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Chiral active matter in external potentials

Lorenzo Caprini, *a Hartmut Löwen a and Umberto Marini Bettolo Marconi bc

We investigate the interplay between chirality and confinement induced by the presence of an external

potential. For potentials having radial symmetry, the circular character of the trajectories induced by the

chiral motion reduces the spatial fluctuations of the particle, thus providing an extra effective confining

mechanism, that can be interpreted as a lowering of the effective temperature. In the case of non-radial

potentials, for instance, with an elliptic shape, chirality displays a richer scenario. Indeed, the chirality can

break the parity symmetry of the potential that is always fulfilled in the non-chiral system. The probability

distribution displays a strong non-Maxwell–Boltzmann shape that emerges in cross-correlations between

the two Cartesian components of the position, that vanishes in the absence of chirality or when radial

symmetry of the potential is restored. These results are obtained by considering two popular models in

active matter, i.e. chiral Active Brownian particles and chiral active Ornstein–Uhlenbeck particles.

I. Introduction

Active matter, encompassing a wide range of self-propelled
entities, has emerged as a fascinating field of study in soft
matter and non-equilibrium statistical physics.1,2 Typical active
systems are artificial particles, such as active colloids, active
granular particles, and drones, but also living systems with
biological origins, such as bacteria, sperms, and several ani-
mals. These systems usually self-propel by virtue of internal
mechanisms that convert energy to produce a net motion,
through chemical reactions, cilia, flagella, and internal motors,
to mention a few examples.

In several cases, the self-propelled motion is characterized
by an almost straight path and a fluctuating orientation that
changes stochastically without a preferential direction. This motion
is induced by the breaking of the translational symmetry at the
single-particle level in the body or in the swimming and running
mechanism that induces a net polarity in the particle. The physical
or biological systems displaying this motion are classified as linear
particles or swimmers. This is the standard scenario for several
bacteria, such as E. coli, active colloids, such as Janus particles, or
polar active granular particles. However, in nature, several active
systems show trajectories systematically rotating clockwise or coun-
terclockwise, the so-called chiral or circular self-propelled particles.3

The concept of chirality or handedness was introduced by
Lord Kelvin more than one century ago in reference to the

circular (helical) motion produced by solid bodies with asymmetric
shapes in two (three) dimensions. Nowadays, chirality has been
renewed in the field of active matter,4 being observed for instance
in proteins,5 bacteria6,7 and sperms8 moving on a two-dimensional
planar substrate, and L-shape artificial microswimmers.9 In addi-
tion, even spherical (non-chiral) particles can show circular (chiral)
trajectories due to asymmetry in their self-propulsion mechanism,
as occurs in colloidal propellers in a magnetic or electrical field,10

and cholesteric droplets.11 In addition, granular systems such as
spinners12,13 and light-driven walkers propelled through internal
vibrations14 usually display chiral motion.

Being ubiquitous in nature, the interest in chiral active
matter is recently showing exponential growth in time, in differ-
ent contexts ranging from the statistical properties of single-
particles to collective phenomena displayed by interacting sys-
tems. Through the introduction of simple models, the single-
particle chiral active motion has been explicitly explored9,15 with
a focus on the mean-square displacement,16,17 in a viscoelastic
medium,18 in the presence of pillars19 or sinusoidal channels.20

In channel geometries, chirality is also responsible for the
reduction of the accumulation near boundaries typical of active
systems and for the formation of surface currents.21,22 In the case
of interacting systems, chirality is able to suppress the clustering
typical of active particles23–26 but induces novel phenomena, such
as emergent vortices induced by the chirality27,28 or a global
traveling wave in the presence of a chemotactic alignment.29 Chiral
active particles exhibit fascinating phenomena also in the presence
of alignment interactions giving rise to pattern formation30,31

consisting of rotating macro-droplets,32 chiral self-recognition,33

dynamical frustration,34 and chimera states.35 In addition, chir-
ality appears as a fundamental ingredient to observe the hyper-
uniform phase36,37 in active matter as well as emerging odd
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properties38,39 for instance in the viscosity,40–42 elasticity,43 and
mobility.44 Recently, the circular motion has been also investigated
in the framework of active glasses where it gives rise to a novel
oscillatory caging effect entirely due to the chirality.45

Chirality could play a fundamental role in several applica-
tions due to their emerging properties, such as sorting46–49 and
synchronization.50,51 For instance, chiral microswimmers can
be sorted according to their swimming properties by employing
patterned microchannels with a specific chirality.46 Chirality is
also at the basis of the ratcheting mechanism observed in an
array of obstacles52 even leading to translation at fixed angles
with respect to the substrate periodicity due to a periodic
potential.53 Moreover, binary mixtures of passive and active
chiral particles, as well as mixtures of chiral particles with
opposite chiralities show demixing.54–57 Spontaneous demixing
has been also observed experimentally in a system of active
granular particles, the so-called spinners that are self-propelled
because of the asymmetry of internal components of their
bodies.58

Despite the recent attention on chiral active matter, the
interplay between chirality and external confinement due to an
external potential has been less investigated59 to the best of our
knowledge. Here, we focus on an active chiral particle in a radial
(circular) and non-radial (elliptic) potential, exploiting the influ-
ence of circular motion on the properties of the system. In
particular, we perform a numerical and analytical study based
on two popular models in active matter, i.e. the chiral active
Brownian particles and chiral active Ornstein–Uhlenbeck particles.
We anticipate that for a radial potential, the chirality induces only
an increasing confinement in the particle’s dynamics, effectively
reducing the fluctuations of the systems and, thus its effective
temperature (Fig. 1(a)). In contrast, in the case of non-radial
potential, the chirality is able to break the parity symmetry of an
elliptic potential. This is reflected, for instance, in the occurrence
of strong correlations between different spatial components of the
system (Fig. 1(b)). This effect is uniquely based on the interplay
between chirality and spatial asymmetry of the potential.

