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Collective mechano-response dynamically tunes
cell-size distributions in growing bacterial colonies
René Wittmann 1✉, G. H. Philipp Nguyen 1, Hartmut Löwen1, Fabian J. Schwarzendahl 1✉ &

Anupam Sengupta 2,3✉

Mechanical stresses stemming from environmental factors are a key determinant of cellular

behavior and physiology. Yet, the role of self-induced biomechanical stresses in growing

bacterial colonies has remained largely unexplored. Here, we demonstrate how collective

mechanical forcing plays an important role in the dynamics of the cell size of growing

bacteria. We observe that the measured elongation rate of well-nourished Escherichia coli cells

decreases over time, depending on the free area around each individual, and associate this

behavior with the response of the growing cells to mechanical stresses. Via a cell-resolved

model accounting for the feedback of collective forces on individual cell growth, we quantify

the effect of this mechano-response on the structure and composition of growing bacterial

colonies, including the local environment of each cell. Finally, we predict that a mechano-

cross-response between competing bacterial strains with distinct growth rates affects their

size distributions.
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Mechanical environment is a key determinant of beha-
vior, physiology and functions in diverse cellular sys-
tems including microorganisms and their interactions

with their host cells1, 2. In bacterial systems, environments impose
external mechanical constraints via viscous, elastic or surface
forces, with far-reaching ramifications on their survival, fitness
and resistance to biochemical agents, including antibiotics3,4. A
growing bacterial colony5 presents a complex biophysical setting
where an interplay of extensile (due to growth) and adhesive
(cell–cell and cell–substrate) interactions engender active bio-
mechanical constraints, which evolve as the colony expands6,7.
Recently, it has been shown that such mechanical constraints give
rise to active self-induced stresses within bacterial and yeast
colonies, the magnitude of which depends on the local position
within the colony8,9. Beyond a certain threshold, the response to
these stresses can drive shifts in the phenotypic traits of the
individual cells and trigger critical structural changes in a colony,
thereby initiating biofilm formation8,10,11.

At the level of a single cell, external mechanical influences on
bacterial growth, including fluid flows and confinements, have
been extensively investigated3,12,13. Moreover, different models
for the growth kinetics of individual bacteria14–18 describe cell
division events as regulated toward achieving cell-size home-
ostasis. However, owing to the small number of cells involved in
these studies, dynamical effects arising from temporal and spatial
biomechanical constraints, are not fully included. Despite the
crucial influence that self-induced mechanical forces seem to have
on microbial behavior and physiology, currently, we lack a cell-
based mechanistic model that could capture the collective inter-
relations and feedback between cells that spontaneously evolve at
the scale of the colony.

Motivated by the gaps in our current understanding, here we
report on the phenomena arising from self-induced collective
mechanical stresses between the cells in expanding bacterial
colonies. While mechanical interactions have already been iden-
tified as a key ingredient to determine the colony’s structure and
shape19–22, we also describe a mechano-response of bacterial cells
that tunes the emerging distribution of cell sizes (or lengths)23

during the evolution of the growing colony. This mechano-
response represents a cell’s ability to sense local surroundings,
stimuli as well as the presence of other cells24,25 and, based on
this information, adapt the growth behavior to avoid over-
crowding or trigger cell death26,27. A biochemical origin could lie
in the inhibited signaling under mechanical stresses28,29. To
mimic these effects we devise an analytically accessible model
founded on statistical mechanics. Inspired by the success of
modeling various driven systems by means of rod-like
particles30–36, we describe the bacteria as rigid rods of variable
length5–7. Our model both explains the collective self-regulation
of phenotypic bacterial traits over time11 and unveils that col-
lective mechanical interactions also enable bacterial populations
to dynamically tune the size (or length) of single cells.

To investigate the implications of collective stresses in a con-
trolled setting, we perform our growth experiments on a nutrient-
rich agarose substrate and put forward a microscopic first-
principles model derived from dynamical density functional
theory (DDFT)37–39, which explains the central experimental
observations. Its basic ingredients are the division of a bacterium
with length 2L into two shorter agents of length-at-birth L,
growth with a certain elongation rate, fluctuations of the elon-
gation rate and a mechano-response to collective interactions.
The cell-length-dependent density40,41 in our DDFT describes the
phenotemporal properties of the growing colony, i.e., the cells’
length-distribution dynamics. This allows us to gain analytic
insight into the growth process, predicting the evolution towards
a unique distribution of cell lengths, which reflects the stochastic

nature of biological systems. A numerical evaluation further sheds
light on how the length distribution depends on the spatial
position. On top, we introduce a refined cell-based simulation
tool, which reveals the detailed spatiotemporal aspects of the
mechano-response to the local colony structure. Our qualitative
findings are robust with respect to implementing different
mechanisms for growth or cell division14–18. Therefore, our
techniques can be applied to a broad class of biological systems,
providing a comprehensive understanding of collective bio-
mechanical forces during population growth, as we exemplify by
investigating a mechano-cross-response between two competing
bacterial strains.

