in the state diagram from Q-tensor theory, as
in Fig. 5, between Shubnikov states with and without an
inclusion tunnel. It is apparent from the state diagram that
structures with an inclusion tunnel stabilize upon increas-
ing the anchoring parameter w and decreasing the elastic
parameter K .

In our DFT study, we find that structures with the central
domain interrupted by an inclusion tunnel are almost always
less stable than comparable ones with a continuous central
domain, for both laminar and Shubnikov structures alike. The
fact that the central domain tends to tilt renders such an inclu-
sion tunnel even less favorable due to the general preference of
hard rods to meet at a grain boundary with nearly perpendicu-
lar orientations, instead of an oblique alignment. An inclusion
tunnel only becomes energetically favorable for extremely
small distances between the surfaces of the two inclusions,
of about one rod length or less, as, e.g., for b = 0.25 and
c = 0.6 (compare the fourth structure shown at the bottom of
Fig. 4).

In practice, however, it is much more likely to observe
these inclusion tunnels as a result of the equilibration proto-
col. More specifically, in our experiments and Monte Carlo

FIG. 8. Relative frequencies of structures with an inclusion tun-
nel (cf. the second row in Fig. 3) in the two-holed-disk geometry
for the inclusion size ratio b = 0.25. We compare experimental data
(green bars) for different inclusion distance ratios c ≈ 0.6, c ≈ 0.8,
c ≈ 1.0, and c ≈ 1.2, averaged over 44, 21, 24, and 15 available
structures, respectively, and Monte Carlo data (black crosses) av-
eraged over 20 simulations for each selected c. The dotted line
serves as a guide to the eye, illustrating how the fraction of inclusion
tunnels decreases with increasing inclusion distance. Regarding the
occurrence of structures with inclusion tunnel in DFT and Q-tensor
theory, please refer to the bottom-right snapshot in Fig. 4 and the
state diagram in Fig. 5, respectively.

simulations, the growth of an inclusion tunnel can be trig-
gered by small domains aligning with the inclusion at an
early stage. Hence, such structures are observed with a no-
ticeable probability, even for relatively large c, as verified in
Fig. 8.

B. Double annulus

We have seen in Sec. III A that the inclusion distance ratio
c and, therefore, the minimal distance from the inclusions to
the outer wall is an important criterion which determines the
globally observed state in the two-holed-disk geometry. The
smectic structure between the inclusions then largely follows
the alignment of the central domain, while inclusion tunnels
are only rarely observed.

Now we focus on the double-annulus geometry, illustrated
at the bottom of Fig. 1, for which a larger range b < c < 2 of
inclusion distance ratios c can be examined without changing
the Euler characteristic χ = −1. Since the shortest distance
from any point on the outer wall to one of the inclusions
remains the same for all c, the smectic structure in the two
annular arcs is largely determined by the inclusion size ratio
b alone and can thus be well understood by taking cues from
the state diagram in annular confinement [61]. This gives us
a better control of how the central smectic layers in the inter-
section region of the two annular halves respond to changes
of the inclusion distance compared to the single circular outer
wall of the two-holed-disk geometry. We are thus primarily
interested in the question of how the structure between the
two inclusions of the double annulus is determined by the
geometrical parameters b and c, as we focus on inclusion size
ratios b � 0.25 which predominantly give rise to generalized
Shubnikov structures in the annular arcs.

Our state diagram, compiled from experiments and
particle-resolved Monte Carlo simulations, is shown in the
left panel of Fig. 9. Both methods consistently predict three
different types of structures, shown in the right-hand panel.
First, for relatively large and nearby inclusions, we typically
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FIG. 9. Structures in the double-annulus geometry for different inclusion size ratios b and inclusion distance ratios c. While we generally
observe layering of the Shubnikov type in the annular arcs for the parameters considered, we distinguish three states by the layer arrangement
in the intersection region: inclusion tunnel (red), double-Shubnikov state (yellow), and diagonal tunnel (blue). Left: State diagram indicating
the relative frequencies of the three structures between the two inclusions. The experimental and Monte Carlo results are represented by pie
charts and background pixels with proportional color mixing, respectively. For c � 2b no rods fit in between the inclusions and there is no
distinction (black pixels). Right: Observed structures for three pairs of b and c corresponding to the state points indicated by the arrows. We
depict experimental snapshots (top), solution profiles of the Q-tensor model with for K = 1.0 and w = 10 (middle), and the orientational order
parameter S(r) averaged over 103 independent Monte Carlo simulation runs per parameter pair, revealing the typical location of the topological
defects through the darker shades (bottom).

observe an inclusion tunnel, similar to the two-holed-disk
geometry (cf. Sec. III A 4). Second, for relatively small and
distant inclusions, we typically observe a structure with a
large central domain of vertical layers, which is similar to
the α = π/2 alignment in the two-holed-disk geometry (cf.
Sec. III A 3). As mentioned in the previous paragraph this
extreme tilt angle is favored here due to the broken rotational
symmetry and the nonconvex shape of the outer wall. We refer
to such a structure as the double Shubnikov state, as there are
no grain boundaries (the two Q = −1/2 defects are mostly
due to misalignment at the inclusions). Third, for relatively
large and distant inclusions, we typically observe a structure
which is characterized by both a large tilted central domain
and grain boundaries. The tilt angle is again roughly set by the
geometry, such that the orientation of the rods follows an in-
finity symbol. This diagonal-tunnel state possesses no analog
in the two-holed-disk geometry. To corroborate these observa-
tions, we also evaluated our Q-tensor theory for representative
pairs of parameters and found consistent minimizers, shown
in the right-hand panel of Fig. 9. Moreover, the exemplary
double-Shubnikov structures shown in Fig. 3 using all four
methods are in close agreement.