The paper is structured as follows: in Section II, we introduce
and discuss the models, i.e. chiral active Brownian particles and
chiral active Ornstein–Uhlenbeck particles, employed to perform
the numerical and analytical study. The dynamics in the radial and
non-radial potentials are analyzed in Sections III and IV, respec-
tively. We summarize the results and report a conclusive discus-
sion in the final Section V. Finally, for the sake of completeness but
also to render the presentation lighter, we reported in an appendix
the derivation of the Fokker–Planck equation governing the evolu-
tion of the probability distribution function of the chiral active
model together with a pair of simple illustrative cases.

II. Model

An active particle in the overdamped regime is described by the
following dynamics for the particle position x:

g _x ¼ FðxÞ þ g
ffiffiffiffiffiffiffiffi
2Dt

p
wþ gv0n; (1)

where w is a Brownian white noise with unit variance and zero
average accounting for the random collisions with the particle
of the solvent. The coefficient g is the friction coefficient due to
the solvent, while Dt is the translational diffusion coefficient of
the system. The term F(x) is the external force due to an external
potential U(x), such that F =�rU. The last force term in eqn (1),
namely v0gn, known as active force, describes at a coarse-
grained level the chemical, biological or physical mechanism
responsible for the self-propulsion. The constant v0 provides a
velocity scale to the dynamics and it is often referred to in the
literature as swim velocity, while the vector n is a stochastic
process with unit variance whose properties and dynamics
determine the active model considered. n is an additional
degree of freedom that is absent for equilibrium systems where
v0 = 0. Despite the generality of eqn (1), for simplicity, we
restrict ourselves to two spatial dimensions.

A. Chiral active Brownian particles (ABPs)

In the ABP dynamics60–64 independently of the chirality, the
term n is a unit vector, such that |n| = 1, usually associated with
the orientation of the active particle. Since the modulus of n is

Fig. 1 Chiral active particles in external confinement. Illustration of a
chiral active particle displaying circular motion. Panel (a): In the presence
of an external potential with radial symmetry (circular cross-section), a
decrease in the effective temperature is induced by the increase of the
chirality. Panel (b) for non-radial external potential with an elliptic cross-
section, the chirality breaks the parity symmetry typical of the potential
leading to a non-Boltzmann probability distribution with emerging corre-
lations between different Cartesian components of the position.
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unitary, the dynamics of n can be conveniently expressed in
polar coordinates. In this representation, n = (cos y,sin y),
where y is the orientational angle of the active particle that
evolves as a simple diffusive process:

_y ¼
ffiffiffi
2

t

r
xþ o; (2)

where x is a white noise with unit variance and zero average and
the typical time t can be identified with the persistence time
induced by the rotational diffusion coefficient Dr = 1/t.

In the ABP dynamics, the chirality is introduced by adding
an angular drift o in eqn (2), which breaks the rotational symmetry
of the active force dynamics and induces a preferential rotation of
the vector n in the clockwise or counterclockwise direction
depending on the sign of o. As a consequence, the single-
particle trajectories of a chiral ABP tend to be circular. The value
of |o| determines the strength of chirality: the larger o, the smaller
the typical radius of the circular trajectories of a single particle,
given by v0/o.

B. Chiral active Ornstein–Uhlenbeck particles (AOUPs)

In the AOUP dynamics,65–71 n is described by a two-dimensional
Ornstein–Uhlenbeck process that allows both the modulus |n|
and the orientation y to fluctuate with related amplitudes.72 The
AOUP distribution is a two-dimensional Gaussian such that
each component fluctuates around a vanishing mean value with
unit variance. The resulting dynamics of the vector n reads:

_n ¼ �n
t
þ

ffiffiffi
1

t

r
wþ on� z (3)

where w is a two-dimensional vector of white noises with
uncorrelated components having unitary variance and zero
average. Here, t represents the persistence time of the particle
trajectory, i.e. the time that the particle, in the absence of
angular drift, spends moving in the same direction before a
reorientation of the active force. In the AOUP model the diffu-
sion coefficient due to the active force is obtained from the
relation 2Da/t = v0

2t, which allows a simple comparison between
AOUP and ABP models.72,73

In the AOUP dynamics, the chirality is included by adding
the force on � z, where z is the direction orthogonal to the
plane of motion and the parameter o quantifies the chirality of
the particle.21 Such a force is always directed in the plane of
motion, normal to z, and is orthogonal to n, so that it rotates
the self-propulsion vector in the clockwise or counterclockwise
direction depending on the sign of o. Similarly to the chiral
ABP model, the chiral AOUP dynamics displays circular trajec-
tories. However, in contrast with the ABP dynamics, the typical
circles observed by an AOUP are characterized by a fluctuating
radius, that on average is equal to the one of the ABP and Ev0/
|o|. It is worth noting that the chiral term in the AOUP
dynamics is totally equivalent to the chiral term in the ABP
dynamics. Indeed, the constant force on � z in polar coordi-
nate affects only the dynamics of the polar angle through a
constant term equivalent to the driving angular velocity written
in eqn (2).

C. Relation between chiral AOUPs and chiral ABPs

Despite the AOUP and ABP dynamics are different, both are
usually employed to describe active particles and display simila-
rities so that AOUP has been often employed to derive analytical
predictions suitable to describe ABP numerical results. The
reason of this agreement lies in the fact that the two-time self-
correlations of n of the two models are identical with an appro-
priate choice of parameters.21,72,74 For both cases, we find

hnðtÞ � nð0Þi ¼ e�
t
t cosðotÞ: (4)

It is worth noting that, in eqn (4), the chirality affects the shape of
the autocorrelation by inducing oscillations.

Despite ABP and AOUP have different dynamics and are
characterized by different steady-state distributions, such dynami-
cal properties are at the basis of a plethora of similar phenomena
observed for a single particle but also for interacting systems. A
comparison between the two models has been established for a
single non-chiral active particle and a non-chiral active particle in a
harmonic potential, while, more generally, the relation between
the two models has been deepened in ref. 72. However, the effect
of chirality in the two models confined in an external potential has
been poorly investigated in the literature.

