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Entropy production and collective excitations of crystals out of equilibrium:
The concept of entropons
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We study the collective vibrational excitations of crystals under out-of-equilibrium steady conditions that give
rise to entropy production. Their excitation spectrum comprises equilibriumlike phonons of thermal origin and
additional collective excitations called entropons because each of them represents a mode of spectral entropy
production. Entropons coexist with phonons and dominate them when the system is far from equilibrium while
they are negligible in near-equilibrium regimes. The concept of entropons has been recently introduced and
verified in a special case of crystals formed by self-propelled particles. Here we show that entropons exist in a
broader class of active crystals that are intrinsically out of equilibrium and characterized by the lack of detailed
balance. After a general derivation, several explicit examples are discussed, including crystals consisting of
particles with alignment interactions and frictional contact forces.
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I. INTRODUCTION

Collective excitations play a fundamental role in the com-
prehension of solids and are one of the most fruitful concepts
of solid-state physics [1]: prototypical examples are phonons,
i.e., vibrational excitations of the elementary constituents of
the crystal [2], and magnons, the collective excitations as-
sociated with the electron spins in a crystal lattice [2]. In
particular, in a crystal, the displacements of atoms from their
equilibrium positions give rise to collective modes of vi-
brations named phonons whose amplitude is determined by
the environmental temperature. If the system is in equilib-
rium with its environment, there is no entropy production.
In the framework of soft matter materials, it is possible to
realize experimentally an equilibrium solid made of meso-
scopic particles, instead of atoms, employing high-density
colloidal suspensions and inducing its crystallization by de-
creasing the temperature and increasing the packing fraction
[3,4]. In equilibrium, the phase diagram of colloidal particles
has been thoroughly investigated in the past for two- and
three-dimensional systems and different pairwise interaction
potentials [5–8], revealing a stable crystalline phase at high
densities. The dynamics of these colloidal particles is Brown-
ian overdamped motion as the surrounding solvent keeps the
temperature of the system constant. While inertial effects are
negligible in colloids, collective excitations can be explored
in crystals [9], as well as in glasses [10], by resorting to the
corresponding “shadow” systems. In addition, inertia plays
a fundamental role in other examples of crystals at micron
scales, such as complex plasma, usually described by an iner-
tial dynamics [7].
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Manipulations of solids can involve the use of external
forces [11], such as laser pulses [12], acoustic fields [11,13],
and light fields [14]. External fields transfer energy to each
particle of the solid and are responsible for entropy pro-
duction [15], such that they can be considered one of the
basic instances of out-of-equilibrium crystals [16]. Another
important class of solids in nonequilibrium are active crystals.
They consist of self-propelled agents that locally extract en-
ergy from the environment [17–19] and convert it to perform
specific tasks, such as directed motion. For instance, solid
structures are common at the micron scale in the realm of
biology. Examples are cell monolayers in human or animal
bodies [20–22], biological tissues, but also bacterial colonies
at high density [23,24]. Nonequilibrium crystals have been
also investigated in active colloids, for instance, by consider-
ing high-density active Janus particles that self-propel in space
because of thermo- or electrophoresis. They may form crystal
structures with almost perfect hexagonal packing [25–27] that
can even collectively travel or rotate [28,29]. Recently, solids
made of out-of-equilibrium particles have also been realized
at the macroscopic scale by using active granular matter [30],
i.e., granular particles dissipating energy through collisions
that self-propel because of some shape asymmetry.

The investigation of collective excitations of nonequilib-
rium solids is now a challenging issue, relevant both to
physics and biology, and requires linking together solid-state
and nonequilibrium statistical physics concepts. In the case
of active crystals formed by self-propelled (active) particles,
another kind of collective wavelike excitations has been dis-
covered in Ref. [31] (see Fig. 1). These are activity-induced
vibrational excitations producing entropy. In short, they were
named entropons because they are responsible for the spec-
tral entropy production of the system, i.e., a frequency and
a wave vector component of the total entropy production
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FIG. 1. Collective excitations in nonequilibrium crystals. By an-
alyzing the spectrum of the particles’ displacement around the lattice
positions, it is possible to characterize the collective vibrations of
crystals. Crystals out of equilibrium are characterized by phonons
and additional collective excitations that we called entropons because
they are generated by entropy production.

rate. In the case investigated, entropons are sustained by the
self-propelled (active) force. They act and coexist without
interfering with the usual thermally excited phonons. We
emphasize that in other nonequilibrium setups with external
fields, such as sheared or hammered crystals, vibration modes
produce entropy as well. However, they are distinct from
our wording of entropons as they are not activity-induced. In
spite of the fact that our paper deals with a classical system,
here, and in the following, we keep the terms phonons and
entropons to denote classical phonon and entropon modes.

In this paper, we show that entropons are not limited to the
specific case of active solids considered in Ref. [31] that are
formed by self-propelled particles, but are present in a broader
class of nonequilibrium crystals that violate the detailed bal-
ance and produce entropy. After considering a general setup
and giving a practical prescription to calculate the contribu-
tions of phonons and entropons, we discuss a series of specific
examples. These include crystals consisting of particles with
alignment interactions and frictional contact forces.

The paper is structured as follows: In Sec. II, we intro-
duce a general model suitable to describe nonequilibrium
solids, while in Sec. III we discuss the concept of entro-
pons as nonequilibrium collective excitations coexisting with
phonons, and provide a general prescription to calculate their
contribution. Section IV contains a derivation of the main
results of the previous section while Sec. V reports several
examples where dynamical correlations and spectral entropy
production are calculated analytically. Phonons and entropons
are identified and discussed case by case. Finally, we argue the
consequences of our results and possible future research lines
in the conclusions, Sec. VI.

II. MODEL

We argue that the concept of entropons goes beyond the
specific case of active solids studied in Ref. [31] by consider-
ing crystals formed by particles far from equilibrium but not
necessarily self-propelled. We require that

(i) The particles form a d-dimensional periodic lattice.

(ii) Particles can only perform small fluctuations around
their equilibrium positions so their dynamics can be described
in terms of displacement variables, u(t ). Due to the small-
ness of the fluctuations, the spatial Fourier transform of u(t )
corresponding to a specific mode q(t ) is decoupled from the
remaining modes.

(iii) The system reaches a (nonequilibrium) steady state in
the long-time limit.