To further highlight the topological distinction between the
three different structures observed in the double-annulus ge-
ometry, we additionally show in the right-hand panel of Fig. 9
Monte Carlo results for the local order parameter field S(r),
sampled as an average from 103 independent simulation runs.
Due to the averaging, we obtain in each case a characteristic
pattern, which possesses the same symmetry as the confine-
ment. The inclusion tunnel is characterized by its orthogonal
alignment relative to the nearby layers and therefore a large
degree of orientational frustration between the inclusions. In
the double Shubnikov state, the region between the inclusion

largely aligns with the central domain and the orientational
frustration is manifest only close to the inclusions (usually
due to small domains of a few rods). Finally, for the diagonal
tunnel, it is clearly visible that the grain boundaries are located
at the edges of the central crossing of the annular arcs.

IV. SUMMARY AND CONCLUSIONS

In this work, we investigate smectic states, confined to
complex geometries, illustrated in Fig. 1, with two circular
inclusions (interior boundaries) by means of colloidal experi-
ments, Monte Carlo simulations, DFT, and smectic Q-tensor
theory. Our four approaches consistently predict the main
structural features, as exemplified in Fig. 2. All observed and
expected structures are compiled in Fig. 3.

For large inclusions (or strong wall anchoring), the layers
arrange into a generalized Shubnikov state, characterized by
an overall perpendicular alignment of layers (or parallel align-
ment of rod-like particles) at the outer wall, which minimizes
the number of topological defects. This is observed in both the
two-holed-disk geometry [see the circular data points in Fig. 4
and the bottom-right and central regions (both shades of blue)
in Fig. 5], where a stretched Shubnikov state also stabilizes for
increasing inclusion distance, and the double-annulus geome-
try (see all data in Fig. 9). On the contrary, for small inclusions
(or weak wall anchoring), the layers arrange into a generalized
laminar state characterized by two Q = −1/2 defects at either
of the two inclusions and two Q = +1/2 defects close to the
outer wall. This is explicitly observed in the two-holed-disk
geometry [see the quadratic data points in Fig. 4 and the
leftmost region (yellow) in Fig. 5] but we expect the same
upon further decreasing the inclusion size the double-annulus
geometry.
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If the two inclusions are sufficiently close to each other,
we observe an inclusion tunnel in both the two-holed-disk
geometry (see the bottom-right structure in Fig. 4, dark blue
color in Fig. 5 and the statistics in Fig. 8) and the double-
annulus geometry (see the data with red color in Fig. 9). This
structure forms an isolated domain between the two inclusions
and two grain boundaries, irrespective of the global state.
More distant inclusions allow for the layers to align in a larger
central domain at the cost of misalignment at the inclusions.
In fact, in the two-holed-disk geometry, this relative alignment
of the central layers to the axis connecting the two inclusions
is characterized by large tilt angles α � π/2 (see Figs. 6 and
7). In the double-annulus geometry, we further distinguish
between two cases (identified here for generalized Shubnikov
states). The double Shubnikov structure possesses a large cen-
tral domain which extends over all four ends of the geometry’s
central junction at a fixed tilt angle α ≈ π/2 (see the data
with yellow color in Fig. 9), while for even larger inclusion
distances, we observe a diagonal tunnel, characterized by two
grain boundaries at two opposing ends of the central junction
and a tilt angle 0 < α < π/2 dictated by the geometry (see
the data with yellow color in Fig. 9).

Our study represents a first step towards the study of liquid
crystals confined to topologically highly complex environ-
ments such as random porous media [66–69] or arrays of
obstacles [68]. Our complementary approaches can, in prin-
ciple, be applied to any kind of confinement [24,58,70,71].
This applies in particular also to systems in three dimensions
to which our experimental, computational, and theoretical
methods, as well as our topological concepts, can be gen-
eralized [48,51,59]. Another generalization is to proceed
towards more complex particle shapes and interactions such
as hard polygons [69,72], and nonconvex [73–77] or chiral
particles [60,78–84]. Finally it bears mentioning that many
bacteria have rod-like shapes [85–88] and are living on two-
dimensional substrates, where they can be easily be put in
confinement [89,90]. Bacterial colonies can approach high
densities, where smectic layering is expected [91–93], such
that our work may have important consequences for the struc-
ture in dense biofilms.

One compelling open question concerns the existence of
similar structures and the applicability of our topological
methods for smectic phases of molecular liquid crystals, a
central aspect of experimental liquid crystal research [32–41].
While our hard-rod model is specifically designed to mimic
our colloidal experiments, the analogous observations by
means of Q-tensor theory leave us optimistic that this gap can
be bridged in future work on molecular systems. Regarding
the topological analysis, it might prove fruitful to focus on
the smectic layers [55,56] instead of the orientational director
when studying molecular liquid crystals, for which it is no
longer possible to achieve a particle resolution.
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APPENDIX: DETAILS ON THE METHODS

1. Experiment

The experimental methods follow from our previous work
[43,61]. In short, home-synthesized silica rods [94] suspended
in a 1-mM NaCl water solution form sedimentation-diffusion
equilibrium into a cylinder-shaped reservoir glued to a glass
coverslip (see Fig. 1(a) in Ref. [61]). Confinement cavities, as
shown in the first row of Fig. 2, are printed on the coverslip
using polydimethylsiloxane (PDMS) mold and Norland Op-
tical Adhesive glue. PDMS molds are made using a standard
soft lithography technique.

Particles have average effective length of 5.3 µm, aspect
ratio of 10.6, and gravitational length of 0.8 µm. After in-
sertion they start forming a concentration gradient along the
direction of gravity. At the bottom, inside the cavities, we
successively observe the formation of isotropic, nematic, and
finally smectic phases. The total amount of particles is chosen
such that there is no crystalline state. The smectic structures
are left to equilibrate for at least 12 hours.

