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ABSTRACT
We investigate variants of the Asakura–Oosawa (AO) model for colloid-polymer mixtures, represented by hard classical particles interacting
via their excluded volume. The interaction between the polymers is neglected but the colloid-polymer and colloid-colloid interactions are
present and can be condensed into an effective depletion interaction among the colloids alone. The original AO model involves hard spherical
particles in three spatial dimensions with colloidal radii R and the so-called depletion radius δ of the polymers, such that the minimum possible
center-to-center distance between polymers and colloids allowed by the excluded-volume constraints is R + δ. It is common knowledge among
physicists that there are only pairwise effective depletion interactions between the colloids if the geometric condition δ/R < 2/

√
3 − 1 is

fulfilled. In this case, triplet and higher-order many body interactions are vanishing and the equilibrium statistics of the binary mixture can
exactly be mapped onto that of an effective one-component system with the effective depletion pair-potential. Here we rigorously prove that
the criterion δ/R < 2/

√
3 − 1 is both sufficient and necessary to guarantee the absence of triplet and higher-order many body interactions

among the colloids. For an external hard wall confining the system, we also include a criterion which guarantees that the system can be
exactly mapped onto one with effective external one-body interactions. Our general formulation also accounts for polydisperse mixtures and
anisotropic shapes of colloids in any spatial dimension. In those cases where the resulting condition is only sufficient, we further demonstrate
how to specify improved bounds.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0125536

I. INTRODUCTION
Mixtures of classical particles establish not only important model systems of statistical mechanics1–13 but are also used to a large extent to

describe colloidal and colloid–polymer mixtures.14–22 One of the most famous models is that originally proposed by Asakura and Oosawa.23–26

This Asakura–Oosawa (AO) model, which is also called Asakura–Oosawa–Vrij model,27 involves a binary mixture of a big particle species
of radius R, representing the colloids, and a small one, representing the polymers (or depletants), which interact solely by excluded volumes.
In detail, the minimal distance that the centers of two colloids can approach is given by 2R, where R > 0 is the particle radius. Therefore,
the colloids are often in common physical terms referred to as hard spheres. The polymers are ideal, i.e., they do not interact among each
other. However, the interaction between the colloids and the polymers is characterized by an additional nonzero depletion radius δ > 0 of the
polymers, which ensures that the minimal distance that the centers of a colloid and a polymer particle can approach is given by R + δ. Or, in
other words, around the big colloids there is a spherical excluded volume region which is depleted by small polymers as their probability to
stay there is zero.
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FIG. 1. Schematic of colloids modeled as large hard spheres (blue) of radius R, Eq. (2.1), in the presence of polymers (or depletants), modeled as ideal point particles (green
dots), Eq. (2.2), with a depletion radius δ such that the centers of the depletants are excluded from the depletion shells (gray) of radius R + δ around each colloid, Eq. (2.3).
For the purpose of illustration, we draw a dashed green depletion circle around one depletant which is at the smallest possible distance to a colloid. The free volume for
the centers of the polymers can be increased when the depletion shells of the colloids intersect (an overlap of the hard cores of the colloids is forbidden). Here we highlight
the regions of pair overlap (yellow) and triple overlap (red) of the depletion shells and the points of pair overlap (red circles) and triple overlap (red cross) of their surfaces
for different configurations and depletion radii δ. (a) Pairwise intersection of two depletion shells. The volume of the overlap region gives rise to the effective depletion pair
potential Veff

cc (r) between the colloids, given by Eqs. (2.4) and (2.5). (b) Triple intersection of three depletion shells. The corresponding effective depletion triplet potential
is not exactly known. (c) Critical configuration with three spheres at mutual contact and maximal depletion radius δ = δcr, such that the depletion shells overlap in a single
point. The value of δcr can be easily inferred from the drawn equilateral triangle T (red) and leads to the condition (2.6) for the absence of triplet interactions, such that the
description of the colloid–colloid interaction by Veff

cc (r) becomes exact.

The AO model constitutes a paradigm for coarse-graining a binary mixture towards an effective one-component system by integrating
out the degrees of freedom of the small particles.28,29 This culminates by the important concept of depletion attraction between the colloids
as induced by the osmotic pressure of the non-adsorbing polymer coils (the small particles).14,15 For a pair of colloidal particles this effective
depletion attraction can be calculated analytically and equals the overlap volume of the two spherical depletion regions around the colloids
times the osmotic polymer pressure. Taking the inverse route, this coarse-graining scheme also allows to efficiently treat pairwise attractions
in a one-component system by evaluating a (usually more accurate) theory for mixtures.30,31 Moreover, an AO mixture in contact with a
planar external hard wall can be mapped on a one-component system with additional effective one-body external interactions, as previously
considered for wetting and layering situations.32–38 Also several generalized depletion scenarios involving polydisperse mixtures or anisotropic
shapes of the depleted colloids have been investigated.39–46

The most remarkable aspect of the AO model that has been established in the physics literature28,47–49 is that for δ/R < 2/
√

3 − 1 the
depletion zones of any statistically possible configuration of the spherical colloids never possess a triple (or higher order) overlap. This implies
that the effective triplet and higher-order effective interactions between the colloids50–55 do vanish when integrating out the polymers. This
important statistical feature shows that there exists an exact mapping onto an effective one-component system of colloids which then only
interact via effective depletion pair-interactions if the depletion zone is sufficiently small. Hence the full AO system can be effectively viewed
as a pairwise system interacting via the hard-core repulsion of the colloids plus attractive tail potential defined by the depletion interaction
due to the presence of “polymers.” For these systems, standard liquid state theory can be applied to obtain static correlation functions and
equilibrium phase transitions.56

Despite the fundamental importance of depletion interactions in physics, a rigorous proof of the heuristic arguments for the absence
of effective higher-order interactions has been missing so far. A mathematical proof should not only confirm the physical intuition, but it
often generalizes the known results and more importantly, it sometimes even stimulates new methods and research questions (as, e.g., in
the celebrated proof of Kepler’s conjecture on the optimal hard-sphere packing57), or it helps to uncover loopholes (as, e.g., in the case of
quasicrystals58).

The aim of this paper is fivefold. First, we prove that the geometric criterion δ/R < 2/
√

3 − 1 for the absence of effective triplet inter-
actions in the standard AO model with identical and spherical colloids is indeed both necessary and sufficient in a strict mathematical
sense, by explicitly taking into account all possible configurations. Second, we prove the equally intuitive, but less well known geomet-
ric criterion δ/R < 1/4 for the absence of effective external pair interactions for an AO mixture in contact with a planar external hard
wall. Third, we elaborate how to establish according criteria for more general AO-type systems, where the basic question of an exact
mapping onto a pure pairwise model was not yet much addressed in the literature. To this end, our necessary and sufficient criteria
are formulated to also account for polydisperse colloids with different radii in arbitrary spatial dimensions, while we also prove related
conditions that are sufficient for non-spherical colloids. Fourth, we discuss in detail whether or not our criteria are optimal for general
particle shapes and demonstrate that our developed mathematical toolbox can be used to devise improved implicit bounds. Fifth, by dis-
cussing all rigorous results once more in physical terms, we provide an encyclopedia for the various depletion problems covered by our
criteria.
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This paper is structured as follows. In Sec. II we introduce the AO model in physical terms and briefly state the conditions for the
absence of triplet depletion interactions known in the physics literature. In Sec. III we switch to a mathematical language and state our main
theorems, providing a rigorous and generalized set of conditions for the absence of triplet depletion interactions. The proof of these theorems
is completed in Sec. IV by making contact with the historical Apollonius problem and Descartes’ circle theorem. Finally, in Sec. V, we restate
the implications of our main theorem in physical terms and make some concluding remarks.