III. Chiral active particle in a radial
potential

We start by considering a chiral active particle confined by a
simple harmonic potential in two dimensions, U(x) = kx/2, that
exerts a linear force on the particle directed towards the origin.

Both in chiral ABP and chiral AOUP simulations, it is
convenient to rescale time by the persistence time t and the
position by the persistence length v0t (the dimensionless
dynamics is reported in Appendix A). In this way, the chirality
can be tuned by changing the dimensionless parameter ot,
which we call reduced chirality. The other dimensionless para-
meters of the simulations are the reduced stiffness of the
potential kt/g and the ratio between passive and active diffusion
coefficients, Dt/(tv0

2). For simplicity, we set Dt = 0 and eliminate
Dt/(tv0

2). Indeed, the thermal noise is orders of magnitudes
smaller than the diffusion due to the active force in several
experimental systems.2 The assumption that Dr and Dt are
independent is reasonable for several experimental cases, such
as active granular particles at the macroscopic scale or bacteria
and sperm swimming close to a surface. For these systems, the
persistence time, i.e. the inverse of the rotational diffusion
coefficient, has no thermal origin.

The reduced stiffness kt/g can be interpreted as the ratio
between persistence length v0t and penetration length of the
potential v0g/k. The first determines the distance traveled by an
active particle before changing direction, while the second
quantifies how much the particle can climb the potential and
accumulate far from the potential minimum. The effect of this
parameter has been explored in the AOUP case analytically,65

and in the ABP case numerically72 and experimentally75 by
considering an active Janus particle in an optical tweezer.
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As a consequence, we chose kt/g = 1 that selects an interesting
regime where an active particle behaves differently from a
passive one. In contrast to previous works, in this paper, we
focus on the role of reduced chirality, ot.

Active particles in radial potentials76–82 have been widely
investigated in the absence of chirality for which we summarize
the results: the AOUP dynamics in a harmonic potential can be
solved exactly,65,83–86 being fully linear, and is described by a
multivariate Gaussian distribution in x and n. As a consequence,
the density p(x) of the system is still Gaussian and the active
force affects the distribution by changing its effective tempera-
ture only.65,87–89 The ABP dynamics in harmonic potential has
been exactly solved only recently90,91 and leads to a more
intriguing scenario.92,93 While in the small persistence regime,
(small t or large Dr), the density is Gaussian72 and similar to the
one of the AOUP, in the large persistence regime, ABPs accu-
mulate far from the potential minimum, as confirmed experi-
mentally by active colloids,75,76 roughly at the distance where
the active force balances the potential force, i.e. at |x| E v0g/k. As
a result, the two-dimensional density in the plane of motion is
characterized by a Mexican-hat shape while the density, pro-
jected onto a single coordinate, displays bimodality. The results
observed in the ABP are reminiscent to those originally obtained
of considering Run&Tumble particles.94–96

A. Spatial distribution

To investigate the role of chirality, we plot the probability
distribution p(x,y) in the plane of motion for three representative
values of the reduced chirality, ot. This analysis is performed
both for the ABP (Fig. 2(a)–(c)) and AOUP (Fig. 2(d)–(f)) models.

In the chiral AOUP case, the system is linear and, as a
consequence, p(x,y) is a Gaussian centered at the origin in both
spatial directions, independently of the value of ot. The
increase of the chirality induces a stronger confinement of
the particle as if the potential was stiffer or the dynamics
governed by a lower effective temperature. Indeed, the system
is described by the following p(x,y)

pðx; yÞ ¼ N exp �kðx
2 þ y2

2Teff

� �
(5)

with effective temperature (in units of Boltzmann constant,
kB = 1)

Teff ¼
x2
� �
k
¼

1þ t
g
k

1þ t
g
k

� �2

þo2t2
tgv02: (6)

The theoretical results (5) and (6) are derived in Appendix C,
while the general method is described in Appendix B. The

Fig. 2 Probability distributions for an active chiral particle in a harmonic radial potential. Probability distribution, p(x,y), as a function of the rescaled
position, x/(v0t) and y/(v0t), for a chiral active particle in a harmonic potential. Panels (a)–(c) are obtained by considering the ABP dynamics, while panels
(d)–(f) are obtained by considering the AOUP dynamics. The p(x,y) are shown for several values of the reduced chirality, ot, as indicated in the figure: ot =
0.5 (panels (a) and (d)), ot = 2 (panels (b) and (e)), ot = 5 (panels (c) and (f)). The remaining parameters of the simulations are: kt/g = 1 and Dt/(v0

2t) = 0.
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effective temperature Teff is consistent with the expression for
ot { 1, which a decrease as t - 0 and an increase propor-
tional to v0

2. The effect of chirality o manifests itself as a
decrease of the effective temperature, consistently with
Fig. 2(a)–(c).

As expected, the ABP case is richer: for small values of ott 1,
chiral ABPs accumulate at a finite distance from the minimum of
the potential (Fig. 2(a)) as already observed in the absence of
chirality. The distribution displays the typical Mexican-hat shape,
i.e. the particles accumulate on a ring roughly at distance Ev0g/k
from the origin (note that, in our dimensionless description, this
effect is quantified by the inverse of the reduced stiffness kt/g). In
this regime, the increase of the chirality broadens the width of
the ring. The tendency of particles to rotate (on average) in a
clockwise (counterclockwise) direction hinders the ability of the
particles to accumulate out of the minimum: a particle accumu-
lated at a radial distance Ev0g/k could change the direction of the
activity due to the rotation induced by the chirality. For larger
values of ot B 1, the rotations of the particles are stronger and
characterized by a smaller radius of the circle. Thus, the accu-
mulation is observed at a position much closer to the minimum
of the potential with respect to the previous case (Fig. 2(b)):
particles cannot reach the position v0g/k before the chirality turns
the direction of the active force and particles arrive at this
position. Finally, the accumulation is completely suppressed for
ot \ 1, when the particle simply performs small circular
trajectories around the minimum of the potential. In the latter
regime (Fig. 2(c)), p(x,y) is again peaked at the origin and the
effect of chirality can be mapped again onto an effective tem-
perature. This occurs because the radius of the circular trajectory,
namely v0/o is smaller than the typical distance at which particles
accumulate v0g/k. As a consequence, particles’ ability to climb on
the potential is contrasted by their tendency to spin and perform
circular trajectories close to the potential minimum.