Experimental snapshots capture the rods in direct vicinity
of the bottom wall of the cavity which, paired with gravity,
imposes a quasi-two-dimensional confinement. We record im-
ages by means of confocal microscopy with a Zeiss LSM
Exciter 5 microscope and a 63× Zeiss Plan Apo Chromat
objective. We collect scattered light to form images as this
batch of rods is not fluorescent.

A custom PYTHON script is used to segment single rods and
detect position and orientation (a Wolfram Mathematica script
is already available [61]). The specific PYTHON script used
to process the snapshots of Fig. 6 is provided along with an
experimental snapshot as Supplemental Material [95].

2. Monte Carlo simulations

With the help of canonical Monte Carlo simulations we
generate equilibrium states for liquid crystals composed of
hard rods at bulk smectic area fraction η2 = 0.725. The rods
are modeled as discorectangles with aspect ratio p = L/D =
16.5, where L denotes the length and D the width of the
particles. The kth rod is parametrized by a line segment
ak = rk + αkûk , with position rk , normalized orientation ûk ,
and |αk| < L/2. All points within the area of the rod are
characterized by {x ∈ R2|‖x − ak‖ � D/2} such that the stan-
dard hard-core repulsion between a pair of rods i, j can be
defined by

U (ri, r j, ûi, û j ) =
{∞ for di, j � D

0 for di, j > D,
(A1)

033135-10



COLLOIDAL SMECTICS IN BUTTON-LIKE … PHYSICAL REVIEW RESEARCH 5, 033135 (2023)

where

di, j = min
|α,β|< L

2

‖ri + αûi − (r j + βû j )‖ (A2)

corresponds to the smallest distance between the opposing
line segments [96].

The interaction of the rods with the walls is modeled
by considering the rods as three virtual point particles at
rk + γ ûk , γ ∈ {−L/2, 0, L/2}. The wall potential reads as

V (x) =
{
(x0) + ′(x0)(x − x0) for x � x0

(x) for x0 > x.
(A3)

Here, |x| denotes the minimal perpendicular distance from
either of the two points to the wall and x > 0 corresponds to
the inside of the cavity. The cutoff point, below which V (x)
is linear, is chosen as x0 = 0.5D. For (x), we choose the
standard 12-6-Weeks-Chandler-Andersen potential [97]

(x) =
{

4ε
[(

D
x

)12 − (
D
x

)6] + ε for x � 2
1
6 D

0 for x > 2
1
6 D,

(A4)

with ε = 10kBT , with the Boltzmann constant kB and temper-
ature T . The potential landscapes to model the two-holed-disk
and double-annulus geometries can be expressed as combina-
tions of circular well and obstacles. The outer radius of the
cavity is chosen as Rout = 6L.

To obtain the equilibrated configurations, we initialize the
system at a dilute area fraction η0 = 0.01. We subsequently
compress the system, by rescaling the cavity, at a compression
rate of 	η1 = 3.50 × 10−7 per Monte-Carlo cycle to an in-
termediate area fraction just below the bulk isotropic-nematic
phase transition. In a second stage, we compress the system
with 	η1 = 7.33 × 10−8 per Monte-Carlo cycle to the final
area fraction η2 = 0.725. The area fraction is given by the
fraction of the sum of the individual volumes of the rods,
Vrod, to the total volume of the cavity, Vcav. Since the final
area fraction and the final volume are fixed variables, by the
geometric parameters b, c (see Fig. 1) and Rout in terms of the
particle size, the particle number N remains a free parameter
that is determined at the start of the simulation via the relation

η = NVrod

Vcav
= N

Vcav

(
πD2

4
+ DL

)
. (A5)

The typical values for N we investigate are on the scale of
several thousand. Typical snapshots in the two geometries are
shown in the second row of Fig. 2.

3. Density functional theory

Classical density functional theory (DFT) [63] allows us
to predict the structure of anisotropic fluids in an external
potential Vext(r, φ) by calculating the equilibrium density pro-
file ρ(r, φ) from a variational principle, where r denotes the
center-of-mass position and φ the particle orientation. This is
achieved by minimizing the grand potential functional

�[ρ] = F[ρ] +
∫

dr
∫ 2π

0

dφ

2π
ρ(r, φ)(Vext(r, φ) − μ) (A6)

at given chemical potential μ by iterating the Euler-Lagrange
equation δ�[ρ]/δρ(r, φ) = 0, where F[ρ] is the intrinsic
Helmholtz free energy functional. The solution density profile

ρ(r, φ) for a given initial guess is given by a local minimum of
the grand potential �. Here, we minimize under the constraint
of a fixed total particle number

∫
dr

∫ 2π

0
dφ

2π
ρ(r, φ), to obtain

local minima of the Helmholtz free energy F .
For an explicit calculation, we need to specify the

Helmholtz free energy functional F[ρ] = Fid[ρ] + Fex[ρ],
which is conveniently split into an exactly known ideal part,

βFid[ρ] =
∫

dr
∫ 2π

0

dφ

2π
ρ(r, φ)(ln(ρ(r, φ)�2) − 1), (A7)

and an excess part Fex[ρ]. The irrelevant thermal wavelength
� is set to unity; the inverse temperature β := (kBT )−1 is just
a scaling factor. The excess free energy is based on fundamen-
tal measure theory [64,65,98] for anisotropic hard particles in
two dimensions [52,61], expressing the functional Fex[ρ] as a
function of weighted densities:

nν (r) =
∫

dr1

∫ 2π

0

dφ

2π
ρ(r1, φ) ω(ν)(r − r1, φ). (A8)

These are calculated by convolution of the density and the
scalar, vectorial, or tensorial one-body measures ω(ν)(r, φ),
which describe the geometry of the hard particles. The explicit
expression for Fex[ρ] makes use of a truncated and corrected
expansion up to rank-two tensors (see Ref. [61] for further
details).