With these requirements, the particle-particle interactions
can be easily treated and they determine the dispersion rela-
tion ω2(q) within the harmonic approximation.

By taking advantage of the translational symmetry of a
crystal, we can conveniently describe the system in Fourier
space, in terms of frequency ω and wave vectors q. By
assuming a dissipative Brownian dynamics, subject to noise
and dissipative (friction) forces, we can obtain an evolution
equation for the Fourier transform of the particle displacement
û(ω, q) at the frequency ω and wave vectors q (see
Appendix A for definitions). This dynamics will be rather
general and will include a broad range of equilibrium and
nonequilibrium models usually studied in active matter
and beyond. Without loss of generality (see Sec. V for
specific examples), the evolution equation for û(ω, q) can be
expressed as

L(ω, q)û(ω, q) = F̂(ω, q) +
√

2T γ ξ̂(ω, q), (1)

where ξ̂(ω, q) is a white noise with zero average and
correlation,

〈ξ̂(ω, q) · ξ̂(ω, q)〉 = δ(ω + ω′)δ(q + q′), (2)

and the prefactor T γ represents the amplitude of the thermal
noise. Here, our nomenclature is inspired by the analogy
with equilibrium solids in contact with a Brownian bath at
temperature T and embedded in a medium exerting a viscous
friction of coefficient γ . The term L(ω, q) is a complex
function of ω and q (independent of the state variables, such
as displacement, velocity, etc.) describing the evolution of the
displacement û(ω, q). Note that this formalism describes both
overdamped and underdamped dynamics. Here, for simplicity,
we restrict ourselves to the case where L(ω, q) is a scalar
operator acting equally on all spatial components and not
a tensor, so magnetic fields coupling different components
are not considered. Explicit examples for L(ω, q) (or its
inverse) are provided in Sec. V both for equilibrium and
nonequilibrium systems.

The term F̂(ω, q) is a force that does not depend on the
particle displacement but is determined by additional intrinsic
variables of the system (see Sec. V for explicit examples),
such as self-propelled or simply active forces. Therefore,
F̂(ω, q) is generated by additional degrees of freedom for
each individual particle that are characterized by additional
dynamics. These additional terms must be interpreted as
new intrinsic variables rather than external fields and, thus,
they represent intrinsic properties of the crystal basic con-
stituents. The additional dynamics of these additional degrees
of freedom is responsible for the differences between these
additional excitations and the phonons with thermal origins.
We remark that the force F̂(ω, q) is zero in equilibrium con-
ditions, while this term violates the detailed balance and leads
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to entropy production in out-of-equilibrium conditions. To fix
ideas, F̂(ω, q) may represent either the self-propelled force
evolving through the dynamics of active particles or more
complex dynamical stochastic processes that can even evolve
nonlinearly.

We remark that L(ω, q) can be conveniently decomposed
onto its odd and even part under time-reversal transformation
(TRT), ω → −ω, according to

L(ω, q) = Lo(ω, q) + Le(ω, q), (3)

where the subscripts o and e mean odd and even, respectively,
under TRT, so Lo → −Lo and Le → Le. As intuition suggests,
û(ω, q) is even under TRT and, for simplicity, we restrict our
analysis to a set of dynamical variables F(ω, q) that are even
under TRT so F → F.

III. THE CONCEPT OF ENTROPONS

In this section, we anticipate our results by introducing
the concept of entropons as collective excitations which orig-
inate from nonequilibrium. Here, the meaning of entropons
is discussed, while the derivation of our results is reported in
Sec. IV.

To characterize collective excitations in nonequilibrium
solids, we study the dynamical correlations of the Fourier
transform of the particle displacements around their lattice
positions, C(ω, q), defined in the Fourier space of frequency
ω and wave vector q, as

C(ω, q) = lim
T →∞

1

T 〈û(ω, q) · û(−ω,−q)〉. (4)

The dynamical correlations C(ω, q) can be conveniently de-
composed as

C(ω, q) = Ceq(ω, q) + Cneq(ω, q), (5)

where Ceq(ω, q) and Cneq(ω, q) are the equilibrium and
nonequilibrium parts of the dynamical correlation of the par-
ticle displacement û(ω, q), respectively. As clarified later, the
first part has a thermal origin, while the second part originates
from the nonequilibrium force pushing the system out of equi-
librium. Ceq(ω, q) can be expressed in terms of the response
function to a small perturbation while Cneq(ω, q) can be re-
lated to the spectral entropy production of the system σ (ω, q).
As a consequence, the decomposition (4) can be interpreted as
a generalization of the Harada-Sasa relation [32] for the case
of nonequilibrium solids.

As obtained in Sec. IV, Ceq(ω, q) can be written as

Ceq(ω, q) = −2T γ
Im[Ruu(ω, q)]

Im[L(ω, q)]
, (6)

where Im[·] denotes the imaginary part and Ruu(ω, q) is the
Fourier transform of the displacement response function due
to a small perturbation, h, defined as

Rûû(ω, q) = Tr

[
δ〈u(ω, q)〉h

δh

]
. (7)

Here, Tr[·] stands for the trace of the matrix inside the square
brackets. The average 〈·〉h is defined over the perturbed trajec-
tory, and δ/δh is the functional derivative with respect to the
perturbation h, as usual in linear response theory [33–36]. As

known in the literature, Rûû(ω, q) can be explicitly calculated,
and in our linear model we find

Rûû(ω, q) = L−1(ω, q). (8)

From Eq. (1), it is clear that Rûû(ω, q) is independent of the
nonequilibrium force F(ω, q) and we may anticipate that it is
associated with the phononic spectrum.

The contribution Cneq(ω, q) can be related to the entropy
production of the system, which quantifies how the system is
far from equilibrium. As derived in Sec. IV, the expression for
Cneq(ω, q) can be explicitly calculated as

Cneq(ω, q)

T γ
= σ (ω, q)

(Im[L(ω, q)])2
, (9)

where σ (ω, q), is the spectral entropy production, i.e., the
spectral component (in frequency ω and wave vector q do-
mains) of the steady-state entropy production rate, ṡ. By
resorting to Fourier decomposition, σ (ω, q) and ṡ are related
by the following relation:

ṡ =
∫

dq
�

∫
dω

2π
σ (ω, q). (10)

Here, � represents the volume of the first Brillouin zone, de-
pending on the lattice properties of the solid. As shown later,
Cneq(ω, q) corresponds to additional collective excitations of
the system that we identify as entropons.