B. Projected density and moments of the distribution

In Fig. 3 the spatial density, p1(x), projected onto a single
spatial component are plotted for several values of reduced
chirality ot. As expected, the ABP case (Fig. 3(a)) is richer than
the AOUP case (Fig. 3(b)). The latter is characterized by a
Gaussian p1(x), whose variance varies with ot, while the former
shows a transition from a bimodal distribution (characterized
by two lateral peaks) to a unimodal distribution, when ot \ 1.
We consider the moment of this distribution both for ABP and
AOUP cases. By symmetry, the first moment is zero, while in
both models, the variance hx2i of p(x) displays a monotonic
decrease with ot starting at ot B 1. For the variance of the
distribution, both AOUP and ABP dynamics show consistent
results. Finally, we study the kurtosis of the distribution hx4i/
hx2i2 in the AOUP and ABP to quantify the non-Gaussianity of
the latter. In the AOUP case, the kurtosis is equal to 3 being the
model Gaussian, whereas in the ABP, the kurtosis is always
smaller than 3 as a result of the non-Gaussian nature of the
distribution. As ot increases the kurtosis goes from a value E2
(when p1(x) is bimodal) to a large asymptotic value slightly
smaller than 3 (where p1(x) is unimodal). This implies that the

chirality reduces the non-Gaussianity of the distribution but
that the unimodal p1(x) observed for larger ot is still non-
Gaussian. Indeed, even if the accumulation far from the
potential minimum is completely suppressed, particles con-
tinuously rotate in the clockwise or counterclockwise direction
depending on the chirality sign. This reflects in the occurrence
of non-Gaussian tails in the distribution.

IV. Chiral active particle in a non-radial
potential

In this section, we investigate the dynamics of an active chiral
particle in a potential that breaks the rotational symmetry of
the system. We consider a harmonic potential with an elliptic

shape: Uðx; yÞ ¼ 1

2
kxx

2 þ kyy
2

� �
. Such a potential introduces an

additional dimensionless parameter, ky/kx, which quantifies the
asymmetry of the potential and chose ky/kx = 3. The remaining
dimensionless parameters are kyt/g = 1 and Dt/(tv0

2) = 0. Here,
again we vary the reduced chirality ot to study the interplay
between chirality and asymmetry of the potential.

The asymmetry between the two orthogonal directions in the
corresponding equilibrium system would be fully described by
the Maxwell–Boltzmann distribution: particles fluctuate around
the origin and explore larger regions of space along the direc-
tion where the potential gradient is weaker. The generalization

Fig. 3 Longitudinal density and its moment for an active chiral particle in
a harmonic radial potential. Panels (a) and (b): density distribution p(x)
projected onto the x axis as a function of the rescaled position x/(v0t) for
several values of the reduced chirality. Panels (a) and (b) are obtained by
considering the ABP and the AOUP dynamics, respectively. Panel (c):
variance of the distribution hx2i as a function of ot. Panel (d): Kurtosis of
the distribution hx4i/hx2i2 as a function of ot. Both in panels (c) and (d), ABP
and AOUP are represented by red and blue symbols. The black solid line in
panel (c) represents the theoretical prediction, eqn (6), the dashed blue line
in panel (d) marks the value corresponding to the Gaussian prediction and
finally, the red dashed line is an eye-guide marking the asymptotic value
obtained by the Kurtosis of the ABP. The remaining parameters of the
simulations are: kt/g = 1 and Dt/(v0

2t) = 0.
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to non-chiral active particles is rather straightforward both for
AOUP and ABP and does not present significant changes with
respect to the symmetric case. Indeed, the non-chiral AOUP in
the potential U(x,y) is characterized by a Gaussian distribution
similar to the equilibrium case, while the non-chiral ABP, dis-
plays accumulation away from the minimum on an ellipsoidal
domain rather than a circular one. Intuitively, the accumulation
along the more confined direction will be stronger.

A. Spatial distribution and cross-correlations

The role of chirality in a harmonic elliptic potential is analyzed
by studying the two-dimensional density distribution p(x,y).
The analysis is performed both for ABP and AOUP dynamics
and for several values of the reduced chirality ot (Fig. 4).

In the AOUP case (Fig. 4(e)–(h)), p(x,y) displays a Gaussian
shape, i.e. particles preferentially explore the spatial regions
close to the origin, i.e. the minimum of the potential. For small
ot { 1 (Fig. 4(e)), the findings are consistent with the non-
chiral scenario: active particles explore the elliptic region
around the origin and the chirality slightly decrease the spatial
fluctuations as seen in the case of a radial potential. The effect
of the chirality emerges for larger values of ot. As shown in
Fig. 4(f)–(h), the chirality tilts the main axis of the ellipse where
the particles accumulate. As a consequence, p(x,y) has a non-
Maxwell–Boltzmann shape, since the distribution cannot be
expressed as p(x,y) B e�U/Teff, with kB = 1. As already remarked,

this effect is absent for non-chiral AOUP, and, thus, is purely
induced by the interplay between the chirality and the breaking
of the radial symmetry of the confining potential. In general, we
observe that the increase of ot increases the tilt angle of the
ellipsoid until it reaches a saturation value that by symmetry
cannot exceed p/4. Finally, for ot \ 1 the chirality leads to a
stronger confinement and, thus, decreases the effective tem-
perature of the system without altering the ellipsoidal shape of
the potential, as shown from Fig. 4(g)–(h). The last observation
is consistent with the finding relative to the radial potential of
Section III.