II. THE ASAKURA–OOSAWA (AO) MODEL
In its original version, the Asakura-Oosawa (AO) model for colloid–polymer mixtures is defined for monodisperse spherical colloids in

three spatial dimensions, modeled as perfectly hard particles and ideal (i.e., non-interacting) polymers, also called depletants, see Fig. 1 for an
illustration of the fundamental aspects. The hard-core colloid–colloid interaction is given by the pair potential

Vcc(r) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if r ≥ 2R
∞ if r < 2R,

(2.1)

where r is the distance between two colloid centers. The colloidal interaction radius R > 0 sets a typical length scale, such that there is no
geometric overlap between the two spheres for r < 2R. The infinite pair potential implies a vanishing Boltzmann factor exp(−Vcc(r)/(kBT)),
where kB is the Boltzmann constant and T denotes the temperature, in the classical partition sum so that the statistical weight is zero for any
overlapping configuration of these hard spheres. In other words, the particles will not overlap. The polymer–polymer interaction potential

Vpp(r) = 0, (2.2)

corresponds to a vanishing interaction radius, which means that the polymers are treated as point particles. The essential cross-interaction
between the colloids and polymers is pairwise and given by the hard-core pair interaction potential

Vcp(r) = Vpc(r) =
⎧⎪⎪
⎨
⎪⎪⎩

0 if r ≥ R + δ
∞ if r < R + δ

(2.3)

with r now denoting the distance between a colloid and polymer center. This interaction introduces the radius δ > 0 of the depletion shell,
which is the minimal distance a polymer can approach the spherical surface of the colloid. The case δ = 0 corresponds to an ordinary mixture
without any depletion interactions.

The crucial idea behind the AO model is that one can integrate out the degrees of freedom associated with the polymer coordinates
and then consider an effective colloid–colloid interaction. This depletion interaction reflects the increase in the free volume accessible to
the polymer centers, which is the overall system volume minus the total depletion zone arising from all colloidal particles in the system, if
the depletion shells of nearby colloids overlap. Considering the lens-shaped overlap region of two spherical depletion shells in three spatial
dimensions, as illustrated in Fig. 1(a), it can be shown exactly that the effective depletion pair potential between two colloids with center-to-
center distance r reads

Veff
cc (r) = Vcc(r) + Vdep

cc (r) (2.4)

with the negative contribution

Vdep
cc (r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

−Pp
4π(R + δ)3

3
(1 −

3r
4(R + δ)

+
r3

16(R + δ)3 ) if 2R ≤ r ≤ 2R + 2δ

0 else
(2.5)

due to depletion if two colloids are sufficiently close such that their depletion shells overlap. The strength of this depletion interaction depends
on the osmotic pressure Pp = kBTρp of the polymers at density ρp.

For a triplet configuration of spheres, as shown in Fig. 1(b), the essential point is how exactly the individual depletion shells, which are
inaccessible for the polymers, overlap. If there is a region of triple intersection of three depletion shells, then the volume of the overall depletion
zone cannot be calculated from the individual depletion shells and their pair overlaps alone. In the language of statistical mechanics56 this
implies that effective many-body interaction between the colloids are arising in addition to the effective pair potential Veff

cc (r). In turn, if for
any configuration of three and more colloids there exists no point where all of their depletion shells do intersect, then triplet and higher
many-body interactions do vanish. This reduces the condition for the absence of triplet interactions to a pure geometric overlap problem. In
the special situation of monodisperse hard spheres of the same radius R, as considered so far, the geometric criterion for the depletion radius
reads28,47–49

δ
R
<

2
√

3
− 1, (2.6)
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so that a triple overlap of the depletion shells is excluded for any configuration of three spheres. It can be inferred from the configuration,
shown in Fig. 1(c), where the three spheres are at mutual contact. Moreover, if the spheres are at contact with a hard planar external wall, the
criterion for the absence of pairwise depletion interactions between the colloids and the wall reads33,49

δ
R
<

1
4

. (2.7)

The importance of the bound from Eq. (2.6), which implies the condition in Eq. (2.7), stems from the exactness of the AO model,
i.e., describing the colloidal degrees of freedom only by the pairwise effective depletion potential, Eq. (2.4), if δ is below the given
threshold.

This basic AO model for monodisperse hard spheres can be generalized towards hard hyperspheres (balls) in arbitrary spatial dimensions
n ∈ N in a straightforward manner by taking for r the Euclidean distance in arbitrary dimensions. Moreover, it can be generalized to arbitrarily
shaped hard colloidal bodies in the following way: if – for a given configuration of colloids – the volumes of the two bodies overlap, the pair
potential Vcc is formally infinite so that overlap is excluded. The polymer–colloid interaction is infinity if the polymer center is closer than
the depletion distance δ to at least one point of the colloidal surfaces. In three spatial dimensions, this generalization includes polydisperse
colloidal hard spheres with different radii Ri and therefore also a planar hard wall in the limit where one of these radii diverges. It also includes
nonspherical shapes, both convex and nonconvex.

We are particularly interested in the following questions. Why is the arrangement of three hard spheres depicted in Fig. 1(c) the critical
one, which gives rise to the upper bound for the depletion radius stated in Eq. (2.6)? What is the critical configuration if we consider mixtures
with different radii? How must Eq. (2.6) be generalized in such a case, or in general, for arbitrary mixtures of different hard bodies with an
anisotropic shape? To answer these questions in a mathematically rigorous way, we extend the problem and consider an arbitrary but fixed
arrangement of three balls, for which we seek the maximal shell radius δmax, such that the triple overlap of the depletion shells is exactly in
one point, which implies the general condition δ < δmax. As illustrated in Fig. 2, the definition of δmax depends on the configuration. In what
follows, we define δmax in a formal way and analyze its configurational dependence in mathematical terms to determine its minimal value
among all possible configurations, which provides both generalized conditions for the absence of triplet interactions and a rigorous proof
thereof.

FIG. 2. Illustration of how to determine the maximal depletion radius δmax > 0 around three balls with different radii Ri , such that there is no triple intersection for δ < δmax. We
show a projection of five representative configurations onto a plane containing the triangle T (red) whose corners are centers of the balls (more details are given in Fig. 3).
The balls can thus be treated as two-dimensional disks. Top panel: location of the single point p of triple intersection (red cross) of the depletion zones (gray) of the three
disks (blue) with total radii Ri + δmax, compare Proposition 4.1. Bottom panel: (segments of) solution circles of the related Apollonius problem, posed in the specific form to
find a circle (dark blue) that is externally tangent to the three given circles (light blue) which are mutually externally tangent. Internally tangent solution circles (dark green)
have no relevance for the depletion problem. The center of a solution circle represents the point p (and its radius δ∗ = δmax equals the maximal depletion radius) if and only
if it is located inside the triangle T (red) and the circle is externally tangent, compare Proposition 4.1. These circles are drawn with solid lines, all other solutions with dashed
lines. The columns depict a representative scenario with (a) one externally tangent solution circle with center inside T ; (b) two externally tangent solutions, exactly one circle
has its center inside T ; (c) no externally tangent solutions; (d) one externally tangent solution circle with center outside T ; (e) two externally tangent solution circles with
both centers outside T .