For the general dynamics (1), σ (ω, q) can be calculated
using a path-integral method, in frequency and wave vector
domains (see Sec. IV), and is given by

σ (ω, q) = lim
t→∞

i

t

Im[L(ω, q)]

2T γ
〈û(ω, q)F̂(−ω,−q)〉 + c.c.,

(11)

where c.c. denotes the complex conjugate. As a consequence,
σ (ω, q) is real and requires only the knowledge of L(ω, q) and
the cross-correlation 〈û(ω, q) · F̂(−ω,−q)〉. The result (11)
is consistent with the classical theory of irreversible thermo-
dynamics holding close to equilibrium. This agreement occurs
because, in the latter theory (see, for instance, Ref. [37]), the
shape of the dissipative forces implies that Im[L(ω, q)] ∝ ω.

A. Coexistence of phonons and entropons

Here, we present the physical interpretation of the decom-
position (5) together with Eqs. (6) and (9). As schematically
illustrated in Fig. 1, relation (5) states that the nonequilibrium
excitations of a solid, described by the dynamical correla-
tion of the particle displacement, can be decomposed in two
parts: (i) an equilibriumlike contribution Ceq(ω, q) entirely
due to the thermal noise (phonons) and (ii) a nonequilibrium
contribution Cneq(ω, q) proportional to the spectral entropy
production of the system (entropons).

Phonons. Term (i) has the same form as the displacement-
displacement dynamical correlation of an equilibrium under-
damped solid consisting of particles in contact with a thermal
bath. It describes the thermally excited collective vibrations
of crystals, i.e., the familiar phonons typical of solid-state
physics: for a given q, a peak in the profile of Ceq(ω, q) as
a function of ω can be identified with a phonon of the crystal.
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Equation (5) suggests that phonons are present both in equi-
librium and nonequilibrium solids, their spectrum remains
unaltered and they do not generate entropy production. The
nonequilibrium force does not affect their dispersion.

Entropons. Term (ii), Cneq(ω, q), describes vibrational col-
lective excitations of the crystal of truly nonequilibrium origin
as Cneq(ω, q) is proportional to the spectral entropy production
of the system σ (ω, q). These are activity-induced vibrational
excitations that produce entropy in the nonequilibrium steady
state. For this reason, in short, we term them entropons. As
typical in solid-state physics, the peaks of Cneq(ω, q) as a
function of ω (at fixed q) can be identified with these exci-
tations. For each value of q, they represent a mode of the
spectral entropy production, σ (ω, q), and thus they vanish
at equilibrium together with σ (ω, q). Entropons coexist with
phonons and remain distinct from them. At a fixed q, the
frequencies corresponding to their peaks differ from those
of phonons. The amplitude of entropons is negligible with
respect to that of phonons in near-equilibrium conditions,
where the entropy production is small, whereas far from the
equilibrium entropons play the dominant role. Entropons will
be shown and discussed more specifically through explicit
examples in Sec. V.

IV. DERIVATION OF THE RESULT

We now prove the decomposition (5) and formulas (6)
and (9), and take advantage of the linearity of the system to
derive analytically the correlation C(ω, q), the response func-
tion Ruu(ω, q) and the entropy production σ (ω, q). Finally,
Ceq(ω, q) and Cneq(ω, q) are identified.

A. Dynamical correlations of the displacements

To derive the analytical expression for the dynamical cor-
relations of the particle displacements, it is convenient to
introduce the notation G(ω, q) = L−1(ω, q) as the inverse of
L(ω, q). From the linearity of the model, the solution for
each Cartesian component of the displacement û(ω, q) (for
instance, the x component) is given by

û(ω, q) = G(ω, q)F̂ (ω, q) + G(ω, q)
√

2T γ ξ̂ (ω, q). (12)

By multiplying Eq. (12) by û(−ω,−q) and averaging over the
noise, we get

〈û(ω, q)û(−ω,−q)〉
= +(2T γ )G(ω, q)G(−ω,−q)〈ξ̂ (ω, q)ξ̂ (−ω,−q)〉

+ G(ω, q)G(−ω,−q)〈F̂ (ω, q)F̂ (−ω,−q)〉, (13)

while, by accounting for Eq. (4), we obtain

C(ω, q) = (2T γ )G(ω, q)G(−ω,−q) + lim
t→∞

1

t

× G(ω, q) · 〈F̂ (ω, q)F̂ (−ω,−q)〉G(−ω,−q).
(14)

Quite intuitively, we identify the equilibrium and nonequilib-
rium parts of the dynamical correlations as

Ceq(ω, q) = (2T γ )G(ω, q)G(−ω,−q), (15)

Cneq(ω, q)= lim
t→∞

1

t
G(ω, q)〈F̂ (ω, q)F̂ (−ω,−q)〉G(−ω,−q).

(16)

The first line corresponds to the effect of the thermal noise
while the second line to the one of the nonequilibrium force.
We remark that the above results are obtained without speci-
fying the dynamics of F̂ (ω, q) and could be valid under more
general conditions, even in the presence of nonlinearities.
However, a nonlinear evolution equation for F̂ (ω, q) renders
much harder or even impossible the analytic determination of
the correlation function 〈F̂ (ω, q)F̂ (−ω,−q)〉.

B. Response function

By adding a small perturbative force h(ω, q) to Eq. (12),
the resulting perturbed dynamics reads

L(ω, q)û(ω, q) = F̂ (ω, q) +
√

2T γ ξ̂ (ω, q) + h(ω, q),

(17)

and applying the definition (7), we derive with respect to
h(ω, q) and obtain the response Rûû(ω, q) = G(ω, q), which
coincides with (8). We remark that in virtue of the linearity
of the system, Rûû(ω, q) is not affected by F̂ (ω, q), i.e., the
dynamical variables pushing the system out of equilibrium.
By this identification, the equilibrium part of the correlation,
Ceq(ω, q), defined in Eq. (15), can be rewritten as

Ceq(ω, q) = 2T γRuu(ω, q)Ruu(−ω,−q). (18)

Alternatively, by using the properties of the complex numbers
and, in particular, the general relation

|G(ω, q)|2 = − Im[G(ω, q)]

Im[G−1(ω, q)]
, (19)

we can express Ceq(ω, q) in a more familiar form as

Ceq(ω, q)

2T γ
= − Im[Ruu(ω, q)]

Im[L(ω, q)]
(20)

that corresponds to Eq. (6), i.e., the contribution of phonons
to the correlation function. Note that in the specific case for
which the Harada-Sasa relation has been proposed, we have
Im[L(ω, q)] = ω [32].