Results
Overview. As compiled in Fig. 1, our model is designed to capture
the fundamental aspects of bacterial growth (see the Methods
section and Supplementary Notes 1 and 2 for more details). In
our experiments, shown in Fig. 1a–h, we observe the growth of
Escherichia coli at 30 °C, on a nutrient-rich agarose substrate. A
single cell first divides into two cells of equal length, which then
continue to grow with a certain elongation rate. At later times, as
the colony becomes denser, growth and cell division progress
with a reduced elongation rate. This effect is significantly more
pronounced for closely packed cells, whose ends are in direct
contact with their neighbors, than for the loosely packed cells
flanked by void regions of the colony. Overall, we observe that the
average cell elongation rate is nearly halved in the grown colony,
although a sufficient amount of nutrients is still available.

As demonstrated by means of cell-resolved Langevin simula-
tions in two dimensions, shown in Fig. 1j–q, the central
experimental observations are modeled by accounting for four
central ingredients in the dynamics of the bacterial
length (Fig. 1i): cell division into two new individuals with
length-at-birth L when the maximal length l= 2L is reached,
growth with (average) elongation rate G, fluctuations of this
elongation rate with magnitude D and collective mechanical
interactions generated by the same potential as the forces and
torques in configurational space (see the Methods section and
Supplementary Note 1 for a precise definition). Since these
interactions have a weakening effect on the bacterial elongation
rate, we speak of a mechano-response with strength quantified by
the parameter S.

Size-averaged analytical predictions. As the main prediction of
our model, we observe in Fig. 1q an effective reduction of the
bacterial elongation rate over time, confirming the experimental
trend in Fig. 1h. This is due to collective interactions (S > 0),
which slow down the growth until the colony eventually attains a
stationary state when all available space is occupied. In a first
approximation, the behavior under such a mechano-response can
be described by deriving a logistic growth equation for the total
number density �ρðtÞ of all cells from our general DDFT model
(see the Methods section and Supplementary Note 3).

Specifying the initial value �ρ0 :¼ �ρð0Þ, we find the analytic
result

�ρðtÞ ¼ R�ρ0
S ln 2
L �ρ0 þ R� S ln 2

L �ρ0
� �

e�Rt ð1Þ

with R :¼ G lnð2Þ=Lþ Dðlnð2Þ=LÞ2. Hence, due to the mechano-
response, the colony does not grow indefinitely but approaches
the maximal density �ρð1Þ ¼ RL

S ln 2 for t→∞. Defining the
effective elongation rate as

Geff ðtÞ :¼ Gþ D
ln 2
L

� S�ρðtÞ ð2Þ
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and inserting �ρðtÞ from Eq. (1), allows us to predict analytically
the behavior shown in Fig. 1q from DDFT, where Geff(t) decays to
zero for t→∞. The first two terms in Eq. (2) are contributions of
individual cells, while the third term emerges due to collective
interactions. Cell division merely contributes to Geff(t) by
increasing the total cell count.

Size-resolved DDFT. While Eqs. (1) and (2) illustrate the basic
concept of a mechano-response, our phenotemporal DDFT, also
resolving the cell size, provides deeper insight into the growth
process. Thus, we now describe the growth dynamics of the
bacterial colony by its density ρ(l, t) explicitly depending on
the size of the bacteria, represented here by a length l (see the
Methods section and Supplementary Note 2). To make analytic
progress, we restrict l to the interval l∈ [L, 2L] and, for the
moment, we model cell division by the oblique boundary con-
dition ρ(L, t)= 2ρ(2L, t). We are particularly interested in the
length distribution hðl; tÞ ¼ ρðl; tÞ=�ρðtÞ with ∫dl h(l, t)= 1, which
follows from normalizing the density ρ(l, t) by the total length-
averaged density �ρðtÞ. Our DDFT results compiled in Fig. 2 reveal
nontrivial length-distribution dynamics, where the initial condi-
tion h0(l)≔ h(l, 0) is chosen as a sharp peak to represent a single
bacterium of length l= 3L/2. The analytic solutions are discussed
in Supplementary Note 4 and illustrated in Supplementary Fig. 1.