J. Math. Phys. 64, 103301 (2023); doi: 10.1063/5.0125536 64, 103301-4

Published under an exclusive license by AIP Publishing

 27 O
ctober 2023 11:53:56

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

III. CONDITIONS FOR THE ABSENCE OF TRIPLET INTERACTIONS
Our main mathematical result is a sufficient condition for the absence of triple overlap of dilated versions of non-overlapping convex

bodies in Rn with n ≥ 2. By “non-overlapping” we mean that the interiors of the convex bodies are disjoint; contact in boundary points is
allowed. Given δ > 0 and C ⊂ Rn, consider the dilated set (often called outer parallel body) given by

C(δ) = {r ∈ Rn : dist(r, C) ≤ δ}, (3.1)

where the distance of a point to a set is defined in terms of the Euclidean distance ∣ ⋅ ∣ as dist(r, C) = infy∈C∣y − r∣.
The sufficient condition for absence of triple overlap involves a bound on the rolling radius of the (non-dilated) sets. A closed convex

set C has positive rolling radius if a ball can roll freely inside C along the boundary, i.e., if for some radius r > 0 and all y ∈ ∂C there exists a
closed ball B(x, r) with y ∈ B(x, r) ⊂ C. The rolling radius Roll(C) is the supremum of the possible radii r > 0. If no ball with radius r > 0 can
roll freely inside C, we assign Roll(C) = 0.

Remark 3.1. When ∂C is a C2 surface, Blaschke’s rolling theorems59 (see also Ref. 60 for extensions and additional references) show that
the rolling radius is the minimum of the inverse of the principal curvatures. When smoothness of the boundary ∂C is not assumed, curvature
in convex geometry can be defined in terms of curvature measures. Bounded curvature is replaced with absolute continuity of the curvature
measure with respect to a surface measure and the condition that the Radon-Nikodym derivative is finite; a relation with strictly positive
rolling radius can be established in this general context as well.61–63

Theorem 3.2. Fix n ≥ 2 and κ ≥ 3. Let Ci, i = 1, 2, . . . , κ be compact convex subsets of Rn with disjoint interiors. Suppose that they have
positive rolling radii Roll(Ci) > 0 and that

δ < (
2
√

3
− 1) min

i=1,...,κ
Roll(Ci). (3.2)

Then the intersection of the dilated sets is empty:⋂κ
i=1 Ci(δ) = ∅. If instead

δ ≤ (
2
√

3
− 1) min

i=1,...,κ
Roll(Ci) (3.3)

then the intersection has empty interior and zero Lebesgue measure: vol(⋂κ
i=1 Ci(δ)) = 0.

Theorem 3.2 is complemented at the end of this section by a result when one of the Ci’s is a half-plane (“hard wall”), see Theorem 3.11.
In the situation of condition (3.3) we shall say that there is no overlap or that there is no triplet (or higher-order) interaction. This is because

effective interactions are given by volumes of intersections and may vanish even if the intersection is non-empty, e.g., when it consists of a
single point.

Theorem 3.2 is a consequence of the following theorem on triple overlap of dilation of closed balls, which also provides a necessary
criterion in this special case.

Theorem 3.3. Fix n ≥ 2 and R > 0. The following two conditions are equivalent:

(i) δ > 0 and R > 0 satisfy

δ < (
2
√

3
− 1)R. (3.4)

(ii) For all closed balls B(ri, Ri) ⊂ Rn, i = 1, 2, 3 with Ri > 0 and centers ri ∈ Rn that have disjoint interiors and satisfy min(R1, R2, R3) ≥ R,
the dilated balls B(ri, Ri + δ) have empty triple intersection.

Before we address the Proof of Theorem 3.3, let us show how Theorem 3.2 follows. In fact, it is enough to know the implication (i)⇒ (ii)
from Theorem 3.3 for balls that have the same radius R.

Proof of Theorem 3.2. Consider first triple intersection, κ = 3. We show that if the triple overlap is non-empty, then the condition on δ is
violated. Thus, suppose that there exists a point r ∈ Rn that is in the triple intersection of the dilations Ci(δ), i = 1, 2, 3. Let pi be the projection
of r onto Ci, i.e., the uniquely defined point pi ∈ Ci with ∣r − pi∣ = dist(r, Ci) ≤ δ. Set Rmin ∶= mini=1,2,3 Roll(Ci). If r is in none of the interiors of
the Ci’s, then pi ∈ ∂Ci and the definition of the rolling radius guarantees the existence of three balls B(xi, Rmin) such that pi ∈ B(xi, Rmin) ⊂ Ci

for i = 1, 2, 3. The three balls of radius Rmin have disjoint interiors and the triple intersection ∩3
i=1B(xi, Rmin + δ) is non-empty as it contains r.

Theorem 3.3 with Ri = Rmin implies that δ ≥ (2/
√

3 − 1)Rmin.
Now suppose r is in the interior of one of the Ci’s, say C1. By the disjointness of the interiors of the sets Ci, the point r is not in the interior

of C2 or C3, and we can define the projections pi ∈ ∂Ci for i = 2, 3 and the associated balls Bi = B(xi, Rmin), i = 2, 3 as before.
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We claim that there is also a closed ball B′1 ⊂ C1 of radius Rmin that contains r. To see why, consider the set of all balls that contain r and
are contained in C1, and among them let B(x1, R) be a ball of maximum possible radius. Then B(x1, R) touches the boundary ∂C1 in at least
one point p1. Working with the boundary point p1 and the definition of the rolling radius one sees that R must be larger or equal to the rolling
radius R1 of C1, hence R ≥ R1 ≥ Rmin. In particular, there exists a ball B′1 ⊂ B(x1, R) ⊂ C1 of radius Rmin with r ∈ B′1.

The balls B′1, B2, B3 have disjoint interiors and their δ-dilations contain r, we conclude again with Theorem 3.3 applied to Ri = Rmin that
δ ≥ (2/

√
3 − 1)Rmin. This completes the proof of empty intersection for κ = 3. The claim for κ ≥ 3 follows right away since the intersection

⋂
κ
i=1 Ci(δ) is contained in the triple intersection⋂3

i=1 Ci(δ).
For the second part of the theorem the only case left to investigate is when δ is equal to the right-hand side of condition (3.3). A continuity

argument shows that the convex set ∩κ
i=1Ci(δ) has empty interior: the interior consists of those points y ∈ Rn that have distance strictly smaller

than δ to each of the sets Ci. Every such point is in the intersection ∩κ
i=1Ci(δ′) for some δ′ < δ. As the latter intersection is empty by the part

of the theorem already proven, no such point exists and the interior is empty. The only way for a convex set to have empty interior is that the
convex set is contained in some affine hyperplane, in which case the measure is zero. ◻

Remark 3.4. A close look at the proof reveals that convexity and compactness are not essential for Theorem 3.2: If, for some radius
R > 0, each Ci has the property that every point p ∈ Ci is contained in a ball of radius R that lies entirely in Ci [for convex bodies, this implies
R ≤ mini=1, . . . ,κRoll(Ci)], and δ satisfies condition (3.4) for this R, then the dilated bodies Ci(δ) have empty intersection.

The bound in Theorem 3.2 can be improved for some compact convex sets with nonempty interior, specifically for the case of convex
polyhedra with Roll(Ci) = 0.

Proposition 3.5. Fix n ≥ 2 and κ ≥ 3. Let Ci, i = 1, 2, . . . , κ be compact convex subsets of Rn with disjoint interiors. For any convex and
compact subset K i ⊆ Ci with Roll(K i) > 0, we define

ΔKi ∶= (
2
√

3
− 1)Roll(Ki). (3.5)

Let us further define Δ∗(Ki) ∶= sup{δ′ ≥ 0 : Ci(δ′) ⊆ Ki(ΔKi)} and subsequently Δ∗i ∶= supKi⊆Ci
Δ∗(Ki). Then the condition

δ < min
i=1,...,κ

Δ∗i = min
i=1,...,κ

sup
Ki⊆Ci

sup{δ′ ≥ 0 : Ci(δ′) ⊆ Ki(ΔKi)} (3.6)

implies that ⋂κ
i=1 Ci(δ) = ∅.