The numerical results are confirmed by the expression for
the probability distribution p(x,y) that reads (see Appendix C)

pðx; yÞ ¼ C exp �1
2

y2
� �

x2 þ x2
� �

y2 � 2hxyixy
hx2ihy2i � hxyi2

� �
(7)

where the variances hx2i and hy2i are given by

x2
� �

¼ v0
2tg
kx

1þ t
g
kx

� �

1þ t
g
kx

� �2

þO2t2
(8)

y2
� �

¼ v0
2tg
ky

1þ t
g
ky

� �

1þ t
g
ky

� �2

þO2t2
: (9)

Fig. 4 Probability distributions for an active chiral particle in a harmonic elliptic potential. Probability distribution, p(x,y), as a function of the rescaled
position, x/(v0t) and y/(v0t), for a chiral active particle in a harmonic potential. Panels (a)–(d) are obtained by considering the ABP dynamics, while panels
(e)–(h) are obtained by considering the AOUP dynamics. The p(x,y) are shown for several values of the reduced chirality, ot, as indicated in the figure: ot
= 0.2 (panels (a) and (e)), ot = 0.5 (panels (b) and (f)), ot = 2 (panels (c) and (g)), ot = 5 (panels (d) and (h)). The remaining parameters of the simulations are:
ky/kx = 3, kt/g = 1, and Dt/(v0

2t) = 0.
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Expression (7) shows that the interplay between chirality and
elliptic confinement induces a cross-correlation hxyi. The shape
deformation of the probability distribution observed numeri-
cally in Fig. 4 is described analytically by the formula:

hxyi ¼ ot
v0

2tg
kx þ ky

1

1þ t
g
ky

� �2

þo2t2
� 1

1þ t
g
kx

� �2

þo2t2

0
BBB@

1
CCCA:

(10)

The cross-correlation vanishes for o - 0 and displays a non-
monotonic behavior as a function of the reduced chirality: it is
positive or negative depending on the sign of o and on the ratio
ky/kx, and vanishes when the radial symmetry is restored (kx = ky).

As in the case of radial potential, the ABP dynamics displays
a richer scenario (Fig. 4(a)–(d)). For small reduced chirality
ot{ 1 (Fig. 4(a)), particles accumulate away from the potential
minimum along the ellipsoid determined by the potential. In
particular, particles accumulate more along the x direction
where the system is more confined, with respect to the y
direction. In this regime, the increase of the chirality is able
to change the orientation of the accumulation area introducing
an evident asymmetry in the shape of p(x,y) (Fig. 4(b)). This
effect is enhanced when the reduced chirality is increased, until
the regime ot B 1. Correspondingly, the tendency of particles
to climb on the potential is reduced and we can observe larger
spatial fluctuations (Fig. 4(c)). The mechanism that leads to the
latter effect is equal to that described in Section III. Finally,
spatial fluctuations are consistent (Fig. 4(d)) as if the system
was governed by a smaller effective temperature until the
accumulation far from the potential minimum is completely
suppressed. Again, this is consistent with the results described
for a chiral particle in a radial potential.

Both AOUP and ABP dynamics are characterized by a non-
Maxwell–Boltzmann distribution with a breaking of the parity
symmetry with respect to the x (or y) axis that characterizes the
elliptic potential. In other words, even if U(�x,y) = U(x,), we
have p(�x,y) a p(x,y) (or equivalently p(x,�y) a p(x,y)). This
effect emerges in the occurrence of spatial correlations between

the Cartesian components of the positions and is purely due to
the interplay between chirality and asymmetry of the potential.

B. Moments of the distribution

To quantify this effect we consider the moments of the distribu-
tion for x and y coordinates (Fig. 5). Specifically, Fig. 5(a) displays
the variances hx2i and hy2i as a function of the reduced chirality
ot. The results are similar for both ABP and AOUP and agree with
the theoretical prediction eqn (8) and (9). The variances of the
distribution that can be interpreted as the effective temperature
of the system decrease for both x and y components approxima-
tively when ot E 1. However, the effect of chirality manifests
itself for smaller values of ot when the system is less confined,
i.e. along the y component. For ot c 1, the chirality decreases
the effective temperature of the system as Bo�2.

Similarly to Fig. 4, to quantify the non-Gaussian nature of
the system we study the kurtosis along x and y components,
defined as hx4i/hx2i2 and hy4i/hy2i2. In agreement with our intui-
tion, the kurtosis of the AOUP model for every value of ot, is
equal to 3. In the ABP case, the two kurtosis display the same
qualitative behavior observed in the case of the radial potential in
Section III. They start from values close to 2, when the system
displays accumulation far from the potential minimum, and then
increase with ot, until reach an asymptotic value slightly smaller
than 3. Here, the non-Gaussian nature of the chiral ABP is more
evident along the x axis when the system is more confined.

Finally, we plot the cross-correlation hxyi, as a function of
ot, where again, the ABP and AOUP display similar results. The
cross-correlation of both models is reproduced by the theoretical
prediction (10) that shows a non-monotonic behavior. In the
regime of small reduced chirality, ot { 1, the cross-correlation
starts from zero and then grows almost linearly until reaches a
maximum around ot E 1. From here, further increase of ot
reduces the value of hxyi with a scaling Bo�2 until vanishes.

C. Conditional moments of the distribution

To underpin the breaking of the parity symmetry of the
distribution induced by the interplay between chirality and
potential asymmetry, we study the conditional distribution of
the system, p(y|x), i.e. the distribution calculated at fixed x,

Fig. 5 Moments and cumulants for the distribution of chiral active particles in a harmonic elliptic potential. Panel (a): variances of the distribution for x
and y components of the distribution p(x,y), i.e. hx2i and hy2i, as a function of the reduced chirality ot. Panel (b): kurtosis of the distribution for x and y
components, i.e. hx4i/hx2i2 and hy4i/hy2i2, as a function of ot. Panel (c): cross-correlation hxyi as a function of ot. In all the panels, results are presented
both for ABP and AOUP dynamics as indicated in the legend. The remaining parameters of the simulations are: ky/kx = 3, kt/g = 1, and Dt/(v0

2t) = 0.
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defined as p(y|x) = p(x,y)/p1(x) (Fig. 6) and the corresponding
first conditional moment. Fig. 6(b) and (f) show p(y|x) for ot = 2
for three positions x/(v0t) = 0, 0.2, 0.5 considered as examples.
Panel (b) refers to the ABP dynamics (whose joint distribution,
p(x,y), is reported in Fig. 6(a)) while panel (c) refers to the AOUP
dynamics (whose p(x,y) is reported in Fig. 6(e)).