In the absence of both fluctuations (D= 0) and
interactions (S= 0), we observe bare growth, cf. Fig. 2a, where
h(l, t)∝ 2h0(l+ Δl(t))+ h0(l+ Δl(t)− L) is periodic in time as
the horizontal offset Δl(t) increases linearly from 0 to L within

one period tG≔ L/G, which sets the time unit. After each
generation, denoted by an integer n such that Δl(t= ntG)= 0, the
distribution resorts to its initial form h0(l)≔ h(l, 0) and the total
density �ρðnL=GÞ ¼ 2n�ρ0 has doubled.

With interactions (S > 0 but D= 0), we observe a decelerated
growth, cf. Fig. 2b, where the period of h(l, t) increases from
generation to generation, as the effective elongation rate in Eq. (2)
decreases over time. When the density �ρð1Þ ¼ G=S reaches its
stationary value in the course of the birth of a new generation, the
length distribution is suddenly arrested. In short, the growth
process comes to an end following a mechano-response to
collective interactions.

With fluctuations (D > 0 but S= 0), we observe disperse growth,
cf. Fig. 2c, where the distribution smears out and approaches the
unique limit h(l,∞)∝ 2−l/L, without inhibiting the indefinite
exponential growth of �ρðtÞ. In short, the stochastic nature of
bacterial growth results in a self-regulation of the cell length11.

For extreme fluctuations (D≫ S and D � G=�ρ0), this model
predicts a fluctuation-driven growth with h(l,∞)∝ (3L− l) (see
Supplementary Note 4E).

Combining the behavior from the above special cases, the full
dynamics including both fluctuations (D > 0) and interactions
(S > 0) can be understood as disperse decelerated growth, cf.
Fig. 2d, where the distribution h(l, t) simultaneously broadens and
increases its period in the course of time. Hence, we observe in
Fig. 2e that the total density �ρðtÞ increases jerkily due to correlated
division bursts in the young colony. Later, the mechano-response
sets an asymptotic threshold and the prediction from Eq. (1) is
recovered after the cells have self-regulated their growth behavior,

Fig. 1 Decreasing bacterial elongation rate in a growing colony. a–h Experiments on a monolayer of cells dividing every ~30min on a nutrient-rich agarose
substrate, reaching a cell count of ~4500 bacteria after 450 minutes. a, b Division of cells (hued in blue) in the early stage of the colony. c, d Growth of
cells (hued in yellow) during the early phase over an interval of ten minutes. The average cell elongation rate (determined from the average length 〈Δl〉
grown in 10min) is 0.067 ± 0.011 μm/min. e Micrograph of a well-developed bacterial monolayer comprising about 2600 cells. f, g Division and growth of
cells over an interval of 10 minutes within the dense colony. Dividing cells are hued in blue. Fast and slowly growing cells are hued in green or red,
respectively, as identified from a large or small free area near the ends visible in (f). The average elongation rates resulting from this selection are
0.055 ± 0.013 μm/min and 0.033 ± 0.01 μm/min. h Cell elongation rate of all bacteria as a function of time (red dots) with standard deviation (red shaded
area), determined from three distinct biological replicates. i Illustration of our theoretical model. j–qModel predictions, where tG≔ L/G is the time between
the first two divisions. j–p Snapshots of cell-based simulations reflecting the experimental images (a–f). The strength of the mechanical interactions on
each bacterium is highlighted according to the color bar, increasing from yellow to orange. In the closeups of the dense colony (o, p), we also highlight
selected cells showing division (blue), fast growth in a dilute region (green) and slow growth in a dense region (red). q Effective elongation rate Geff(t),
defined in Eq. (2), from DDFT (black), using the analytic result of Eq. (1), and simulation (orange line) with standard deviation (orange shaded area),
determined from five independent simulation runs. The fluctuation parameter is D= 10−2GL, while the strength parameters S ¼ 10�4G=�ρ0 and ~S ¼
5 ´ 103G=L3=2 of the mechano-response are chosen to obtain a comparable decay behavior in qualitative agreement with the experiment (h).
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approaching h(l,∞)∝ 2−l/L due to fluctuations (other possible
stationary solutions are unstable, as illustrated in Supplementary
Fig. 2). Another consequence of an initially sharp length
distribution is an effective elongation rate which depends on
the instantaneous form of h(l, t) (see Supplementary Note 4D). As
shown in Fig. 2f, the average effective elongation rate Geff(t),
defined in Eq. (2), decays earlier for both increasing mechano-
response (stronger counter-force) and increasing fluctuations
(faster growth). Moreover, Geff(t) shows a jerky behavior for weak
fluctuations, just like the total density. Comparing these
observations to the approximate size-averaged predictions in
Eqs. (1) and (2), shown as a reference in Fig. 2e, f for
D= 10−2GL, underlines the dynamical information hidden in
the length distribution.