Proof. By definition, all K i ⊆ Ci have disjoint interiors. Then, it follows by Theorem 3.2 that the intersection of the dilated sets K i(Δ)
is empty if the pseudo-depletion radius Δ satisfies Δ < mini=1,...,κΔKi . Now choose a depletion radius δ′ with 0 ≤ δ′ ≤ mini=1,...,κΔKi such that
Ci(δ′) ⊆ Ki(ΔKi) for all i = 1, 2, . . . , κ, then also the intersection of all dilated sets Ci(δ′) has empty interior. Therefore, any choice of such a
δ′ implies the assertion ⋂κ

i=1 Ci(δ) = ∅ for δ < δ′. The optimal choice of such a δ′ is specified in Eq. (3.6), where Δ∗(K i) denotes the optimal
radius for given convex and compact subsets K i, while Δ∗i involves the optimization over all K i. ◻

It is obvious that the bound in Eq. (3.6) is better or equal to that in Eq. (3.2), since the bounds are equal if the supremum is attained for
K i = Ci in case of the Ci with the smallest rolling radius. If one δ′ exceeds the bound in Eq. (3.2) we have found an improvement. It remains an
open problem whether this improved bound, which is sufficient for the absence of triple intersections, also allows the definition of a necessary
criterion in the sense of Theorem 3.3.

For the Proof of Theorem 3.3, we start from three non-overlapping hard bodies and grow the shell radius δ from δ = 0 until the triple
intersection first becomes non-empty. This defines a threshold value δmax that we compute explicitly when the three bodies are balls in contact.
The threshold value is defined precisely in the next lemma, which works for general compact bodies.

Lemma 3.6 (Existence and uniqueness of maximal shell radius for triple intersection). Let Ci, i = 1, 2, 3 be three non-empty compact sub-
sets of Rn with disjoint interiors. Then there exists a uniquely defined δmax = δmax(C1, C2, C3) ∈ [0,∞) such that the triple intersection of the
dilated sets Ci(δ) is empty if and only if δ < δmax:

C1(δ) ∩ C2(δ) ∩ C3(δ) = ∅ ⇔ δ < δmax(C1, C2, C3). (3.7)

Proof. The threshold value δmax is clearly unique. It remains to prove existence. Let

δmax ∶= sup{δ > 0 : C1(δ) ∩ C2(δ) ∩ C3(δ) = ∅} (3.8)

if the latter set is non-empty, and δmax = 0 otherwise (this may occur when the convex bodies touch in a common cusp of the surfaces ∂Ci).
Clearly the triple intersection is non-empty for all sufficiently large δ, therefore δmax <∞.
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To check that Eq. (3.7) holds true, we note that the map δ ↦ ∩3
i=1Ci(δ) =: I(δ) is monotone increasing, i.e., δ ≤ δ′ implies I(δ) ⊂ I(δ′).

Let δ < δmax. Then by the definition (3.8) of δmax there exists δ′ with δ ≤ δ′ ≤ δmax, such that I(δ′) = ∅. The inclusion I(δ) ⊂ I(δ′) then
implies I(δ) = ∅. For δ > δmax, we get right away from (3.8) that the triple intersection is non-empty.

It remains to check that at δ = δmax, the triple intersection I(δ) is non-empty. To that aim let (δn)n ∈N be a strictly decreasing sequence
with δn↓ δmax. Let (xn)n ∈N be a sequence of points with xn ∈ I(δn). The sequence (xn) is bounded and therefore admits an accumulation
point x∗ ∈ Rn; assume for simplicity that xn → x∗ (if not, pass to a subsequence). By the continuity of the maps x↦ dist(x, Ci), the limit point
x∗ satisfies

dist(x∗, Ci) = lim
n→∞dist(xn, Ci) ≤ lim

n→∞δn = δmax. (3.9)

for i = 1, 2, 3. As a consequence, x∗ is in I(δmax), hence I(δmax) is non-empty. It follows that δmax defined in (3.8) satisfies (3.7). ◻

Next we specialize to convex bodies that are closed balls. For balls it is enough to understand the two-dimensional setup, as depicted in
Fig. 2.

Lemma 3.7 (Reduced dimensionality of the overlap problem). Let Bi = B(ri, Ri), i = 1, 2, 3 be three closed balls with disjoint interiors and
P ⊂ Rn a two-dimensional affine subspace containing the three centers ri, i = 1, 2, 3. Then for all δ > 0,

3
⋂
i=1

B(ri, Ri + δ) = ∅ ⇔ P ∩ (
3
⋂
i=1

B(ri, Ri + δ)) = ∅. (3.10)

Proof. The implication “⇒” is trivial. The converse implication follows once we prove

3
⋂
i=1

B(ri, Ri + δ) ≠ ∅ ⇒ P ∩ (
3
⋂
i=1

B(ri, Ri + δ)) ≠ ∅. (3.11)

Let r ∈ ⋂3
i=1 B(ri, Ri + δ) and r� the orthogonal projection of r onto the plane P. Then ∣ri − r�∣ ≤ ∣ri − r∣ ≤ Ri + δ, for all i = 1, 2, 3. It follows

that r� is in P ∩ (⋂3
i=1 B(ri, Ri + δ)), in particular the latter set is non-empty. ◻

Thus let us focus on dimension n = 2, in which balls turn into disks. Consider first the non-degenerate case in which the three centers
ri of the non-overlapping disks do not lie on a common line. Let T be the triangle with corners ri, i = 1, 2, 3. The triangle has interior angles
αi ∈ (0, π) and side-lengths ℓi. The indices are such that αi is the angle at corner i and ℓi is the length of the triangle side opposite the corner
ri, see Fig. 3. Non-overlapping of the balls is equivalent to the condition ℓi ≥ Rj + Rk for all pairwise distinct i, j, k.

Given three disks Bi = B(ri, Ri), consider the maximal shell radius δmax = δmax(B1, B2, B3) from Lemma 3.6. At fixed radii R1, R2, R3, it is
a function of the triangle T with corners ri that is invariant under Euclidean isometries of the plane. Up to Euclidean transformations, the
triangle T is uniquely determined by fixing an angle αi and the side lengths ℓj, ℓk of the adjacent triangle sides. Thus we may view δmax as a
function of, say, α1, ℓ2, and ℓ3. By some abuse of notation we use the same letter δmax(αi, ℓj, ℓk).

FIG. 3. Geometry of the triangle T with edge lengths ℓi , interior angles αi and corners at ri with i = 1, 2, 3, as introduced before Proposition 3.8. The corners correspond
to the centers of three disks B(ri , Ri) of radii Ri , compare Fig. 2. We also indicate the particular depletion radii δi , defined in Eq. (4.1), such that the two dilated disks
B(rj , Rj + δi) and B(rk , Rk + δi) are at contact ({i, j, k} = {1, 2, 3}). When the three dilated disks B(ri , Ri + δ∗) intersect in a single point p ∈ T (red cross), we define

the angles α( j)
i with j ≠ i according to Eq. (4.10).
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Proposition 3.8 (Monotonicity of the maximal shell radius). Fix R1, R2, R3 > 0. Then, for all enumerations (i, j, k) of {1, 2, 3} and all
ℓj, ℓk > 0, the map

(0, π) ∋ αi ↦ δmax(αi, ℓj , ℓk)

is monotone increasing.