C. Calculation of the spectral entropy production

The spectral entropy production σ (ω, q) can be operatively
calculated by using path-integral methods in frequency ω

and wave vector q domains. In the framework of stochastic
thermodynamics [38–40], the entropy production ṡ measures
the degree of irreversibility of the trajectory of a stochastic
system [41] and is defined through path-integral methods as
[38,42–45]

ṡ = lim
t→∞

1

t

〈
log

[
P({û}|û0)

Pr ({û}|û0)

]〉
, (21)

where P({û}|û0) and Pr ({û}|û0) are the probability of forward
and backward trajectories, respectively. The path probabilities
depend on the whole time history of the dynamical variables
(denoted by curly brackets {·}) and are conditioned to the ini-
tial value û0. From now on, we denote variables or observables
of the reverse dynamics with the subscript r. The easier way
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to derive P and Pr is starting from the probability distribution
of the Gaussian noise vector ξ̂ (forward) and ξ̂r (backward),
conditioned to the initial value ξ̂0, and given by

p({ξ̂}|ξ̂0) ∼ eA, (22a)

pr ({ξ̂}|ξ̂0) ∼ eAr , (22b)

where A and Ar read

A = −1

2

∫
dω

2π

∑
q

ξ̂ (ω, q)ξ̂ (−ω,−q), (23a)

Ar = −1

2

∫
dω

2π

∑
q

ξ̂r (ω, q)ξ̂r (−ω,−q). (23b)

From here, we identify p ∼ P and pr ∼ Pr by performing a
change of variables ξ̂ (ω, q) → û(ω, q), using the equation of
motion (12). To carry out this program, one should estimate
the determinant of the transformation but, as known, in the
additive-noise case, the determinant does not affect the ex-
pression for the entropy production and can be safely ignored
[42,46]. In practice, A and Ar are identified as the forward and
backward actions associated with the dynamics by replacing

ξ̂ (ω, q) = (Le(ω, q) + Lo(ω, q))û(ω, q) − F̂ (ω, q)√
2T γ

(24)

and

ξ̂r (ω, q) = (Le(ω, q) − Lo(ω, q))û(ω, q) − F̂ (ω, q)√
2T γ

, (25)

where the expression of ξ̂r is obtained by applying the TRT
to the dynamics (12), i.e., using that ωr = −ω, ûr = û, and
F̂r = F̂ because, according to our choice, F is also even
under TRT.

By using the definition (10), one can identify the spectral
entropy production as

σ (ω, q) = lim
t→∞

1

t

〈ξ̂r (ω, q)ξ̂r (−ω,−q)〉
2

− lim
t→∞

1

t

〈ξ̂ (ω, q)ξ̂ (−ω,−q)〉
2

. (26)

After standard algebraic manipulations, obtained by using
Eqs. (24) and (25), σ (ω, q) reads

σ (ω, q) = lim
t→∞

1

t

Lo(ω, q)〈û(ω, q)F̂ (−ω,−q)〉
2T γ

+ c.c. (27)

Recalling that Lo(ω, q) = iIm[L(ω, q)], we immediately ob-
tain the explicit expression for σ (ω, q), Eq. (11).

Plugging Eq. (19) into the expression for σ (ω, q) and using
〈ξ̂〉 = 0, we obtain

σ (ω, q)

= lim
t→∞

1

t

Re[Lo(ω, q)〈û(ω, q)F̂ (−ω,−q)〉]
T γ

= lim
t→∞

1

t

〈F̂ (ω, q)F̂ (−ω,−q)〉Re[Lo(ω, q)G(ω, q)]

T γ

= − lim
t→∞

1

t

Im[L(ω, q)]Im[G(ω, q)]〈F̂ (ω, q)F̂ (−ω,−q)〉
T γ

,

(28)

where Re[·] means the real part and, in the last equality,
we have used the properties Lo(ω, q) = i Im[L(ω, q)] due
to the linearity of L. Finally, by using Eq. (19) to replace
Im[G(ω, q)] and the expression for Cneq(ω, q) [Eq. (16)], we
have

σ (ω, q) = Cneq(ω, q)[ImL(ω, q)]2

T γ
(29)

that coincides with Eq. (9) and concludes the derivation of our
results for the general dynamics (12).

V. EXAMPLES

In this section, we report several explicit examples of
solids, formed by particles in contact with a thermal bath
and described by underdamped equations of motion, for their
positions, xi, and the velocities, vi. They interact through the
total pairwise potential, Utot, given by

Utot =
N∑

i< j

U (|x j − xi|), (30)

where U (r) is a generic interaction potential that only depends
on the distance r between a pair of particles. The present the-
ory holds for general dimensionality and general potentials,
which can be attractive or repulsive, short or long range. In
all cases, interactions must be such that particles arrange in
solidlike configurations in a typical lattice structure where
defects are not statistically relevant and can be neglected. The
system should be characterized by large values of the density
close to the packing regime and/or values of equilibrium
and nonequilibrium fluctuations so the crystalline phase is
maintained.

For the sake of simplicity, here we restrict our discussion to
the case of short-range forces so a particle interacts only with
its first neighbors. Under this assumption, we Taylor expand
the potential around its minimum and obtain

Utot ≈ mω2
E

2

∗∑
i< j

(ui − uj)
2, (31)

where u j is the displacement of the particle j from its lattice

position and the sum
∗∑

is restricted only to first neighbors.
The quantity ωE represents the Einstein frequency of the solid
and depends on the spatial second derivatives of U (r) evalu-
ated at the lattice constant. Its functional form is determined
by the dimensions and the structure of the lattice. Explicit
expressions of ωE are reported in Appendix B.