In the AOUP case, the distribution has a Gaussian shape in
all the cases. However, for x/(v0t) = 0, the Gaussian is centered
in the origin while by increasing x/(v0t), the center of the
Gaussian shifts to values larger than zero. In other words, the
parity symmetry (characterizing the elliptic potential) is broken
at fixed x/(v0t), i.e. p(y|x) a p(�y|x). This is consistent with our
analytical prediction

pðyjxÞ ¼ C0 exp �1
2

hxyi2x2 þ x2
� �

2y2 � 2hxyi x2
� �

xy

x2h i y2h i � hxyi2ð Þ x2h i

� �
(11)

and

hyðxÞi ¼ hxyihx2ix (12)

is the first conditional moment of the distribution, i.e. the
average y at fixed x, as a function of x.

As clear from the shape of p(x,y) and known results in the
absence of chirality, the ABP has a non-Gaussian distribution.
The conditional distribution of both models shows a similar
degree of asymmetry and, in particular, the breaking of the
parity symmetry in the distribution p(y|x) a p(�y|x). Indeed, at
x/(v0t) = 0, the p(y|x) displays a fully symmetric bimodal profile.
For larger values of x/(v0t), the spatial shape of p(y|x) displays
intrinsic asymmetry: the right peak of the distribution becomes
larger than the left until the left peak is completely suppressed.

To characterize this asymmetry, we study the first condi-
tional moment of the distribution hy(x)i. This analysis is
reported in Fig. 6(g) and (h) for the AOUP case and in Fig. 6(c)
and (d) for the ABP dynamics for several values of the reduced
chirality ot. In both cases, hy(x)i is described by a linear profile
with the same slope, in agreement with our theoretical prediction
eqn (12). hy(x)i shows an almost flat profile for ot{ 1, as expected
from the non-chiral case. The slope is an increasing function of the
chirality until reaches a maximum for ot = 2. For larger values of
ot, the slope decreases again until becomes almost flat. This non-
monotonicity explains the one observed in the behavior of the
cross-correlation hxyi (Fig. 5(c)). Indeed, the non-zero conditional
moment hy(x)i induces global cross-correlations in the full dis-
tribution and thus, the larger hy(x)i, the larger hxyi.

V. Conclusions

In summary, we have studied a chiral active particle confined in
an external potential, with and without radial symmetry. For
radial potentials, the chirality affects the effective temperature
of the system both for ABP and AOUP dynamics. Specifically, in
the AOUP case, the dynamics displays Gaussian properties due
to the linearity of the system with an effective variance that
decreases with the chirality. In the ABP case, the chirality
reduces the non-Gaussianity of the system, by suppressing the
accumulation far from the minimum of the potential typical of
the non chiral confined ABP. In other words, the chirality
induces a transition from a bimodal to a unimodal density.

For non-radial potentials, the scenario is richer due to the
interplay between chirality and asymmetry of the potential which
is able to break the parity symmetry in the probability distribu-
tion of the system. As a consequence, a non-Maxwell–Boltzmann

Fig. 6 Conditional distribution and moments for chiral active particles in a harmonic elliptic potential. Panel (a) and (e): distribution p(x,y), as a function of
the reduced positions x/(v0t) and y/(v0t) for ABP (a) and AOUP (e). Panel (b) and (f): conditional probability distribution p(y|x) (at fixed x) for three positions
x/(v0t) = 0, 0.2, 0.5 for ABP (b) and AOUP (f). these positions are also marked in panels (a) and (b). Panel (c), (d), (g) and (h): first conditional moment, hy(x)i,
calculated at fixed x/(v0t), as a function of x/(v0t) for several values of the reduced chirality ot. In these panels, colored points are obtained by simulations,
while correspondingly colored solid lines are the theoretical predictions obtained by eqn (12). The remaining parameters of the simulations are: ky/kx = 3,
kt/g = 1, and Dt/(v0

2t) = 0.
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distribution is found both for chiral ABP and chiral AOUP
dynamics. This effect emerges in cross-correlations between the
Cartesian components of the position that are present both for
chiral ABP and chiral AOUP. The linearity of the AOUP makes
possible analytical calculations that allow us to analytically pre-
dict the first two moments of the chiral ABP in a harmonic
potential.

Interactions between the particles could induce the sponta-
neous nucleation of a dense cluster because of persistent chiral
active forces.27 The spatial regions where the single-particle
accumulates provide the preferential positions for cluster for-
mation. For small chirality, particles will accumulate far from the
potential minimum, similar to the single-particle case. While, in
the radial case, there are no preferential cluster positions on the
circular crown far from the potential minimum,80 in the non-
radial case, only two preferential spatial regions (that are sym-
metric with respect to the origin) are expected for the cluster
nucleation. In contrast, for large chirality, our results suggest that
a cluster could preferentially form around the potential mini-
mum, as in the absence of active forces. However, the interplay
between chirality and confinement could favor dynamical collec-
tive phenomena, similar to the spontaneous velocity alignment
reported in the non-chiral case97 (and recently in the chiral case45)
without confinement. Instead of showing flocking as in ref. 64, a
sufficiently cohesive cluster could show global rotations around
the minimum of the external potential.

Our results can be tested in experimental systems of active
particles that are chiral because of the symmetry breaking of
the body shape or self-propulsion mechanism. At the micron
scale, a suitable system could be an active colloid, such as an
L-shape particle, that can be confined by using optical tweezers.
At the macroscopic scale, active granular particles77,98,99 have
been recently made chiral by breaking the translational sym-
metry of the particles. These systems, sometimes termed
spinners,58 can be confined through a plate with a typical
curvature as in ref. 77.