The proof is given in Sec. IV. The proposition says that the decrease in an angle αi, at fixed adjacent side lengths results in a decrease (or
no change at all) of the maximal shell radius δmax. Now, every triangle satisfying the hard-core constraints ℓi ≥ Rj + Rk, {i, j, k} = {1, 2, 3}, can
be mapped to a triangle in which ℓi = Rj + Rk, by a succession of two such angle decreasing moves. The only exception, explicitly treated in
the proof of Corollary 3.9 below, is when an inner angle can be decreased until all centers are collinear, without creating any overlap among
the balls.

Let
δcr(R1, R2, R3) = δmax(B(r′1, R1), B(r′2, R2), B(r′3, R3)) (3.12)

be the critical shell radius in a configuration of non-overlapping disks that are in contact, i.e., ∣r′i − r′j ∣ = Ri + R j for all distinct i, j ∈ {1, 2, 3}.
Notice that up to Euclidean isometries of the plane, there is a unique such triangle.

Corollary 3.9 (Critical shell radius for fixed radii). For all radii R1, R2, R3 > 0, and all disks B(ri, Ri) ⊂ R2, i = 1, 2, 3, that have disjoint
interiors, we have

δmax(B(r1, R1), B(r2, R2), B(r3, R3)) ≥ δcr(R1, R2, R3). (3.13)

Proof. If the configuration of non-overlapping disks can be turned into a configuration of disks at contact by a sequence of angle-
decreasing moves, then the inequality follows from the monotonicity in Proposition 3.8. If the configuration is instead turned into a
configuration of non-overlapping disks with collinear centers, corresponding to a degenerate triangle with one angle π and two zero angles, we
notice that the monotonicity from Proposition 3.8 extends to the closed interval [0, π] by the continuity of the map α1 ↦ δmax(α1, ℓ2, ℓ3) and
therefore the maximal shell radius δmax of the original configuration is still bounded from below by the maximal radius of the aligned disks
after decreasing the angle to zero. The latter is easily seen to be larger or equal to the radius of the middle disk, which is clearly larger than the
critical radius δcr(R1, R2, R3) by the explicit formula provided in Proposition 3.10. Alternatively, to directly arrive at the critical configuration
with all three disks in mutual contact, the maximal shell radius for aligned disks can be made smaller by shrinking distances so that the middle
one of the aligned disks is in contact with its two neighbors, and then the shell radius is further decreased by decreasing the angle π of the
degenerate triangle until we end up with a configuration in which all disks are in contact. ◻

The critical shell radius δcr for disks that are in contact is given by an explicit formula. In Sec. IV we prove that it is equal to the radius of
the inner Soddy circle,64 which can be computed with Descartes’ circle theorem, see Refs. 65 and 66 and references therein.

Proposition 3.10 (Critical shell radius at contact). For all R1, R2, R3, we have

δcr(R1, R2, R3) = (R−1
1 + R−1

2 + R−1
3 + 2

√

(R1R2)
−1
+ (R2R3)

−1
+ (R1R3)

−1
)
−1

. (3.14)

The proposition is proven in Sec. IV by establishing a relation with the Apollonius problem of tangent circles67 (Chap. VI). Remember
that the latter consists in finding a circle that is tangent to three given non-intersecting circles. Descartes’ circle theorem concerns the special
case where the three given circles in the Apollonius problem are in contact in three different points. This special case is sometimes called
four-coins problem.66

Proposition 3.10 implies right away that δcr is strictly increasing in each Ri. In particular, setting R ∶= min(R1, R2, R3), we get

δcr(R1, R2, R3) ≥ δcr(R, R, R) = (
2
√

3
− 1)R. (3.15)

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. In view of Lemma 3.7 it is enough to treat the two-dimensional case. Thus let n = 2. Suppose that δ < ( 2√
3
− 1)

min (R1, R2, R3). Then Eq. (3.15) and Corollary 3.9 yield

δ < δmax(B(r1, R1 + δ), B(r2, R2 + δ), B(r3, R3 + δ)). (3.16)

By the definition of δmax in Lemma 3.6, it follows that the intersection ∩3
i=1B(ri, Ri + δ) is empty. This proves the implication (i)⇒ (ii).

Now suppose that ∩3
i=1B(ri, Ri + δ) = ∅ for all positions ri ∈ Rn. In particular, the relation ∩3

i=1B(r′i , R + δ) = ∅ also holds for three balls
with radius R = min(R1, R2, R3) at contact, i.e., ∣r′i − r′j ∣ = 2R for all distinct i, j ∈ {1, 2, 3}. Then the converse implication follows directly from
Eq. (3.15) and the uniqueness of δcr, defined in Eq. (3.12), which is implied in Lemma 3.6. ◻
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We conclude with a sufficient result on absence of triplet intersections for three bodies Ci, i = 1, 2, 3, when one of them, say C3, is a half-
plane, modeling a hard wall. A half-plane may be regarded as a ball with infinite radius. Setting R ∶= min(R1, R2), we get instead of Eq. (3.15)

lim
Rw→∞

δcr(R1, R2, Rw) ≥ lim
Rw→∞

δcr(R, R, Rw) =
R
4

. (3.17)

which leads to the following theorem. By closed half-space we mean a set of the form {x ∈ Rn : x ⋅ n ≤ c} for some n ∈ Rn and some constant
c ∈ R.

Theorem 3.11. Fix n ≥ 2 and κ ≥ 3. Let Ci, i = 1, 2, . . . , κ − 1 be compact convex subsets of Rn and Cκ a closed half-space. Suppose that
the Ci, i ≤ κ − 1 have positive rolling radii Roll(Ci) > 0 and that

δ <
1
4

min
i=1,...,κ

Roll(Ci). (3.18)

Then the intersection of the dilated sets is empty: ⋂κ
i=1 Ci(δ) = ∅. The condition (3.18) with inequality instead of strict inequality is sufficient to

guarantee that the intersection has zero volume.

The proof is omitted as it is similar to the proofs of Theorem 3.2 and a version of Theorem 3.3 for two balls and a half-plane, involving
the necessary and sufficient condition

δ <
1
4

R (3.19)

for δ > 0 and R > 0, such that for all closed balls B(ri, Ri) ⊂ Rn, i = 1, 2 with Ri > 0 and centers ri ∈ Rn that have disjoint interiors and satisfy
min(R1, R2) ≥ R the dilated balls B(ri, Ri + δ) have empty triple intersection.

IV. PROOF OF PROPOSITIONS 3.8 AND 3.10
Throughout this section we work in dimension n = 2. The proof of Propositions 3.8 builds on explicit formulas for δmax, governed

by a case distinction. The guiding idea is the following. Fix three non-overlapping disks B(ri, Ri), i = 1, 2, 3. For very small δ, all pairwise
intersections B(ri, Ri + δ) ∩ B(rj, Rj + δ), i ≠ j, vanish. As δ increases, typically at some point one of the pairwise intersections becomes non-
empty, then another one, and finally all three of them. Once all three of them are non-empty, there are two possibilities: either the regions of
pairwise intersection in turn intersect among themselves, or they do not. In the first case the region of triple intersection is in fact non-empty
and we have found δmax. In the second case we need to increase δ further before we reach δmax; we shall see that in this case, δmax is the radius
of one of the Apollonius circles.

To avoid burdensome considerations of borderline cases, we assume throughout this section that the centers ri, i = 1, 2, 3 are not collinear
(i.e., they do not lie on a common line). We note, however, that the results extend to collinear centers as well if we allow for degenerate triangles
with angles αi = 0, αj = 0 and αk = π. These cases are accounted for in Corollary 3.9.