DDFT with position dependence. While homogeneous systems
of growing bacteria, as described with ρ(l, t), can be realized in
experiments42, we now investigate the basic local aspects of size-
resolved colony growth using our DDFT in one spatial dimension
(see the Methods section and Supplementary Note 1). Here, the
density ρ(x, l, t) also depends on the position x in a one-
dimensional channel, resembling, e.g., cells growing in a mother

machine43, 44. To implement cell division, we employ a directed
boundary condition, which consists of source and sink terms,
representing the two daughter cells and the dividing mother cell,
respectively, and prohibits flow from short to long across the
boundary (see the Methods section and Supplementary Note 5).

In general, our model describes a decrease of the local cell
elongation rate in the regions with high density according to the
stronger local mechano-response. To illustrate this spatial
dependence, we depict the normalized density in the early stages
of the colony evolution in Fig. 3. Initially, we observe individual
density peaks, each representing a cell, whose number doubles
after the birth of the next generation. The effect of an increasing
mechano-response is to slow down the overall colony growth, as
predicted in Fig. 2, but here also on a local level. For example, in
the bottom-right snapshot of Fig. 3, the outer peaks represent
cells one generation ahead of those in the center, where the local
density is much higher. For a weaker mechano-response (top
panel of Fig. 3) this effect is less pronounced and we observe that
the peaks gradually merge due to growth fluctuations and spatial
diffusion. Moreover, for a stronger spatial mechano-repulsion,
i.e., lower substrate friction, the peaks are pushed further apart
from each other (see Supplementary Fig. 3), which reduces the

Fig. 2 Size-resolved DDFT results. a–d Deterministic time evolution of the length distribution from an initial Gaussian peak centered at l= 3L/2 with
strengths S= 0 (a, c) or S ¼ 10�2G=�ρ0 (b, d) of the mechano-response and growth fluctuations D= 0 (a, b) or D= 10−2GL (c, d). The time stamp of each
curve is indicated by the color bar, increasing from blue to yellow. If a stationary distribution h(l,∞) exists (arrested peak due to mechano-response or
smeared-out function due to fluctuations), it is drawn in red. In (a, b), we show the distribution in regular time intervals of 0.2tG and additionally distinguish
between the first (solid), second (dashed) and third (dotted) generation by the line style. In (c, d), we only show each generation after multiples of tG.
Animated curves are provided as Supplementary Movies 1–4. e, f Time evolution of the total density �ρðtÞ and the effective elongation rate Geff(t) for
different parameters (as labeled). The respective analytic predictions of Eqs. (1) and (2) are drawn as black dashed lines. The insets enhance the early
behavior for t≤ 2tG.
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local strength of the mechano-response, such that the total cell
count increases faster. Eventually, a smooth colony structure is
approached which is characterized by having a higher density and
a larger percentage of shorter cells in the center than in the
periphery.

Cell-based simulations. To corroborate the predictions of our
probabilistic DDFT and better understand the repercussions on
the individual growth dynamics, we also perform cell-resolved
Langevin simulations in two spatial dimensions. As detailed in
the Methods section, we consider rod-like bacteria that interact
through Hertzian repulsion. Specifically, the Langevin equations
for positions and orientations are coupled to the stochastic
dynamics of the cell lengths, including a response term with
respect to the same Hertzian overlap potential.

The effective elongation rate Geff(t) averaged over the whole
colony is shown in Fig. 1q. As in the experiment (Fig. 1h), Geff(t)
decreases at later times but does not exponentially approach zero
since the continuously growing periphery of the colony always
remains sufficiently dilute. This result is illustrated in more detail
by the different snapshots compiled in Fig. 4a–d. Comparing the
colony size (different scale bars) after certain times, it becomes
apparent that the colony of bacteria with a stronger overall
mechano-response (larger ~S) grows slower.