In this study we focus on hard discorectangles with rect-
angular length L and circular diameter D at fixed aspect ratio
p = L/D = 10. Throughout the paper, we consider structures
with fixed area fraction η = 0.65, as defined in Eq. (A5).
Typical density profiles in the two geometries are shown in
the third row of Fig. 2, which displays the dimensionless total
density,

ρ̄(r) :=
(

LD + D2π

4

)∫ 2π

0

dφ

2π
ρ(r, φ), (A9)

through a color coding and the local orientational director field
(representing the locally preferred value of φ) through green
arrows.

All structures are calculated by free minimization of the
density functional on a spatial grid with resolution 	x =
	y = 0.2 and Nφ = 96 orientational angles. Laminar struc-
tures are typically initialized by cutting out the inclusions
from equilibrium structures in circular confinement. Then
we can also smoothly change the inclusion size ratio b
and/or the inclusion distance ratio c to different target values,
while continuously minimizing the functional. To examine
the stability of an inclusion tunnel, appropriate structures are
superimposed and subsequently minimized for comparison.
To generate comparable structures with different tilt angles for
Fig. 7, we also start from two specific structures in circular
confinement, possessing eight or nine parallel layers in the
central domain. Then we cut out the two inclusions at typical
angles α at which a regular layer structure is maintained and
smoothly rotate the inclusions towards other target tilt angles,
while continuously minimizing the functional. Shubnikov
structures are initialized either by superimposing a perpen-
dicular domain aligning with the inclusions on equilibrium
laminar structures with α = π/2 or from a random structure
with circular orientational director [61]. After minimization of
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multiple structures for a given set of parameters, we compare
the values of the free energy F[ρ] to determine the most stable
state with minimal free energy.

4. Smectic Q-tensor theory

It is also possible to adapt continuum models to investi-
gate the qualitative behavior of smectics. Recently, Ref. [48]
proposed a new continuum model, solving for a real-valued
smectic order parameter u, indicating the local density vari-
ation, and a tensor-valued nematic order parameter Q. A
detailed discussion about deriving the continuum model can
be found in Ref. [99].

Specifically, we use the two-dimensional version of the Q-
tensor model from Ref. [48] with the volumetric free energy:

Jv(u, Q) =
∫

�

(
fs(u) + B

∣∣∣∣D2u + q2

(
Q + I2

2

)
u

∣∣∣∣
2

+ fn(Q,∇Q)

)
, (A10)

where

fs(u) := a1

2
u2 + a2

3
u3 + a3

4
u4, (A11)

and

fn(Q,∇Q) := K

2
|∇Q|2 − l (tr(Q2)) + l (tr(Q2))2. (A12)

Here, K is the nematic elastic constant, l represents the ne-
matic bulk parameter, I2 is the 2 × 2 identity matrix, and a1,
a2, a3, B, and q are given real parameters. We fix a1 = −5,
a2 = 0, a3 = 5, B = 10−5, q = 30, and l = 2, similar to the
choice in Ref. [48]. In Eq. (A10), D2 denotes the Hessian op-
erator, so that the associated Euler-Lagrange equation for u is
a fourth-order partial differential equation. One can intuitively
understand the free energy functional J as a combination of
three contributions: the smectic bulk energy fs, the coupling
effect (B term) between the nematic director and smectic
layers, and the nematic elastic and bulk energies fn.

In extreme confinement, we cannot expect the hard rods to
perfectly satisfy tangential wall anchoring, as represented by
Dirichlet boundary conditions. Therefore, we weakly impose
tangential boundary conditions on both inner boundaries (de-
noted as �1 and �2) and outer boundary �outer by means of
Rapini-Papoular surface anchoring. To this end, an additional

anchoring energy is added to Eq. (A10), leading to the follow-
ing total energy:

J (u, Q) =Jv(u, Q) + w

2

( ∫
�outer

|Q − Qouter|2

+ ar

(∫
�1

|Q − Q1|2 +
∫

�2

|Q − Q2|2
))

(A13)

with the prescribed tangential configurations given by

Qouter =
⎡
⎣ y2

x2+y2 − 1
2 − xy

x2+y2

− xy
x2+y2

x2

x2+y2 − 1
2

⎤
⎦, (A14)

Q1 =
⎡
⎣ y2

(x−c/2)2+y2 − 1
2 − (x−c/2)y

(x−c/2)2+y2

− (x−c/2)y
(x−c/2)2+y2

(x−0.3)2

(x−c/2)2+y2 − 1
2

⎤
⎦, (A15)

Q2 =
⎡
⎣ y2

(x+c/2)2+y2 − 1
2 − (x+c/2)y

(x+c/2)2+y2

− (x+c/2)y
(x+c/2)2+y2

(x+c/2)2

(x+c/2)2+y2 − 1
2

⎤
⎦. (A16)

Here, c is the inclusion distance ratio as defined in Fig. 1, w

denotes the anchoring weight with larger values representing
stronger anchoring, and ar accounts for the expected curvature
dependence of surface anchoring. Specifically, the choice of
ar indicates different anchoring strength w on the outer and
arw on the inner boundaries, which can affect the resulting
final minimizer with the lowest energy. Accordingly, we have
verified that a slightly weaker anchoring strength, ar < 1, on
the inner boundary gives a better consistency with experimen-
tal results for the two-holed disk problem. Therefore, we take
ar = 0.7 throughout the paper, except for Fig. 5, where the
focus lies on illustrating the laminar-Shubnikov transitions
using the same anchoring strength variation on both bound-
aries for each w-continuation step and thus ar = 1 is taken for
simplicity.