A. Critical shell radius vs Apollonius circles
Remember the angles αi and the side lengths ℓi of the triangle T with corners ri, i = 1, 2, 3, see Fig. 3. For {i, j, k} = {1, 2, 3}, set

δi ∶=
1
2
(ℓi − Rk − Rj) ≥ 0. (4.1)

Clearly
B(rj , Rj + δ) ∩ B(rk, Rk + δ) ≠ ∅ ⇔ δ ≥ δi. (4.2)

We may label the corners of the triangle in such a way that the thresholds δi for pairwise intersections are ordered as

δ1 ≤ δ2 ≤ δ3. (4.3)

If the triple intersection ∩3
i=1B(ri, Ri + δ) is non-empty, then necessarily all pairwise intersections are non-empty, therefore δmax =

δmax(B(r1, R1 + δ), B(r2, R2 + δ), B(r3, R3 + δ)) satisfies

δmax ≥ max (δ1, δ2, δ3) = δ3. (4.4)

The main result of this subsection is the following dichotomy.

Proposition 4.1. Let B(ri, Ri), i = 1, 2, 3 be three disks in R2 with pairwise disjoint interiors and non-collinear centers. Then, either one or
the other of the following two cases occurs:
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1. There exists a circle ∂B(p, δ∗) centered in the interior of the triangle T with ∣p − ri∣ = Ri + δ∗ for i = 1, 2, 3, in particular the circle is
externally tangent to the three circles ∂B(ri, Ri). We have

δmax = δ∗ > max (δ1, δ2, δ3) (4.5)

and the triple intersection ∩3
i=1B(ri, Ri + δmax) is the singleton {p}.

2. There is no such circle, δmax is equal to max(δ1, δ2, δ3) and the triple intersection is a single point p on the boundary of the triangle.

The location of the triple intersection for the maximal depletion radius δmax is drawn in the top panel of Fig. 2 for a range of selected
configurations of three disks. In case 1, the shell radius δ∗ is the radius of one of the Apollonius circles67 (Chap. VI). Note that our circle
from case 1 is uniquely defined while the Apollonius problem may have up to eight solution circles, roughly because tangency merely requires
∣p − ri∣ = ±(Ri ± δ∗), while the expression on the right-hand side must be positive (a minus sign of Ri or δ∗ corresponds to internal tangency
which is not relevant here). Furthermore, in case 2, there might very well be an Apollonius circle whose center satisfies the appropriate
conditions ∣p − ri∣ = Ri + δ∗ for all i, but that center is not in the interior of the triangle. The relation between our depletion problem and the
Apollonius circles is also illustrated in the bottom panel of Fig. 2.

Lemma 4.2. If δmax = δ3 = max(δ1, δ2, δ3), then the triple intersection ∩3
i=1B(ri, Ri + δmax) at maximal shell radius δ = δmax is equal to the

pairwise intersection ∩2
i=1B(ri, Ri + δmax) and consists of a single point p on the triangle side connecting r1 and r2. The point p satisfies

∣p − r1∣ = R1 + δmax, ∣p − r2∣ = R2 + δmax, ∣p − r3∣ ≤ R3 + δmax (4.6)

Proof. At δ = δ3 the intersection ∩2
i=1B(ri, Ri + δ3) consists of a single point p on the triangle connecting r1 and r2 with distance R1 + δ3

and R2 + δ3 to r1 and r2, respectively. If δ3 = δmax, then the triple intersection ∩3
i=1B(ri, Ri + δmax) is non-empty and contained in the double

intersection ∩2
i=1B(ri, Ri + δmax) = {p}, therefore the triple intersection is the singleton {p} and the point p must satisfy (4.6). ◻

Lemma 4.3. If δmax > δ3 = max(δ1, δ2, δ3), then the triple intersection ∩3
i=1B(ri, Ri + δmax) at maximal shell radius δ = δmax consists of a

single point p that lies in the interior of the triangle T and satisfies

∣p − ri∣ = Ri + δmax, i = 1, 2, 3. (4.7)

Therefore the circle ∂B(p, δmax) is tangent to each of the circles ∂B(ri, Ri) (i.e., it intersects each of those circles in exactly one point): it
is one of the circles that solves the Apollonius problem.

Proof. For δ > δ3, the pairwise intersection Lpc(δ) ∶= B(r1, R1 + δ) ∩ B(r2, R2 + δ) of two disks is a lens-shaped non-empty, compact,
convex set. The intersection of the lens with B(r3, R3 + δ) is equal to the triple intersection of the disks B(ri, Ri + δ), i = 1, 2, 3. It is empty for
δ < δmax and non-empty for δ ≥ δmax. Therefore, for δ < δmax, the lens Lpc(δ) has distance strictly larger than R3 + δ to r3; for δ = δmax, the
lens has distance equal to R3 + δmax to r3. Let p be the uniquely defined point on the boundary of the lens that minimizes the distance towards
r3, so that ∣p − r3∣ = R3 + δmax. Then

3
⋂
i=1

B(ri, Ri + δmax) = Lpc(δmax) ∩ B(r3, R3 + δmax) = {p}. (4.8)

The point p lies on the boundary of the lens, therefore ∣p − ri∣ ≤ Ri + δmax for i = 1, 2 with equality in at least one of the indices 1,2. Suppose by
contradiction that equality holds for exactly one index, say ∣p − r2∣ = R2 + δmax but ∣p − r1∣ < R1 + δmax. This means that p is not a corner of the
lens. Then p must be on the intersection of ∂B(r2, R2 + δmax) with the segment [r2, r3]. This implies δmax = δ1, contradicting the assumption
δmax > max(δ1, δ2, δ3). Therefore p is a corner of the lens and ∣p − ri∣ = Ri + δmax for all i ∈ {1, 2, 3}.

Finally, suppose by contradiction that the lens corner p is not in the interior of the triangle. If it is on the boundary, then it must be on
the triangle side connecting r1 and r3, hence δmax = δ2 in contradiction with δmax > δ3 ≥ δ2. If p is outside T , then the lens must contain a
part of the segment [r1, r3] in its interior. The intersection of ∂B(r1, R1 + δmax) with the segment consists of a single point q that is closer to
r3 than p, contradicting the definition of p. ◻

The following is a converse to the previous Lemma.

Lemma 4.4. Suppose that there exist a point p in the interior of the triangle T and a radius δ∗ > 0 such that ∣p − ri∣ = Ri + δ∗ for i = 1, 2, 3.
Then δmax is equal to δ∗ and the triple intersection of the disks B(ri, Ri + δmax) consists of the unique point p.

Proof. The point p is in the triple intersection ∩3
i=1B(ri, Ri + δ∗), therefore the latter is non-empty and δmax ≤ δ∗. At δ = δ∗, the double

intersections Li j(δ) = ∩s ∈{i, j}B(rs, Rs + δ) are lens-shaped regions, centered on the triangle sides, that meet at their tips in p, so the triple
intersection consists of exactly the point p. At δ < δ∗ the lenses are smaller and do not meet at all, hence the triple intersection is empty and
δmax is actually equal to δ∗. ◻

Proposition 4.1 follows from Lemmas 4.2–4.4, the details are left to the reader.
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B. Monotonicity. Proof of Proposition 3.8
Let us investigate how the maximal shell radius δmax changes when we vary the angle α1 at fixed side lengths ℓ2 and ℓ3 (without loss of

generality). We distinguish three cases:

1. δmax = max(δ2, δ3), i.e., we are in case 2 of Proposition 4.1 with triple intersection point on one of the triangle sides adjacent to r1.
2. δmax = δ∗ > max(δ1, δ2, δ3) with triple intersection point in the interior of the triangle (case 1 of Proposition 4.1).
3. δmax = δ1, i.e., triple intersection point on the triangle edge opposite r1 (back to case 2 of Proposition 4.1).