We also resolve by the color code in Fig. 4a–d the local
mechano-response of individual cells, which is apparently
stronger in the center of the colony than in the periphery. As
this local quantity scales with the overall mechano-response, the
difference between the typical forces in these two regions is more
significant for larger ~S. Our qualitative observations are confirmed
in Fig. 4e by measuring the local elongation rate, which is steeper
for larger ~S (also notice the smaller colony radius after the same
amount of time) and generally increases from the colony center to
the periphery, following the decrease of local density (see also the
DDFT results in Fig. 3). The correlation depicted in Fig. 4f further
reveals that the mechanical force on longer bacteria is typically
stronger than on shorter bacteria throughout the colony
evolution.

Moreover, as illustrated in Fig. 1o, p, the local force acting on a
bacterium in a dense colony is smaller when it is surrounded by
voids than when its ends are in close contact with its neighbors,

which also feeds back on the individual elongation rate, as
measured experimentally in Fig. 1f, g.

Length-distribution dynamics. To gain further insight into the
length-distribution dynamics, we compare in Fig. 5 the experi-
mental results for the mean length �lðtÞ :¼ R dl l hðl; tÞ and the

normalized variance ΔðtÞ :¼ R dl ðl ��lðtÞÞ2 hðl; tÞ=ð�lðtÞÞ2 to our
model predictions. After early fluctuations owed to the syn-
chronous cell cycles in the early generations, the experimental
data show a clear trend that the bacteria become shorter in the
dense colony, while the variance begins to plateau under the
experimental growth conditions considered here. Accordingly,
the moments predicted by DDFT oscillate around their stationary
values with a decreasing amplitude. Recall that the version of our
DDFT used here formally describes a homogeneous system with
the cell lengths restricted to a fixed interval.

The qualitative experimental observations for later times are
better captured by utilizing the directed boundary condition
introduced for our position-resolved DDFT, as it prohibits flow
from short to long (see the Methods section and Supplementary
Note 5). This refined implementation allows us to effectively
predict the expected decrease of �lðtÞ within our size-resolved
DDFT. As shown in Supplementary Figs. 4 and 5, the colony
enters an additional fluctuation-driven regime after it has grown
sufficiently dense, which is characterized by a gradual approach to
a distinct stationary solution, where shorter bacteria balance the
higher cell count (the smaller variance is due to our assumption
of a restricted length interval). We also find consistent results
from our cell-based simulations of a freely growing colony, where
the bacteria in the dense region can effectively respond by
shrinking below the length-at-birth L (see Supplementary Fig. 6).
A detailed comparison between our approaches in view of the
observations in Fig. 5 can be found at the end of the Methods
section.

Mechano-cross-response of competing strains. When evolving
on the same substrate, two different bacterial strains compete for
the available resources, including the free space in the colony.
Therefore, the growth of each individual is not only regulated by
the interaction with its own kind but also with the other species.
To investigate this mechano-cross-response, we consider two

Fig. 3 Position-dependent DDFT results. Density profile ρ(x, l, t) in the early stages (time stamps are annotated in each column) of the colony evolution,
normalized by the total density �ρðtÞ ¼ R dx R dl ρðx; l; tÞ=L, as calculated with DDFT. Both the color bar (fixed range) and the vertical axis (adapted range for
each plot) indicate the local density. We compare two colonies with a different mechano-response (values of S are annotated in each row). The other
parameters used in Eq. (13) are γ�1

x ¼ GL=ðkBTÞ and D= Dx= 2 × 10−3GL. Additional snapshots taken at a later time and including another set of
parameters are compared in Supplementary Fig. 3. The full time evolution is provided as Supplementary Movies 5–7 for all three cases.
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interacting species A and B with different characteristic growth
properties45. For such a system, our multicomponent DDFT
(see the Methods section) with directed boundary conditions
predicts distinct length distributions in the fully grown homo-
geneous colony, whose general form is related analytically to the
input parameters and final densities in Supplementary Note 6.
We can thus use this stationary information to infer the growth
properties of the two competing bacterial strains.