In virtue of the approximations performed, the force acting
on each particle of the solid, Flattice

i , can be approximated as

Flattice
i ≈ −mω2

E

∗∑
j

(ui − u j ). (32)

Its Fourier transform in the domains of frequency, ω, and wave
vectors, q, reads

F̂lattice(ω, q) = −mω2(q)û(ω, q), (33)

where ω2(q) ∝ ω2
E/m is the dispersion relation determined

by the geometry of the lattice structure and the interaction.
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Explicit examples for ω2(q) are reported in Appendix B. In
this description, the interaction force is accounted for in the
term L(ω, q)û(ω, q) of Eq. (1).

A. Equilibrium crystals

In the framework of soft materials, equilibrium crystals
are periodic structures consisting of particles in equilibrium
with the environment. Examples are passive colloidal systems
at high density, for which inertia is really small and usually
neglected, and complex plasma, described by an underdamped
equation of motion where the degree of damping can be even
steered [7].

A crystal formed by particles in equilibrium with a thermal
bath at temperature T is described by the following under-
damped dynamics:

ẋi = vi, (34a)

mv̇i = −γ vi + Flattice
i +

√
2T γ ξi, (34b)

where ξi are vectors of white noise with zero average and such
that 〈ξi(t )ξi(0)〉 = δi jδ(t ). The energy injected by the thermal
noise,

√
2T γ ξi, is dissipated in the environment through the

viscous force −γ vi, proportional to the friction coefficient γ .
The force between particles that guarantees the solid structure
(large density regime) Flattice

i is given by Eq. (32). In this
system, we can identify the ratio τI = m/γ as the inertial time
of the system, i.e., the time necessary for the velocity to relax
under the influence of the linear friction force.

The dynamics in Fourier space reads(−mω2 + iωγ + mω2(q)
)
û(ω, q) =

√
2T γ ξ̂(ω, q), (35)

where the hat symbol denotes the double ω, q Fourier trans-
form. We also recall that the Fourier transform of the velocity
is related to the displacement by iωû(ω, q) = v̂(ω, q) and that
the Fourier transform of a white noise with zero average, i.e.,
ξ̂(ω, q), has zero average and correlation 〈ξ̂(ω, q)ξ̂(ω′, q′)〉 =
δ(ω + ω′)δ(q + q′).

Applying the general methods, described in Sec. III, the
dynamical correlations in Fourier space can be analytically
calculated after identifying the operator G(ω, q) = L−1(ω, q)
as

G(ω, q) = 1

mω2(q) − mω2 + iωγ
(36)

and, consequently, L(ω, q) as its inverse. By applying Eq. (6),
the equilibrium dynamical correlation Ceq(ω, q) yields

γ
Ceq(ω, q)

T
= 2

τ 2
I (ω2(q) − ω2)2 + ω2

, (37)

while Eq. (11) implies that

σ (ω, q) = 0. (38)

The system does not produce entropy and, as a consequence,
entropons disappear. This is the expected result in the case
of equilibriumlike solids, for which the dynamical correla-
tions are pure phonons. The frequency spectrum is, of course,
affected by τI , which has to be compared with the Einstein
frequency ωE : for τIωE � 1 (small damping regime), it con-
verges to a Dirac δ function displaying a peak at ω ∼ ω(q),

while for τIωE → 0 its shape flattens. Phonons are excited by
thermal fluctuations and, indeed, disappear in the limit T → 0
in the absence of Brownian fluctuations.

B. Self-propelled solids

Active systems are characterized by an internal mecha-
nism, often represented as an additional degree of freedom,
that converts energy from the environment to produce directed
(self-propelled) motion [18,47]. Coarse-grained nonequilib-
rium stochastic models are widely employed in the theoretical
descriptions of active particles both in overdamped and un-
derdamped regimes: a popular approach consists of adding a
time-dependent stochastic force, fa

i , to the velocity dynamics
Eq. (34). This force is a convenient representation of the
self-propulsion mechanism, which is a chemical reaction in
the case of Janus particles or the movement of flagella in the
case of bacteria, for instance. The self-propulsion fa

i is, in gen-
eral, responsible for the persistent trajectories experimentally
observed in these systems. The resulting equation of motion
reads

ẋi = vi, (39a)

mv̇i = −γ vi + Flattice
i +

√
2T γ ξi + fa

i . (39b)

The self-propelled (or active) force fa
i endows the particle with

a swim velocity, v0, and takes the form

fa
i = γ v0ni (40)

where ni is a stochastic process whose dynamics depends on
the specific model under consideration.

Within the active Brownian particle (ABP) model [48–55],
ni is represented as a unit vector, ni = (cos θi, sin θi ), where
θi represents the orientational angle of the active particle,
evolving as

θ̇i =
√

2Drηi. (41)

Here, ηi is a white noise vector with unit variance and zero
average and the prefactor sets the value of the rotational dif-
fusion coefficient Dr . It also determines the persistence time
of the particle trajectory, τ = 1/Dr (in two dimensions), i.e.,
the time after which the orientation of the active force is
randomized [56,57].

Recently, the active Ornstein-Uhlenbeck particle (AOUP)
model [58–63] has been proposed as an alternative to ABP.
AOUP was originally introduced to describe the behavior of
a passive tracer in a nonequilibrium bath of active particles
(to be precise, bacteria) [64,65], and later has been used as
a theoretical simplification of the ABP [48,66]. According to
the AOUP, ni evolves as an Ornstein-Uhlenbeck process with
typical time τ and unit variance

τ ṅi = −ni +
√

2τηi, (42)

where ηi is a vector of white noises with zero average and
unit variance. AOUPs show similar phenomena compared
to ABPs, displaying accumulation near walls [67–69] and
collective phenomena, such as motility-induced phase separa-
tion [70,71], and nonequilibrium spatial velocity correlations
[51,72–76] in dense active systems where the AOUP the-
ory has been employed to interpret the results from ABP
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simulations, for instance, predicting the value of the kinetic
temperature [77]. Further details concerning the relation be-
tween the two models are provided in Ref. [57].

This energy exchange induced by the active force pushes
a self-propelled particle out of equilibrium and leads to
entropy production [44,70,78–84], even in the absence of
external forces [85]. Except for special cases [86–88], such
as potential-free particles [85,89] and harmonic confinement
[90], entropy production in active systems can be investigated
only numerically, for instance, in active field theories [91–93]
and in particle-based numerical studies, in particular, in exter-
nal nonlinear potentials [80] and interacting systems showing
phase separation [94,95]. Only, recently, we have derived an-
alytical results for an interacting case, reporting the analytical
expression for the entropy production of active solids formed
by self-propelled particles [31], where simulations based on
ABPs have been compared with theoretical results obtained
through AOUPs.