Understanding the behavior of chiral active particles in
external potentials could be relevant to several applications.2

For instance, it can shed light on how experimental active
particles – often characterized by a degree of chirality – move
and interact in complex environments like blood vessels or
tissues. In addition, it could be helpful for optimal navigation
problems in complex environments and drug delivery.
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Appendix

Appendix A Details of the numerical
simulations

The equations of motion for chiral active particle particles are
integrated by using the Euler Maruyama algorithm with a time

step dt = 10�4. Simulations are performed by rescaling time
with the persistence time t and position with the persistence
length v0t, by introducing t0 = t/t and x0 = x/(v0t), respectively.
Specifically, the equation of motion (1) for the particle position
is numerically integrated as

x0ðt 0 þ dt 0Þ � x0ðt 0Þ ¼ Fðx0ðt 0Þv0tÞ
v0g

dt 0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dtdt 0
p

v0
ffiffiffi
t
p W

þ ndt 0 (A1)

where W is a two-dimensional vector of independent random
numbers extracted by a Gaussian distribution with zero average
and unit variance. In contrast, the numerical algorithm for the
active force dynamics, i.e. eqn (2) for the ABP dynamics and
eqn (3) are

y t 0 þ dt 0ð Þ � yðt 0Þ ¼
ffiffiffiffiffiffiffiffiffi
2dt 0
p

Xþ to dt 0; (A2)

and

n t 0 þ dt 0ð Þ � nðt 0Þ ¼ �ndt 0 þ
ffiffiffiffiffiffiffiffiffiffi
2 dt 0
p

C þ ton� zdt 0 (A3)

respectively. Here, X and C are two vectors of random numbers
extracted by two independent Gaussian distributions with zero
average and unit variance.

As mentioned in Section III, the particle dynamics confined
in a radial harmonic potential is controlled by three dimen-
sionless parameters: the reduced stiffness kt/g, the reduced
chirality ot, and the reduced translational diffusion Dt/(v0

2t). In
the numerical study, we have chosen Dt/(v0

2t) = 0 and kt/g = 1
and we have studied the effects of ot, i.e. the dimensionless
parameter due to chirality. For the elliptic harmonic case, an
additional dimensionless parameter is present. Indeed, the
potential stiffnesses along x and y directions are different, so
that kx a ky. As a consequence, we have kt/g can be replaced by
kxt/g = 1 and, in addition, we have ky/kx = 3 which quantifies the
asymmetry of the potential.

Appendix B Derivation effective
equation for the probability distribution
function

Although the linear models can be solved by considering the
Langevin equation for the coordinates and then deriving the
distribution function from the first non vanishing cumulants,
an equivalent description is possible in terms of an effective
Fokker–Planck equation (FPE) for the distribution function. At
the linear level, the two methods yield equal results and the
choice between them is a matter of taste, but when the potential
is non quadratic the FPE method is simpler to implement.

Here, we develop the second method in the case of chiral
active particles. For the sake of completeness, we briefly illus-
trate the basic assumptions leading to a closed equation for the
probability density distribution.100–102 The equation of motion
(1) for Dt = 0 can be written for each component as

g
d�xmðtÞ
dt

¼ Fm þ ZmðtÞ (B1)
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where the index m marks denotes different Cartesian compo-
nents (for instance, m = x, y in two dimensions) and Zm is a
component of the active force gv0n. By standard manipulations,
we derive the equation for the associated probability distribution
function

@

@t
pðfxg; tÞ ¼ � 1

g

X
m

@

@xm
FmðfxgÞpðfxg; tÞ

�
X
m

@

@xm
ZmðtÞr̂ðfxg; tÞh i:

(B2)

where r̂({x},t) = Pmd(%xm(t) � xm), with xm the local value assumed
by %xm, and p({x},t) = hr̂({x},t)i. The average h�i is performed over
the realizations of the stochastic process Zm and the curly
brackets are used to denote a dependence over all the compo-
nents of a vector.

Since eqn (B2) is not a closed equation for the probability
distribution function, we employ the Novikov formula103 to
evaluate the average appearing in the last term. This formula is
valid for arbitrary Gaussian random functions (note that the
ABP is not described by a Gaussian noise):

ZmðtÞR½fZg�h i ¼
ðt
0

dt 0
X
n

Cmnðt; t 0Þ
dR½fZg�
dZn

	 

(B3)

where R[{Z}] denotes a functional of {Z} and on the right hand
side is the variational derivative of this functional. The term

Cmn(t,t0) = hZm(t)Zn(t0)i (B4)

is the active force correlation function. Employing eqn (B3) and
the definition of r̂({x},t), we get

hZmðtÞr̂ðfxg;tÞi¼
ðt
0

dt 0
X
n

Cmnðt; t 0Þ
X
k

dðr̂ðfxg;tÞÞ
d�xk

d�xkðtÞ
dZnðt 0Þ

	 


¼ �
X
k

X
n

@

@xk

ðt
0

dt 0Cmnðt; t 0Þ r̂ðfxg; tÞd�xkðtÞ
dZnðt 0Þ

	 

:

(B5)

The functional derivative of %xk(t) with respect to Zn(t0) is given by
the following expression valid for for t 4 t0

d�xkðtÞ
dZnðt 0Þ

¼ yðt� t 0Þ exp

ðt
t 0
ds JðsÞ

� �
kn

(B6)

where the matrix J(s) has elements JklðtÞ ¼
1

g
@FkðfxðtÞgÞ
@xlðtÞ

. Com-
bining eqn (B6) with eqn (B6), we find

hZmðtÞr̂ðfxg; tÞi

¼ �
X
k

X
n

@

@xk

�
ðt
0

dt 0 Cmnðt; t 0Þ r̂ðfxg; tÞ exp

ðt
t 0
dsJðsÞ

� �
kn

	 
� �
:

(B7)

The expressions obtained up to here are exact but not close.
Therefore, we employ a closure scheme to obtain a theoretical

prediction for the probability distribution. To achieve this goal,
we estimate the eqn (B7) as follows:

r̂ðfxg; tÞ exp
ðt
t 0
dsJðsÞ

� �
kn

	 

’ r̂ðfxg; tÞh i exp JðtÞh iðt� t 0Þð Þkn: (B8)

Here, we have performed three approximations: (1) the factor-
ization of the averages; (2) the replacement of the average of the
exponential with the exponential of the average. (3) we have
treated J(s) as a constant in the time integral in the exponent.
Let us remark that the above approximations are exact in the
case of quadratic potentials because J(t) = const and not an
approximation as in the general case. Going back to eqn (B6),
we find

hZmðtÞr̂ðfxg; tÞi ¼ �
X
k

@

@xk
pðfxg; tÞDmkðtÞ (B9)

where we have defined the following matrix elements:

DmkðtÞ ¼
X
n

ðt
0

d~tCmnð~tÞ exp JðtÞh i~tð Þnk
� �

(B10)

Finally, we obtain a closed equation for the probability dis-
tribution

@

@t
pðfxg; tÞ ¼ �

X
m

@

@xm

FmðfxgÞ
g

p

þ
X
mk

@

@xm

@

@xk
Dmkp

� �
: (B11)

The method developed here (and in particular the approxima-
tions (1)–(3) in eqn (B8)) are exact in the case of a chiral AOUP
particle confined in a harmonic potential with radial or non-
radial (elliptic) shape. In contrast, for non-linear forces, (1)–(3)
are approximations whose accuracy depends on the potential
considered. Finally, the method represents only an approxi-
mation for the ABP because the Novikov formula, eqn (B3),
does not hold. Indeed, the ABP is governed by a non-Gaussian
noise because n is an orientation with a non-fluctuating unit
modulus.

Appendix C Application to simple
cases

The general method presented in the previous appendix is
applied to a confining potential (with radial and non-radial
symmetry) studied in Sections III and IV. First, we estimate the
components of the time-autocorrelation of the active force
Cmnðt� t 0Þ:

Cmnðt� t 0Þ ¼ v0
2e�jt�t

0 j=t
cosðoðt� t 0ÞÞ � sinðojt� t 0jÞ

sinðojt� t 0jÞ cosðoðt� t 0ÞÞ

 !
:

(C1)

Then, we estimate Dmk(t) for a rather general form of central
potential, U(r), applying the definition (B10) and taking the
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limit t - N. We obtain the following matrix elements

Dxx ¼
v0

2t
r2

y2uI � xywI þ x2uII þ xywII

 �
(C2)

Dyy ¼
v0

2t
r2

x2uI þ xywI þ y2uII � xywII

 �
(C3)

Dxy ¼
v0

2t
r2

wIx
2 � xyuI þ wIIy

2 þ xyuII
 �

(C4)

Dyx ¼ �
v0

2t
r2

wIy
2 þ xyuI þ wIIx

2 � xyuII
 �

(C5)

where we used the abbreviations:

uII ¼
1þ t

U 00

g

� �

1þ t
U 00

g

� �2

þo2t2
(C6)

uI ¼
1þ t

U 0=r

g

� �

1þ t
U 0=r

g

� �2

þo2t2
(C7)

wII ¼
ot

1þ t
U 00

g

� �2

þo2t2
(C8)

wI ¼
ot

1þ t
U 0=r

g

� �2

þo2t2
: (C9)

and the primed symbols stand for the first and second deriva-
tives of U(r). After eliminating x and y in favor of the radial

coordinate r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; the resulting effective Fokker-Planck

equation is conveniently written as:

@

@t
p ¼ 1

r

@

@r
r
U 0ðrÞ
g

pþ v0
2t uII � uIð Þpþ r

@

@r
uIIpð Þ

� �� �
: (C10)

The time independent solution of eqn (C10) is obtained by
imposing the vanishing of the radial component, J rad, of the
probability current (i.e. minus the expression contained in the
square parenthesis in the r.h.s. of eqn (C10)). For the particular
case where is harmonic (U(r) = kr2/2), expression (C10), the
difference (uII–uI) vanishes and the explicit solution is:

pðrÞ ¼ r0 exp �
1þ t

g
k

� �2

þo2t2

1þ t
g
k

� � 1

tgv02
kr2

2

0
BBB@

1
CCCA; (C11)

while for arbitrary central potentials the problem can always be
reduced to a simple quadrature. Interestingly, it is easy to verify
that due to the handedness of the system the tangential
component of the probability current does not vanish whenever
ota0. In other words, the presence of a radial gradient in
the probability density induces a circulation of the particles
in the direction orthogonal to it, but such a current does not

affect the probability distribution itself. The tangential
current reads:

J tan ¼ v0
2t

ot

1þ t
g
k

� �2

þo2t2

@

@r
pðrÞ (C12)

By expressing p(r) as a function of the Cartesian components
we obtain eqn (5).

By contrast, in the case of the elliptic quadratic confining
potential, U(r) = (kxx2 + kyy2)/2, one cannot exploit the radial
symmetry of the problem and the equation for the probability
density reads:

@

@t
pðx; y; tÞ ¼ @

@x

kxx

g
pþ @

@y

kyy

g
p

þ v0
2t

1þ t
g
kx

� �

1þ t
g
kx

� �2

þo2t2

@2

@x2
þ

1þ t
g
ky

� �

1þ t
g
ky

� �2

þo2t2

@2

@y2

2
6664

þ ot

1þ t
g
ky

� �2

þo2t2
� ot

1þ t
g
kx

� �2

þo2t2

0
BBB@

1
CCCA @2

@x@y

3
7775p:

(C13)

The steady probability p(x,y) can be obtained by first determin-
ing its cumulants (eqn (8)–(10)) from eqn (C14) and using this
information to express the pdf as in eqn (5).
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