Due to the nonconvexity of J , there typically exist mul-
tiple local minimizers. In our work we employ the deflation
technique to discover them [100]; in all figures, we plot the
minimizer with lowest energy found for different input pa-
rameters K and w (specified accordingly in the paper) of
the energy functional in Eq. (A13). More details about the
model and associated numerical methods can be found in
Refs. [48,101] and in Chaps. 8–10 of Ref. [99]. Typical so-
lution profiles in the two geometries are shown in the fourth
row of Fig. 2.

[1] P.-G. De Gennes and J. Prost, The Physics of Liquid Crys-
tals, International Series of Monographs on Physics Vol. 83
(Oxford University Press, Oxford, UK, 1993).

[2] O. D. Lavrentovich, Topological defects in dispersed words
and worlds around liquid crystals, or liquid crystal drops, Liq.
Cryst. 24, 117 (1998).

[3] O. J. Dammone, I. Zacharoudiou, R. P. A. Dullens, J. M.
Yeomans, M. P. Lettinga, and D. G. A. L. Aarts, Confinement
Induced Splay-to-Bend Transition of Colloidal Rods, Phys.
Rev. Lett. 109, 108303 (2012).

[4] O. V. Manyuhina, K. B. Lawlor, M. C. Marchetti, and M. J.
Bowick, Viral nematics in confined geometries, Soft Matter
11, 6099 (2015).

[5] I. C. Gârlea, P. Mulder, J. Alvarado, O. J. Dammone,
D. G. A. L. Aarts, M. P. Lettinga, G. H. Koenderink, and B. M.
Mulder, Finite particle size drives defect-mediated domain
structures in strongly confined colloidal liquid crystals, Nat.
Commun. 7, 12112 (2016).

[6] L. Tran, M. O. Lavrentovich, D. A. Beller, N. Li, K. J. Stebe,
and R. D. Kamien, Lassoing saddle splay and the geometrical

033135-12

https://doi.org/10.1080/026782998207640
https://doi.org/10.1103/PhysRevLett.109.108303
https://doi.org/10.1039/C5SM00670H
https://doi.org/10.1038/ncomms12112


COLLOIDAL SMECTICS IN BUTTON-LIKE … PHYSICAL REVIEW RESEARCH 5, 033135 (2023)

control of topological defects, Proc. Natl. Acad. Sci. USA 113,
7106 (2016).

[7] Y. Han, A. Majumdar, and L. Zhang, A reduced study for ne-
matic equilibria on two-dimensional polygons, SIAM J. Appl.
Math. 80, 1678 (2020).

[8] X. Yao and J. Z. Y. Chen, Rodlike molecules in extreme
confinement, Phys. Rev. E 101, 062706 (2020).

[9] X. Yao, L. Zhang, and J. Z. Y. Chen, Defect patterns of two-
dimensional nematic liquid crystals in confinement, Phys. Rev.
E 105, 044704 (2022).

[10] K. Sentker, A. W. Zantop, M. Lippmann, T. Hofmann, O. H.
Seeck, A. V. Kityk, A. Yildirim, A. Schönhals, M. G. Mazza,
and P. Huber, Quantized Self-Assembly of Discotic Rings in
a Liquid Crystal Confined in Nanopores, Phys. Rev. Lett. 120,
067801 (2018).

[11] R. Ienaga, K. Beppu, and Y. T. Maeda, Geometric confine-
ment guides topological defect pairings and emergent flow in
nematic cell populations, Soft Matter 19, 5016 (2023).

[12] X.-Q. Shi and Y.-Q. Ma, Topological structure dynamics re-
vealing collective evolution in active nematics, Nat. Commun.
4, 3013 (2013).

[13] F. C. Keber, E. Loiseau, T. Sanchez, S. J. DeCamp, L. Giomi,
M. J. Bowick, M. C. Marchetti, Z. Dogic, and A. R. Bausch,
Topology and dynamics of active nematic vesicles, Science
345, 1135 (2014).

[14] S. J. DeCamp, G. S. Redner, A. Baskaran, M. F. Hagan, and Z.
Dogic, Orientational order of motile defects in active nematics,
Nat. Mater. 14, 1110 (2015).

[15] L. Giomi, Geometry and Topology of Turbulence in Active
Nematics, Phys. Rev. X 5, 031003 (2015).

[16] A. J. Tan, E. Roberts, S. A. Smith, U. A. Olvera, J. Arteaga, S.
Fortini, K. A. Mitchell, and L. S. Hirst, Topological chaos in
active nematics, Nat. Phys. 15, 1033 (2019).

[17] T. N. Shendruk, A. Doostmohammadi, K. Thijssen, and J. M.
Yeomans, Dancing disclinations in confined active nematics,
Soft Matter 13, 3853 (2017).

[18] J. Hardoüin, C. Doré, J. Laurent, T. Lopez-Leon, J. Ignés-
Mullol, and F. Sagués, Active boundary layers in confined
active nematics, Nat. Commun. 13, 6675 (2022).

[19] Z.-F. Huang, H. Löwen, and A. Voigt, Defect dynamics in
active smectics induced by confining geometry and topology,
Commun. Phys. 5, 294 (2022).

[20] N. D. Mermin, The topological theory of defects in ordered
media, Rev. Mod. Phys. 51, 591 (1979).

[21] G. Tóth, C. Denniston, and J. M. Yeomans, Hydrodynamics
of Topological Defects in Nematic Liquid Crystals, Phys. Rev.
Lett. 88, 105504 (2002).

[22] R. A. Mosna, D. A. Beller, and R. D. Kamien, Breaking the
rules for topological defects: Smectic order on conical sub-
strates, Phys. Rev. E 86, 011707 (2012).

[23] G. P. Alexander, B. G.-g. Chen, E. A. Matsumoto, and R. D.
Kamien, Colloquium: Disclination loops, point defects, and
all that in nematic liquid crystals, Rev. Mod. Phys. 84, 497
(2012).