The force between the particles is chosen as Eq. (32), i.e.,
the system is assumed to be in solidlike configurations. In two
dimensions, particles are arranged in a hexagonal lattice, as
usual for systems of pure repulsive particles at high density,
while a more complex scenario can occur in three dimen-
sions. To achieve active solid configurations, for instance,
with purely repulsive particles, one has to consider large
packing fractions and small equilibrium fluctuations (small
thermal temperature, for instance) but also small nonequilib-
rium fluctuations, controlled by the active temperature Ta =
v2

0γ τ . Indeed, in two dimensions the increase of Ta shifts
the melting transition to larger densities [72,96–102], induc-
ing a fluidization of the system, and broadens the hexatic
region [98,103,104]. Active solids were explored mostly in
one [105–109] and two dimensions [98,110–113], where they
exhibit fascinating phenomena without a passive counterpart,
displaying traveling crystals [114–116], spatial velocity corre-
lations [21,66,72], and collective rotations [117,118] as well
as an intriguing scenario in the formation of topological de-
fects [119]. However, before Ref. [31], collective excitations
in active solids were poorly investigated and understood.

In Fourier space, the dynamics of crystal formed by self-
propelled particles following the AOUP model reads

(−mω2 + iωγ + mω2(q))û =
√

2T γ ξ̂ + γ v0n̂, (43a)

(iωτ + 1)n̂ =
√

2τ η̂, (43b)

which compared with Eqs. (35) contains an extra active force
term n̂ = n̂(ω, q). To identify phonons and entropons, we
first recognize that G(ω, q), the response function, coincides
with the equilibrium expression (36). As a consequence, the
phonons of the active solids and those of the equilibrium
crystal have the same correlation function given by Eq. (37).
The nonequilibrium force, γ v0n, produces an additional con-
tribution to the displacement correlation, the entropons, and
generates entropy production as shown by the relation

Cneq(ω, q)

T
= σ (ω, q)

ω2γ
. (44)

Here, the spectral entropy production is given by

σ (ω, q) = Ta

T

K (ω)

τ 2
I

τ 2
I ω2

τ 2
I (ω2 − ω2(q))2 + ω2

, (45)

with K (ω) representing a Lorentzian shape function

K (ω) = 1

1 + ω2τ 2
, (46)

with an explicit dependence on ω but not on q. To calculate
expression (45), we use Eq. (28), which requires the knowl-
edge of G(ω, q), as well as the dynamical correlations of the
active force 〈n(ω, q) · n(−ω,−q)〉 derived in Appendix C.

Entropons coexist with phonons [31] as independent col-
lective excitations with strength proportional to the active
temperature Ta = v2

0γ τ and have the property of vanishing
at equilibrium when the active force also vanishes in the
limits v0 → 0 and/or τ → 0. By comparing the amplitudes
of phonons and entropons, we realize that entropons play a
negligible role when the thermal temperature is larger than
the active temperature, T � Ta, while entropons dominate
phonons in the opposite limit T  Ta.

Cneq(ω, q) as a function of frequency changes its shape
according to the values of q, the inertial time, and the per-
sistence time through K (ω). At fixed τIω(q), K (ω) kills the
high-frequency tails of Cneq(ω, q) when τ is large and shifts
the peaks of Cneq(ω, q) for frequency smaller than the disper-
sion relation ω(q). We remark that for τIω(q) → ∞ at fixed
τ , Cneq(ω, q) also becomes a δ function peaked at ω ∼ ω(q).

Finally, we comment that the theory based on the AOUP
model, originally developed in Ref. [31], has been success-
fully compared with simulations of ABP solidlike phases,
revealing a good agreement.

C. Self-propelled solids with alignment interactions

Several active matter systems display collective behaviors:
at the macroscopic scale, birds flock in the sky [120], fish
display schooling [121], and insects swarm in large clouds
[122]. Additionally, at the mesoscopic scale, cell monolayers
[20,123] and bacteria [124] exhibit similar phenomena, and
flocking behavior has been observed in active colloids, such
as Quincke rollers [125–128]. These phenomena are usually
reproduced through particle-based models involving the intro-
duction of explicit forces responsible for the local alignment
of the particles’ orientations [129]. An initial example of this
approach dates back to the pioneering work of Vicsek [130]
and successively to variants of his model [131], such as the
inertial spin model [132] introduced to account for experi-
ments showing bird flocking. Recently, the interplay between
repulsive interparticle forces and alignment interactions has
been investigated [133–135] and shows a rich phenomenology
displaying phase separation, flocking clusters [133,136,137],
and traveling bands [135].

Here, we include alignment between the orientations of
the particles in the perhaps simplest way, i.e., through linear
interactions between the orientational vectors of neighboring
particles. This is a sensible assumption because particles are
in a solidlike configuration. Again, by using the AOUP dy-
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namics, ni evolves according to

τ ṅi = −n +
√

2τηi + τα

∗∑
j

(n j − ni ), (47)

where α is a parameter determining the strength of the align-

ment and the sum,
∗∑

, runs over first neighbors. We have
restricted the alignment interactions to nearest neighbors but
the method could easily include alignment interactions of
next-nearest neighbors.

Applying the double FT, the dynamics takes the form

(−mω2 + iωγ + mω2(q))û =
√

2T γ ξ̂ + γ v0n̂, (48a)

(iωτ + 1 + ατω2(q))n̂ =
√

2τ η̂, (48b)

which resembles Eq. (43), except for the mapping 1 → 1 +
ατω2(q) in the dynamics of n̂(ω, q), Eq. (48b). As a conse-
quence, we expect solutions formally similar to those obtained
in the absence of alignment interactions, with a renormaliza-
tion of the persistence time. Upon identifying G(ω, q) with
Eq. (36), immediately we obtain the solution for Ceq(ω, q) that
coincides with that obtained for equilibrium and nonaligning
active solids [Eq. (37)]. As in the previous cases, the contribu-
tion of phonons is not affected by the active force and by the
presence of alignment interactions.