We shall see in Steps 4–5 below that, as α1 increases, the cases occur in the order listed above. That is, for small α1 the point of triple
intersection may be initially on one of the triangle sides adjacent to r1 and stay there for small α1. With increasing α1 the point moves to the
interior of the triangle until it hits the side opposite r1; once there, it does not leave.

The proof of Proposition 3.8 is in several steps. First we establish monotonicity within the three cases (steps 1–3), then we address the
order of occurrence of the three cases (steps 4–5), and finally we conclude using Proposition 4.1.

1. Monotonicity within case 1 is trivial as δ2 and δ3 do not depend on α1.
2. Monotonicity within case 3 is easily established as well. The threshold δ1 =

1
2(ℓ1 − R2 − R3) depends on α1 via ℓ1 given by

ℓ2
1 = ℓ

2
2 + ℓ

2
3 − 2ℓ2ℓ3 cos α1. (4.9)

Hence ℓ1 and δ1 = δ1(α1) are increasing functions of α1 ∈ (0, π).
3. For monotonicity within case 2 of the list above, let p be the triple intersection point in the interior of the triangle. The ray from r1 to p

splits the angle α1 ∈ (0, π) into two angles α(2)1 > 0 and α(3)1 > 0 (see Fig. 3),

α1 = α(2)1 + α(3)1 . (4.10)

By the cosine rule in the triangle with vertices r1, r2, p, the angle α(2)1 satisfies

cos (α(2)1 ) =
ℓ2

3 + (R2 + δ∗)2
− (R1 + δ∗)2

2ℓ3(R1 + δ∗)
=: f2(δ∗) (4.11)

Similarly,

cos (α(3)1 ) =
ℓ2

2 + (R3 + δ∗)2
− (R1 + δ∗)2

2ℓ2(R1 + δ∗)
=: f3(δ∗). (4.12)

The derivative of the right-hand side of (4.11) with respect to δ∗ (at fixed R1, R2 and ℓ3) can be computed explicitly, it is equal to

f ′2(δ
∗
) =
(R1 − R2)

2
− ℓ2

3

2ℓ3(R1 + δ∗)
< 0. (4.13)

It is strictly negative because ℓ3 ≥ R1 + R2 > ∣R1 − R2∣. Furthermore f2(δ3) = 1 and

lim
δ∗→∞

f2(δ∗) =
R2 − R1

ℓ3
∈ (−1, 1). (4.14)

It follows that the solution to Eq. (4.11), given by

α(2)1 (δ
∗
) ∶= arccos f2(δ∗) ∈ [0, π) (δ∗ ≥ δ3) (4.15)

is a strictly increasing function of δ∗. The same holds true for

α(3)1 (δ
∗
) ∶= arccos f3(δ∗) ∈ [0, π) (δ∗ ≥ δ2). (4.16)

Therefore Eqs. (4.10)–(4.12) determine the angle α1 uniquely as a strictly increasing function of δ∗. Inverting the relationship, we see
that δ∗ = δ∗(α1) is an increasing function of α1. Monotonicity within case 2 of the list above follows.

4. Now we turn to the order in which the cases occur. We may assume without loss of generality δ3 ≥ δ2. Let q be the point of contact of
B(r1, R1) and B(r2, R2). Then case 1 occurs if and only if ∣q − r3∣ ≤ R3 + δ3. Because of

∣q − r3∣
2
= (R1 + δ3)

2
+ ℓ2

2 − 2(R1 + δ3)ℓ2 cos α1, (4.17)

the distance ∣q − r3∣ increases with α1. Therefore, once ∣q − r3∣ crosses the threshold R3 + δ3 it stays above the threshold. That is, once
we have left case 1 we do not come back to it.
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5. Similarly, once we leave case 2 while increasing α1, we do not come back to it. To see why, we revisit the computations from step 3. Let
α1 ∈ (0, π) be an angle that falls into case 2. Then, as proven earlier, δmax(α1) = δ∗(α1) is a solution to Eqs. (4.10)–(4.12). Moreover,
because the center p of the circle ∂B(p, δ∗) is inside the triangle T , the inner angle β1 at p in the triangle with vertices p, r2, r3 is smaller
than π. The angle β1 = β1(α1) is an increasing function of α1. This is because the angles α(1)2 and α(1)3 are increasing functions of δ∗, by
arguments similar to step 3, and

β1 = 2π − α1 − α(1)2 − α(1)3 . (4.18)

Conversely, let α1 be an angle with α1 = α(2)1 (δ
∗
) + α(3)1 (δ

∗
) =: α1(δ∗) for some δ∗ > max(δ2, δ3), with α(i)1 (δ

∗
) defined as in

Eqs. (4.15) and (4.16). The angles α(i)1 (δ
∗
) allow us to set a point q that satisfies ∣q − ri∣ = Ri + δ∗ for i = 1, 2, 3. In general the point

q might be outside the triangle or on its boundary, but if β1 < π, then the point q is in the interior of the triangle and we are
in case 2.

Fix an angle α1 that falls within case 3 and pick α′1 > α1. We want to show that α′1 falls into case 3 as well. By step 4 we know that
α′1 cannot fall into case 1, it remains to exclude case 2. The map δ∗ ↦ α1(δ∗) is a strictly increasing bijection from [max(δ2, δ3),∞]
onto some subinterval of (0,∞). Therefore, if the equation α1(δ∗) = α1 has no solution, the same holds true for all α′1 > α1 and α′1
cannot fall into case 2. If the equation α1(δ∗) = α1 has a solution, then by the considerations above we must have β1(α1) ≥ π hence
β1(α′1) ≥ β1(α1) ≥ π and case 2 is excluded as well. Thus we have proven that if α1 is in case 3, then all larger angles α′1 ≥ α1 are in case
3 as well.

6. The monotonicity of the map α1 ↦ δmax(α1, ℓ2, ℓ3) and, generally, αi ↦ δmax(αi, ℓj, ℓk) follows from Steps 1–5 and the continuity of the
map.

◻

C. Descartes’ circle theorem. Proof of Proposition 3.10
Consider three circles with centers ri and radii Ri > 0 that are in contact, i.e., ℓ1 = R2 + R3 and similarly for the other triplets. In this

situation the pairwise thresholds δi vanish and in view of δmax > 0, we are automatically in case 1 of Proposition 4.1.
Thus δmax = δ∗ is the radius of a circle ∂B(p, δ∗) centered in the interior of the triangle and tangent to the three adjacent circles ∂B(ri, Ri).
This is precisely the special case of the Apollonius problem addressed by Descartes’ circle theorem. There are exactly two circles adjacent

to the three circles ∂B(ri, Ri). There always exists one solution circle which is inscribed inside the void delimited by the three given circles
while the other solution circle either contains all three of them [bottom panel of Fig. 2(a)] or forms a void together with two of the given
circles containing the third one [bottom panel of Fig. 2(b)]. Clearly the solution that interests us is the inner circle, called inner Soddy circle.
Its radius is known (see for example65,66), it is equal to the expression for δcr(R1, R2, R3) given in Proposition 3.10. This completes the proof
of the proposition.

◻

V. SUMMARY AND PHYSICAL INTERPRETATION OF GEOMETRIC CRITERIA
To summarize, we have established rigorous geometric criteria for the absence of many-body interactions higher than pairwise in

AO-type mixtures involving hard colloids and ideal depletants in any spatial dimension. Once the stated criteria are obeyed, our results
imply that the depletants can be integrated out and there exists an exact mapping onto a system with effective pairwise interactions only.
Mathematically, the absence of triplet and N-body interactions with N ≥ 3 in a fluid of hard bodies for a given depletion radius is equivalent
to the triple intersection of the corresponding dilated bodies (and thus also the intersections between more than three dilated bodies) having
zero volume for any possible configuration of the hard bodies. We elucidated relevant conditions for this problem in Theorems 3.2 and 3.3
and proved them with elementary geometry.