[24] Y.-K. Kim, S. V. Shiyanovskii, and O. D. Lavrentovich, Mor-
phogenesis of defects and tactoids during isotropic nematic
phase transition in self-assembled lyotropic chromonic liquid
crystals, J. Phys.: Condens. Matter 25, 404202 (2013).

[25] A. J. Vromans and L. Giomi, Orientational properties of ne-
matic disclinations, Soft Matter 12, 6490 (2016).

[26] X. Tang and J. V. Selinger, Orientation of topological defects
in 2D nematic liquid crystals, Soft Matter 13, 5481 (2017).

[27] T. Guin, M. J. Settle, B. A. Kowalski, A. D. Auguste, R. V.
Beblo, G. W. Reich, and T. J. White, Layered liquid crystal
elastomer actuators, Nat. Commun. 9, 2531 (2018).

[28] D. B. Liarte, M. Bierbaum, R. A. Mosna, R. D. Kamien,
and J. P. Sethna, Weirdest Martensite: Smectic Liquid Crystal
Microstructure and Weyl-Poincaré Invariance, Phys. Rev. Lett.
116, 147802 (2016).

[29] L. Radzihovsky, Quantum Smectic Gauge Theory, Phys. Rev.
Lett. 125, 267601 (2020).

[30] J. Paget, U. Alberti, M. G. Mazza, A. J. Archer, and T. N.
Shendruk, Smectic layering: Landau theory for a complex-
tensor order parameter, J. Phys. A: Math. Theor. 55, 354001
(2022).

[31] B. Zappone and E. Lacaze, One-dimensional patterns and
topological defects in smectic liquid crystal films, Liq. Cryst.
Rev. 1 (2022).

[32] S.-P. Do, A. Missaoui, A. Coati, D. Coursault, H. Jeridi, A.
Resta, N. Goubet, M. M. Wojcik, A. Choux, S. Royer, E.
Briand, B. Donnio, J. L. Gallani, B. Pansu, E. Lhuillier, Y.
Garreau, D. Babonneau, M. Goldmann, D. Constantin, B.
Gallas et al., From chains to monolayers: Nanoparticle assem-
bly driven by smectic topological defects, Nano Lett. 20, 1598
(2020).

[33] B. Zappone, A. E. Mamuk, I. Gryn, V. Arima, A. Zizzari,
R. Bartolino, E. Lacaze, and R. Petschek, Analogy between
periodic patterns in thin smectic liquid crystal films and the
intermediate state of superconductors, Proc. Natl. Acad. Sci.
USA 117, 17643 (2020).

[34] M. A. Gharbi, I. B. Liu, Y. Luo, F. Serra, N. D. Bade,
H.-N. Kim, Y. Xia, R. D. Kamien, S. Yang, and K. J. Stebe,
Smectic gardening on curved landscapes, Langmuir 31, 11135
(2015).

[35] F. Serra, M. A. Gharbi, Y. Luo, I. B. Liu, N. D. Bade, R. D.
Kamien, S. Yang, and K. J. Stebe, Curvature-driven, one-step
assembly of reconfigurable smectic liquid crystal “compound
eye” lenses, Adv. Opt. Mater. 3, 1287 (2015).

[36] J. Jeong and M. W. Kim, Confinement-Induced Transition of
Topological Defects in Smectic Liquid Crystals: From a Point
to a Line and Pearls, Phys. Rev. Lett. 108, 207802 (2012).

[37] R. S. Preusse, E. R. George, S. A. Aghvami, T. M. Otchy,
and M. A. Gharbi, Hierarchical assembly of smectic liquid
crystal defects at undulated interfaces, Soft Matter 16, 8352
(2020).

[38] M. A. Gharbi, D. A. Beller, N. Sharifi-Mood, R. Gupta, R. D.
Kamien, S. Yang, and K. J. Stebe, Elastocapillary driven as-
sembly of particles at free-standing smectic-A films, Langmuir
34, 2006 (2018).

[39] T. Lopez-Leon and A. Fernandez-Nieves, Drops and shells of
liquid crystal, Colloid Polym. Sci. 289, 345 (2011).

[40] S. M. Hare, B. Lunsford-Poe, M. Kim, and F. Serra, Chiral
liquid crystal lenses confined in microchannels, Materials 13,
3761 (2020).

[41] M.-J. Gim, D. A. Beller, and D. K. Yoon, Morphogenesis of
liquid crystal topological defects during the nematic-smectic a
phase transition, Nat. Commun. 8, 15453 (2017).

[42] A. Kuijk, D. V. Byelov, A. V. Petukhov, A. Van Blaaderen,
and A. Imhof, Phase behavior of colloidal silica rods, Faraday
Discuss. 159, 181 (2012).

033135-13

https://doi.org/10.1073/pnas.1602703113
https://doi.org/10.1137/19M1293156
https://doi.org/10.1103/PhysRevE.101.062706
https://doi.org/10.1103/PhysRevE.105.044704
https://doi.org/10.1103/PhysRevLett.120.067801
https://doi.org/10.1039/D3SM00071K
https://doi.org/10.1038/ncomms4013
https://doi.org/10.1126/science.1254784
https://doi.org/10.1038/nmat4387
https://doi.org/10.1103/PhysRevX.5.031003
https://doi.org/10.1038/s41567-019-0600-y
https://doi.org/10.1039/C6SM02310J
https://doi.org/10.1038/s41467-022-34336-z
https://doi.org/10.1038/s42005-022-01064-1
https://doi.org/10.1103/RevModPhys.51.591
https://doi.org/10.1103/PhysRevLett.88.105504
https://doi.org/10.1103/PhysRevE.86.011707
https://doi.org/10.1103/RevModPhys.84.497
https://doi.org/10.1088/0953-8984/25/40/404202
https://doi.org/10.1039/C6SM01146B
https://doi.org/10.1039/C7SM01195D
https://doi.org/10.1038/s41467-018-04911-4
https://doi.org/10.1103/PhysRevLett.116.147802
https://doi.org/10.1103/PhysRevLett.125.267601
https://doi.org/10.1088/1751-8121/ac80df
https://doi.org/10.1080/21680396.2022.2076748
https://doi.org/10.1021/acs.nanolett.9b04347
https://doi.org/10.1073/pnas.2000849117
https://doi.org/10.1021/acs.langmuir.5b02508
https://doi.org/10.1002/adom.201500153
https://doi.org/10.1103/PhysRevLett.108.207802
https://doi.org/10.1039/D0SM01112F
https://doi.org/10.1021/acs.langmuir.7b03351
https://doi.org/10.1007/s00396-010-2367-7
https://doi.org/10.3390/ma13173761
https://doi.org/10.1038/ncomms15453
https://doi.org/10.1039/c2fd20084h