Now, the expression of Cneq(ω, q) formally coincides with
the one obtained for nonaligning active solids, i.e., Eq. (44)
with the difference entirely contained in the spectral entropy
production, which can be calculated by using Eq. (28) and,
then by estimating the dynamical correlation of the active
force γ 2v2

0〈n(ω, q) · n(−ω,−q)〉 (see Appendix C). In this
way, we obtain

σ (ω, q) = Ta

T

Ka(ω, q)(
1 + τα

ω2(q)
ω2

E

)2

ω2

τ 2
I (ω2 − ω2(q))2 + ω2

. (49)

As in the nonaligning active crystal, σ (ω, q) ∝ Ta/T and
contains the same term as the one featuring in Eq. (45) and
involving the difference ω2 − ω2(q). However, the presence
of alignment interactions induce an additional dependence
on the dispersion relation ω2(q) and a renormalized shape
function Ka(ω, q) given by

Ka(ω, q) =
(
1 + τα

ω2(q)
ω2

E

)2

(
1 + τα

ω2(q)
ω2

E

)2 + ω2τ 2
. (50)

We remark that, in this case, Ka(ω, q) also depends explicitly
on q through the dispersion relation ω2(q). Depending on
the value of τα, the shape function can significantly shift the
typical frequency ω at which Ka(ω, q) assumes values smaller
than 1. Its effect is conceptually similar to that of K (ω), since
Ka(ω, q) also cuts the high frequencies as α increases. As a
consequence, the increase of α changes the position of the
main peak of σ (ω, q), inducing a shift for smaller ω that sig-
nificantly depends on q, at variance with active solids without
alignment interactions where the shift is q independent.

D. Self-propelled solids with contact friction

In systems of cell monolayers [20,22,138,139] as well as in
passive and active granular matter [140,141], particles exhibit

contact friction forces that usually slow down the motion and
give rise to local alignment of the particle velocity. In this
case, the particle dynamics reads

ẋi = vi, (51a)

mv̇i = −γ vi + Flattice
i +

√
2T γ ξi + fa

i + Fc, (51b)

where the additional force Fc is given by

Fc = mγc

∗∑
j

(v j − vi ). (52)

Here, γc represents the friction coefficient due to contact fric-
tion between particles, and the sum

∑∗
j is restricted to the first

neighbors of the particle i. This force induces the alignment
between the particle velocities pushing vi towards the average
velocities of the neighboring particles.

The dynamics (51) can be easily expressed in Fourier space
as

(−mω2 + iωγ + mω2(q)[1 + iωγc])û =
√

2T γ η̂ + γ v0n̂,

(53)

where n̂ evolves as Eq. (43b). After identifying the expression
for G(ω, q) = Ruu(ω, q),

G(ω, q) = 1(−mω2 + iωγ + mω2(q)
[
1 + i ωγc

ω2
E

]) , (54)

and, consequently, L(ω, q) as its inverse, one determines the
phonon contribution, i.e., the equilibrium part, to the dynami-
cal correlation Ceq(ω, q) :

γ
Ceq(ω, q)

T
= 1

τ 2
I [ω2(q) − ω2]2 + [

1 + γcτI
ω2(q)
ω2

E

]2 .

(55)

At variance with all cases above, contact friction interac-
tions produce a shift in the spectrum of the thermally excited
phonons. Such a shift depends on q since the velocity cou-
pling term becomes larger as ω2(q) is increased and has an
amplitude determined by the contact friction coefficient γc.

We identify the contribution of entropons, due to the pres-
ence of the active force fa

i , as the nonequilibrium part of the
dynamical correlations of the displacement Cneq(ω, q),

γ
Cneq(ω, q)

T
= σ (ω, q)

ω2
(
1 + γcτI

ω2(q)
ω2

E

)2 , (56)

where the spectral entropy production σ (ω, q) has the same
expression as the one obtained in the case of active solids
without alignment interactions, i.e., Eq. (45). However, the
contribution of entropons to the correlation function is shifted
by contact frictions: the system behaves as if it was subject
to an effective friction coefficient γ + γcmω2(q)/ω2

E that de-
pends on the dispersion relation ω2(q) and becomes larger as
γc increases.

VI. CONCLUSIONS

A. Summary

In this paper, we have generalized the concept of en-
tropons originally introduced for active crystals formed by
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self-propelled particles in the absence of alignment interac-
tions [31]. Here, we have shown that the picture of entropons
is much more general and applies to a variety of out-of-
equilibrium crystals where each particle of the solid is driven
intrinsically. This generality is demonstrated for a broad class
of crystals reaching a nonequilibrium steady state and is dis-
cussed explicitly for several examples, such as active solids
formed by particles with alignment interactions or contact
friction forces. In these cases, the spectral entropy produc-
tion, the dynamical correlations of the particle displacement,
and its response function have been analytically calculated
as a function of the model parameters. This corroborates the
distinction between thermal phonons, excited by Brownian
translational noise, and activity-induced entropons originating
from the intrinsic nonequilibrium nature of the dynamics and
associated with the entropy production and, thus, violation of
detailed balance.

B. Discussion

Entropons provide a link between solid-state physics and
stochastic thermodynamics, showing how nonequilibrium ob-
servables such as entropy production are related to the
formation of unique collective excitations. The concept we
are proposing is rather general: entropons characterize any
nonequilibrium active crystals and not just solids formed by
self-propelled particles (ABPs). While we have explored in
this paper the existence of entropons for diagonal systems,
where different spatial components of the dynamics are not
coupled in Fourier space, a theoretical challenge could be
represented by the extension of our results to nondiagonal
cases, where, for example, a magnetic field [142,143] induces
spontaneous rotations in the particle trajectories. Even more
challenging is the case of nonequilibrium forces, which are
odd under time reversal [42], that, in principle, could lead to
collective excitations with different properties.