For the exactness of the depletion interaction between identical colloidal hard spheres, the sufficient and necessary geometric criterion,
Eq. (2.6), was already stated in the literature but is mathematically proven here as a special case of Eq. (3.4) with all radii being equal, i.e., for
R = R1 = R2 = R3.

The generalized condition in our Theorem 3.3 holds for polydisperse mixtures of hard spheres in any spatial dimension, where the radius
R = miniRi of the smallest species sets the threshold according to Eq. (3.4).

Moreover, we provide a condition, Eq. (3.2), which is sufficient for the exactness of the pairwise depletion interaction between convex
hard particles, also including polydisperse mixtures thereof. The generalized upper bound for the depletion radius provided in Theorem 3.2 is
proportional to the minimal rolling radius among all bodies, which corresponds to the curvature radius at the point on the surface of any body
which has the largest curvature. This criterion may, however, turn out to be extremely susceptible to irregularities of the surface geometry
(a detailed discussion can be found below in Sec. VI). We therefore note that a systematic improvement of the threshold in Eq. (3.2) can be
achieved, along the lines of Proposition 3.5, by applying Theorem 3.2 to appropriately chosen auxiliary bodies (with larger rolling radii) that
are contained in the original bodies.

By slightly reformulating our main theorems, we also address the problem of effective depletion interactions between arbitrarily-shaped
convex particles and a planar hard wall in Theorem 3.11. In this case, a one-body depletion potential can be found from integrating out the
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depletants. Such a potential is exact if there are no effective pair and N-body interactions with N ≥ 2, which is again equivalent to the triple
intersection of the corresponding dilated bodies (including that of the wall) having zero volume. The sufficient and necessary geometric crite-
rion, Eq. (2.7), for identical spheres has been generalized to Eq. (3.19), which again shows that the radius of the smallest species determines the
critical depletion radius for polydisperse mixtures of hard spheres. Relatedly, Eq. (3.18) provides a sufficient criterion for general polydisperse
mixtures based on the minimal occurring curvature radius.

Although not explicitly stated in our theorems, our mathematical analysis directly applies to polydisperse spherical depletants, for which
the depletion radius δ(ν) may depend on the species ν. In this case, our criteria should be interpreted to provide thresholds for the maximal
depletion radius δ = maxν δ(ν) associated with the “largest” depletant species.

Non-spherical depletants such as needles or rods, which have been widely considered in the literature,68–74 give rise to a nonspherical
shape of the depletion shell which depends on their orientation. The thresholds for δ can thus directly be applied as sufficient criteria on the
maximal radius of such a generalized depletion shell.

In some of the above cases a better upper bound could be found upon considering the resulting generalized geometric overlap problem in
its full complexity. To do so, the basic mathematical framework built up for establishing the presented criteria serves as a convenient starting
point, as exemplified in Proposition 3.5.

VI. CONCLUSIONS
Let us conclude with a couple of remarks regarding the broader physical implications of our criteria and possible generalizations.
First of all, if the convex colloidal particles have a cusp in their shape, like colloidal polyhedra,75,76 our sufficient criteria become trivial

since the rolling radius vanishes (diverging local surface curvature). The resulting condition δ < 0 can never be fulfilled by a positive depletion
radius δ, such that the absence of higher-body depletion interactions can never be guaranteed. Indeed, many regular particle shapes, e.g.,
tetrahedral or cubic, can arrange in configurations with the cusps of three or more particles at direct contact. In these special cases, it is appar-
ent that any choice of depletion radius δ > 0 results in overlapping depletion shells, so that our criteria even become necessary. In contrast,
if configurations with three touching cusps are forbidden, e.g., for particles with sufficiently large opening angles, the formal condition δ < 0
apparently is no longer sharp. This extreme example illustrates that the maximal depletion radius can strongly depend on the particle shape. In
practice, this is also relevant for colloidal particles, which are always slightly rounded.75 Regarding the convenient possibility to approximate
the shape of smooth bodies by appropriate polygons, particles with cusps do indeed remain relevant for theoretical treatments. In both cases
of singular cusps or smooth irregularities of the surface, an improved sufficient bound can be implicitly specified according to Proposition 3.5.
The open question of whether this criterion is also necessary remains an interesting problem for future work.

Second, non-convex hard bodies play an important role in modeling lock-and-key colloids77,78 where the depletion attraction has
been used as a bonding mechanism.77,79 Other relevant nonconvex shapes are clusters of spheres firmly attached to each other by surface
chemistry,80,81 colloidal bowls79,82,83 or even more general objects, see Ref. 84 for some examples. As stated in Remark 3.4, our sufficient crite-
ria do also apply for nonconvex shapes. However, the provided thresholds could, in principle, become arbitrarily poor, imagining, for example
particles possessing a cusp which is inaccessible to other particles. Therefore, we leave an improvement of our bounds for such particles to
future studies.

Third, another important problem which we did not explicitly consider here is the depletion at curved hard walls. In the case of externally
placed obstacles,36 which provide a model for a porous medium, a criterion for the absence of effective external pair interactions can be found
analogously to case of a planar hard wall by considering Eq. (3.17) without sending the wall radius Rw to infinity. We further expect that the
structure of our proof can also be applied to rigorously determine an explicit formula for the critical depletion radius for a fluid in external
hard-body confinement.37 In this case, we expect that such a threshold is related to a solution of the Apollonius problem involving internal
tangency.

Fourth, one may consider more realistic situations of softened colloid–polymer interactions85,86 or non-vanishing polymer–polymer
interactions.85,87 Only for colloid–polymer interactions which exhibit a sharp exclusion zone of radius δ plus an interaction of strict finite
range ϵ and for ideal polymers, the pure geometric concept applies such that our criteria can be used for the overall range δ + ϵ of the
colloid–polymer interaction. Long-ranged colloid–polymer interactions will induce many-body interactions even for ideal polymers. Like-
wise, non-vanishing polymer–polymer interactions will in general contribute to many-body interactions of any order due to their finite
correlation length.

Fifth, recent studies have included activity in the depletants leading to active depletion interaction between colloids.88–91 For ideal active
depletants, the generalization of the AO pair interaction was computed recently91 using the concept of swim pressure. It is important to
mention here that our proof for the absence of many-body interactions does also apply to active ideal depletants, as the basic geometric
conditions are identical. The only difference is that for active depletants the osmotic swim pressure depends on the shape and local curvature
of the excluded zone but this only affects the strength of the pair interactions but not the geometric conditions for triple intersection. On
a further note, the effective interactions between active colloids display intriguing similarities with effective depletion interactions92 but are
generally of intrinsic many-body nature.92–96

Finally, beyond verifying the absence of effective triplet interactions in the AO model, the magic number 2/
√

3 − 1 ≈ 0.1547 is in fact
a more general indicator of crossover behavior in hard-particle systems. For example, the close-packing density in a binary mixture of hard
spheres changes its behavior as a function of the size ratio around this value.97 When the size ratio is below this threshold, there even exist

J. Math. Phys. 64, 103301 (2023); doi: 10.1063/5.0125536 64, 103301-13

Published under an exclusive license by AIP Publishing

 27 O
ctober 2023 11:53:56

https://pubs.aip.org/aip/jmp


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

dynamical escape routes for the smaller particles preventing their vitrification.98 Our presented ideas could thus be also helpful to deepen the
mathematical understanding of such related physical problems.
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