RENÉ WITTMANN et al. PHYSICAL REVIEW RESEARCH 5, 033135 (2023)

[43] L. B. G. Cortes, Y. Gao, R. P. A. Dullens, and D. G. A. L.
Aarts, Colloidal liquid crystals in square confinement:
Isotropic, nematic and smectic phases, J. Phys.: Condens.
Matter 29, 064003 (2017).

[44] M. González-Pinto, F. Borondo, Y. Martínez-Ratón, and E.
Velasco, Clustering in vibrated monolayers of granular rods,
Soft Matter 13, 2571 (2017).

[45] A. Díaz-De Armas, M. Maza-Cuello, Y. Martínez-Ratón, and
E. Velasco, Domain walls in vertically vibrated monolayers
of cylinders confined in annuli, Phys. Rev. Res. 2, 033436
(2020).

[46] M. Y. Pevnyi, J. V. Selinger, and T. J. Sluckin, Modeling
smectic layers in confined geometries: Order parameter and
defects, Phys. Rev. E 90, 032507 (2014).

[47] J. M. Ball and S. J. Bedford, Discontinuous order parame-
ters in liquid crystal theories, Mol. Cryst. Liq. Cryst. 612, 1
(2015).

[48] J. Xia, S. MacLachlan, T. J. Atherton, and P. E. Farrell, Struc-
tural Landscapes in Geometrically Frustrated Smectics, Phys.
Rev. Lett. 126, 177801 (2021).

[49] J. Paget, M. G. Mazza, A. J. Archer, and T. N. Shendruk,
Complex-tensor theory of simple smectics, Nat. Commun. 14,
1048 (2023).

[50] R. Wittmann, M. Marechal, and K. Mecke, Fundamental mea-
sure theory for smectic phases: Scaling behavior and higher
order terms, J. Chem. Phys. 141, 064103 (2014).

[51] R. Wittmann, M. Marechal, and K. Mecke, Fundamental mea-
sure theory for non-spherical hard particles: Predicting liquid
crystal properties from the particle shape, J. Phys.: Condens.
Matter 28, 244003 (2016).

[52] R. Wittmann, C. E. Sitta, F. Smallenburg, and H. Löwen,
Phase diagram of two-dimensional hard rods from fundamen-
tal mixed measure density functional theory, J. Chem. Phys.
147, 134908 (2017).

[53] B. G.-g. Chen, G. P. Alexander, and R. D. Kamien, Symmetry
breaking in smectics and surface models of their singularities,
Proc. Natl. Acad. Sci. USA 106, 15577 (2009).

[54] R. D. Kamien and R. A. Mosna, The topology of dislocations
in smectic liquid crystals, New J. Phys. 18, 053012 (2016).

[55] H. Aharoni, T. Machon, and R. D. Kamien, Composite Dis-
locations in Smectic Liquid Crystals, Phys. Rev. Lett. 118,
257801 (2017).

[56] T. Machon, H. Aharoni, Y. Hu, and R. D. Kamien, Aspects
of defect topology in smectic liquid crystals, Commun. Math.
Phys. 372, 525 (2019).

[57] R. E. Webster, N. J. Mottram, and D. J. Cleaver, Molecular
simulation of chevrons in confined smectic liquid crystals,
Phys. Rev. E 68, 021706 (2003).

[58] P. A. Monderkamp, R. Wittmann, L. B. G. Cortes, D. G. A. L.
Aarts, F. Smallenburg, and H. Löwen, Topology of Orienta-
tional Defects in Confined Smectic Liquid Crystals, Phys. Rev.
Lett. 127, 198001 (2021).

[59] P. A. Monderkamp, R. Wittmann, M. te Vrugt, A. Voigt,
R. Wittkowski, and H. Löwen, Topological fine structure of
smectic grain boundaries and tetratic disclination lines within
three-dimensional smectic liquid crystals, Phys. Chem. Chem.
Phys. 24, 15691 (2022).

[60] P. A. Monderkamp, R. S. Windisch, R. Wittmann, and H.
Löwen, Network topology of interlocked chiral particles,
J. Chem. Phys. 158, 164505 (2023).

[61] R. Wittmann, L. B. G. Cortes, H. Löwen, and D. G. A. L.
Aarts, Particle-resolved topological defects of smectic col-
loidal liquid crystals in extreme confinement, Nat. Commun.
12, 623 (2021).

[62] P. G. de Gennes, An analogy between superconductors and
smectics A, Solid State Commun. 10, 753 (1972).

[63] R. Evans, The nature of the liquid-vapour interface and other
topics in the statistical mechanics of non-uniform, classical
fluids, Adv. Phys. 28, 143 (1979).

[64] Y. Rosenfeld, Free-Energy Model for the Inhomogeneous
Hard-Sphere Fluid Mixture and Density-Functional Theory of
Freezing, Phys. Rev. Lett. 63, 980 (1989).