The fact that entropons occur in different nonequilibrium
systems will facilitate their verification in future experiments,
both at the micron and macroscopic scales. At the micron
scale, these experiments can, in principle, involve cell mono-
layers at high density [20] that include contact friction forces.
Moreover, entropons are observable in two-dimensional crys-
tals formed by active colloidal particles. Explicit examples
are Janus particles in the denser phase of a motility-induced
phase-separated system [25–27], sometimes termed living
crystals [28,29], or in a glassy regime [144,145]. Other good
candidates are high-density suspensions of Quincke rollers
[125,126], i.e., electrically driven colloids which can ex-
hibit passive or motile crystallites [127]. We observe that the
anisotropic and alignment interactions studied in this paper
are often relevant in these systems. Another promising ex-
ample involves complex plasma crystals [7] which can be
enriched by light-induced activity [146]. In addition, at the
macroscopic scale, entropons are observable in solids formed
by active granular particles that have been recently exper-
imentally realized by connecting neighboring particles by
springs [30]. Active granulars are often modeled by means
of alignment torques [147], which falls into the generalization
reported in this paper.

Finally, we point out that entropons are qualitatively dif-
ferent from bosons peaks, for instance occurring in glasses
or supercooled liquids. These soft modes originate from the
absence of long-range translational order in the system, at
variance with entropons that are predicted through an ideal
theory based on elastic solids. Understanding how entropons
interfere with those boson peaks represents a promising future
research line to shed light on unique aspects of nonequilibrium
physics.
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APPENDIX A: DEFINITION OF THE FOURIER
TRANSFORMS

In this Appendix, we provide the definitions of the Fourier
transforms of the dynamical variable of the system (displace-
ment, velocity, nonequilibrium force, active force, and so on)
in the domains of frequency ω and wave vector q. For the sake
of notational convenience, we denote the Fourier transform of
a variable by a hat. They are obtained by applying the operator

lim
tw→∞

∫ tw/2

−tw/2
dt

N∑
i=1

e−iq·x0
i e−iωt (A1)

to a dynamical variable. In particular, the Fourier transform
of the particle displacement with respect to its unperturbed
position in the lattice, i.e., ui = xi − x0

i , and that of the general
nonequilibrium force Fi(t ) are given by

û(ω, q) = lim
tw→∞

∫ tw/2

−tw/2
dt

N∑
i=1

uie
−iq·x0

i e−iωt , (A2a)

F̂(ω, q) = lim
tw→∞

∫ tw/2

−tw/2
dt

N∑
i=1

Fie
−iq·x0

i e−iωt , (A2b)

where the time used to define the Fourier transform, tw, in
practice, corresponds to the time window of the simulations.

APPENDIX B: EXPRESSIONS FOR THE EINSTEIN
FREQUENCY OF THE SOLID

The dispersion relation of a solid ω(q) and the Einstein
frequency ωE depend on the dimension of the system and on
the type of lattice where the particles organize. To fix ideas,
here, we report the expressions for ω(q) in several cases of
interest, defining r̄ as the lattice constant, i.e., the average
distance between neighboring particles.

(1) For a d-dimensional solid, characterized by a square
or cubic lattice, the dispersion relation is given by

ω2(q) = 2dω2
E (1 − cos (qr̄)), (B1)

while the Einstein frequency reads

ω2
E = 1

2m
U ′′(r̄). (B2)
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Here, each prime denotes a derivative with respect to the
argument of the potential calculated at r̄.

(2) In the two-dimensional case, where particles typically
arrange on a triangular lattice, the dispersion relation is

ω2(q) = 2ω2
E

[
3 − cos (qxr̄) − 2 cos

(qx

2
r̄
)

cos

(√
3

2
qyr̄

)]
,

(B3)

while the Einstein frequency of the solid reads

ω2
E = 1

2m

(
U ′′(r̄) + U ′(r̄)

r̄

)
. (B4)

APPENDIX C: EXPLICIT CALCULATION OF THE
ENTROPY PRODUCTION FOR ACTIVE SOLIDS WITH

AND WITHOUT ALIGNMENT INTERACTIONS

In this Appendix, we report the explicit calculation
for spectral entropy production σ (ω, q) in the case of
self-propelled (active) solids with and without alignment in-
teractions between the active forces. As shown in Sec. III
[Eq. (11)], σ (ω, q) can be expressed as

σ (ω, q) = lim
t→∞

i

t

Im[L(ω, q)]

2T γ
〈û(ω, q)F̂(−ω,−q)〉 + c.c.

(C1)

for the class of models that we have studied in this paper. In
the case of active solids, since L(ω, q) is given by

L(ω, q) = mω2(q) − mω2 + iωγ , (C2)

we have

Im[L(ω, q)] = ωγ . (C3)

The Fourier transform of the general force F̂(ω, q) can be
identified with the Fourier transform of the active force
γ v0n̂(ω, q).

By using the equation of motion for û(ω, q), i.e., Eq. (43a),
and that 〈ξ̂(ω, q) · F̂(ω, q)〉 = 0, we obtain

σ (ω, q) = lim
t→∞

1

t

γ 2v2
0

2T

iω〈n̂(ω, q)n̂(−ω,−q)〉
mω2(q) − mω2 + iωγ

+ c.c. (C4)

The dynamical correlation 〈n̂(ω, q)n̂(−ω,−q)〉 is calculated
by using the dynamics of the active force in the AOUP model
[Eq. (48b)] to obtain

n̂(ω, q) =
√

2τ η̂(ω, q)

(iωτ + 1 + ατω2(q))
, (C5)

and by multiplying the result by n̂(−ω,−q) and taking the
average over the noise:

〈n̂(ω, q)n̂(−ω,−q)〉

= 2τ 〈η̂(ω, q)η̂(−ω,−q)〉(
ω2τ 2 + (1 + ατ

ω2(q))2

ω2
E

) ,

= 2τ 〈η̂(ω, q)η̂(−ω,−q)〉 Ka(ω, q)(
1 + τα

ω2(q)
ω2

E

)2 . (C6)

Using the property 〈η̂(ω, q) · η̂(ω′, q′)〉 = δ(ω + ω′)δ(q +
q′) that cancels out the term limt→∞ 1/t , we get

σ (ω, q) = Ta

T

Ka(ω, q)(
1 + τα

ω2(q)
ω2

E

)2

iωγ

mω2(q) − mω2 + iωγ
+ c.c.

= Ta

T

Ka(ω, q)(
1 + τα

ω2(q)
ω2

E

)2

ω2

τ 2
I

(
ω2

q − ω2
)2 + ω2

,

(C7)
which coincides with the final expression for σ (ω, q), i.e.,
Eq. (45) for α = 0 (such that Ka → K) or Eq. (49) with α �= 0.
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