[65] R. Roth, Fundamental measure theory for hard-sphere mix-
tures: A review, J. Phys.: Condens. Matter 22, 063102 (2010).

[66] R. Guégan, D. Morineau, C. Loverdo, W. Béziel, and M.
Guendouz, Evidence of anisotropic quenched disorder effects
on a smectic liquid crystal confined in porous silicon, Phys.
Rev. E 73, 011707 (2006).

[67] C. Scholz, F. Wirner, J. Götz, U. Rüde, G. E. Schröder-Turk,
K. Mecke, and C. Bechinger, Permeability of Porous Materials
Determined from the Euler Characteristic, Phys. Rev. Lett.
109, 264504 (2012).

[68] K. Chen, O. J. Gebhardt, R. Devendra, G. Drazer, R. D.
Kamien, D. H. Reich, and R. L. Leheny, Colloidal transport
within nematic liquid crystals with arrays of obstacles, Soft
Matter 14, 83 (2018).

[69] C. Avendaño, G. Jackson, E. A. Müller, and F. A. Escobedo,
Assembly of porous smectic structures formed from interlock-
ing high-symmetry planar nanorings, Proc. Natl. Acad. Sci.
USA 113, 9699 (2016).

[70] T. Geigenfeind, S. Rosenzweig, M. Schmidt, and D. de las
Heras, Confinement of two-dimensional rods in slit pores and
square cavities, J. Chem. Phys. 142, 174701 (2015).

[71] I. C. Gârlea, O. Dammone, J. Alvarado, V. Notenboom, Y.
Jia, G. H. Koenderink, D. G. A. L. Aarts, M. P. Lettinga, and
B. M. Mulder, Colloidal liquid crystals confined to synthetic
tactoids, Sci. Rep. 9, 20391 (2019).

[72] A. P. Gantapara, W. Qi, and M. Dijkstra, A novel chiral phase
of achiral hard triangles and an entropy-driven demixing of
enantiomers, Soft Matter 11, 8684 (2015).

[73] C. J. Hernandez and T. G. Mason, Colloidal alphabet soup:
Monodisperse dispersions of shape-designed lithoparticles,
J. Phys. Chem. C 111, 4477 (2007).

[74] T. Niori, T. Sekine, J. Watanabe, T. Furukawa, and H. Takezoe,
Distinct ferroelectric smectic liquid crystals consisting of
banana shaped achiral molecules, J. Mater. Chem. 6, 1231
(1996).

[75] G. Heppke, D. Parghi, and H. Sawade, Novel sulphur-
containing banana-shaped liquid crystal molecules, Liq. Cryst.
27, 313 (2000).

[76] T. J. Dingemans and E. T. Samulski, Non-linear boomerang-
shaped liquid crystals derived from 2,5-bis(p-hydroxyphenyl)-
1,3,4-oxadiazole, Liq. Cryst. 27, 131 (2000).

[77] M. B. Ros, J. L. Serrano, M. R. de La Fuente, and C. L.
Folcia, Banana-shaped liquid crystals: A new field to explore,
J. Mater. Chem. 15, 5093 (2005).

[78] R. D. Kamien and J. V. Selinger, Order and frustration in chiral
liquid crystals, J. Phys.: Condens. Matter 13, R1 (2001).

[79] A. B. Harris, R. D. Kamien, and T. C. Lubensky, Microscopic
Origin of Cholesteric Pitch, Phys. Rev. Lett. 78, 1476 (1997).

033135-14

https://doi.org/10.1088/1361-648X/29/6/064003
https://doi.org/10.1039/C7SM00102A
https://doi.org/10.1103/PhysRevResearch.2.033436
https://doi.org/10.1103/PhysRevE.90.032507
https://doi.org/10.1080/15421406.2015.1030571
https://doi.org/10.1103/PhysRevLett.126.177801
https://doi.org/10.1038/s41467-023-36506-z
https://doi.org/10.1063/1.4891326
https://doi.org/10.1088/0953-8984/28/24/244003
https://doi.org/10.1063/1.4996131
https://doi.org/10.1073/pnas.0905242106
https://doi.org/10.1088/1367-2630/18/5/053012
https://doi.org/10.1103/PhysRevLett.118.257801
https://doi.org/10.1007/s00220-019-03366-y
https://doi.org/10.1103/PhysRevE.68.021706
https://doi.org/10.1103/PhysRevLett.127.198001
https://doi.org/10.1039/D2CP00060A
https://doi.org/10.1063/5.0143417
https://doi.org/10.1038/s41467-020-20842-5
https://doi.org/10.1016/0038-1098(72)90186-X
https://doi.org/10.1080/00018737900101365
https://doi.org/10.1103/PhysRevLett.63.980
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1103/PhysRevE.73.011707
https://doi.org/10.1103/PhysRevLett.109.264504
https://doi.org/10.1039/C7SM01681F
https://doi.org/10.1073/pnas.1604717113
https://doi.org/10.1063/1.4919307
https://doi.org/10.1038/s41598-019-56729-9
https://doi.org/10.1039/C5SM01762A
https://doi.org/10.1021/jp0672095
https://doi.org/10.1039/jm9960601231
https://doi.org/10.1080/026782900202750
https://doi.org/10.1080/026782900203308
https://doi.org/10.1039/b504384k
https://doi.org/10.1088/0953-8984/13/3/201
https://doi.org/10.1103/PhysRevLett.78.1476


COLLOIDAL SMECTICS IN BUTTON-LIKE … PHYSICAL REVIEW RESEARCH 5, 033135 (2023)

[80] A. B. Harris, R. D. Kamien, and T. C. Lubensky, Molecular
chirality and chiral parameters, Rev. Mod. Phys. 71, 1745
(1999).

[81] J. Pollard, G. Posnjak, S. Čopar, I. Muševič, and G. P.
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