To understand the ultimate colony composition, we compare
in Fig. 6 the stationary total densities �ρðiÞ1 :¼ �ρðiÞð1Þ and mean
lengths �lðiÞ1 :¼ �lðiÞð1Þ with i ¼ A;B for different parameters of
our model. For equal strengths of the mechano-response
(SA= SB, Fig. 6a), the faster-growing strain also ends up with a
larger total number of cells and thus dominates the colony. Due
to the mechano-cross-response, the other strain ends up with a
larger percentage of shorter cells. Setting now, say, SA > SB
(Fig. 6b), a dominance of species B over species A is even possible
if the latter has a larger elongation rate GA >GB, as long as
GB >Gth exceeds an interaction-dependent threshold Gth set by
the condition �ρðAÞ1 ¼ �ρðBÞ1 . Slightly below this threshold, the shape
of the stationary length distributions changes drastically for small

variations of GB≲Gth. This behavior of �ρðiÞ1 and �l
ðiÞ
1 is illustrated

for a broader range of interaction parameters in the state
diagrams in Fig. 6c, d. Moreover, as exemplified in Supplemen-
tary Fig. 7 and discussed in Supplementary Note 6, we observe for
GB≳Gth a dynamical crossover in the total densities,
�ρðAÞðtÞ>�ρðBÞðtÞ for t < tc but �ρðBÞðtÞ>�ρðAÞðtÞ for t > tc with the
crossover time tc, and an adiabatic regime in which the faster
growing but more mechano-responsive species A follows a
sequence of quasi-stationary length distributions after its total
density has saturated.

The experimental investigation of such bacterial mixtures,
together with a more comprehensive theoretical study that allows
for a possible extinction of the dominated species, shall shed
further light on the cross-talk and interfaces between distinct
active growth processes in future work.

Discussion
We have introduced a DDFT model for growing bacterial colo-
nies from which we predicted analytical length distributions and
drew parallels to dynamical observations in experiments and
Langevin simulations. Despite its simplicity, our model captures
the basic features of collective interactions among the cells in
in vitro experiments ruling out possible effects of nutrient

Fig. 4 Cell-based simulation results. We show results for two colonies (averaged over five simulation runs) with the same growth fluctuations D= 10−2GL
but different strengths ~S ¼ 5 ´ 103G=L3=2 (orange color, as in Fig. 1j–q) and ~S ¼ 5 ´ 104G=L3=2 (blue color) of the mechano-response. The corresponding
standard deviation is of the same magnitude as in Fig. 1q. a–d Snapshots of the two colonies (distinguished by the frame color), at two times t= 10tG (a, c) and
t= 12tG (b, d). For comparison a scale bar of length 5L is drawn in each case. The color code indicates the mechano-response of individual bacteria, which is
proportional to the overlap with all neighboring cells (as in Fig. 1n but with a different range of the color bar). e Local effective elongation rate as a function of the
radial distance r from the colony center of mass (solid lines). f Normalized length-force correlation in both colonies at different times (symbols).
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limitation. This agreement is demonstrated by investigating the
(local) reduction of the elongation rate depending on the bacterial
mechano-response. For a mixture of competing bacterial strains, our
model suggests that a mechano-cross-response between the two
species affects the (dynamical) length distributions in a nontrivial
way. Our general theoretical description relates these effects to a
microscopic interaction potential and, therefore, it both contributes
to the understanding of collective effects in models of growing
bacterial colonies and elucidates the consequences of biomechanical
forces for the evolution of living samples. While a comprehensive
description of biological systems surely requires the inclusion of
additional effects (as discussed below), our length-resolved tools are
potentially of inherent theoretical and mathematical interest in their
own right, for example regarding the interplay between cell length
and topological defects.

The utility of our model can be exemplified by contemplating the
onset of the mono-to-multilayer transition7,8,11 (or
verticalization42,46,47), i.e., when individual bacteria evade crowded
regions by escaping into the third dimension to form additional
layers. Such structural transitions are triggered as a consequence of
the self-imposed mechanical stresses that build up in a growing
bacterial colony7,11. Accordingly, our model allows us to determine
directly the local in-plane mechanical force opposing the growth of
each cell, cf. Fig. 4a–d, which can be compared to an appropriately
chosen threshold. In our experiments, the transition happens after
about 450min, which roughly corresponds to t ≈ 13tG for the model

parameters chosen accordingly in Fig. 1q. By then the peak pressure
within the colony has reached values around 10 kPa7, which is
consistent with the self-imposed physical pressures measured by
Chu et al.8. A more quantitative comparison in future work should
also take into account the role of substrate friction27.

To provide a more accurate description of specific internal
processes in individual cells and give a broader account of bio-
diversity, our model can be readily extended in various directions.
Escherichia coli typically exhibits exponential growth11,14,18,
which can be modeled on a cellular level48, and cell division
occurs after adding a specific length15–17. These processes are
intrinsically related to a cell cycle49–53. One may further include
death events26,27,54–56 or describe division into multiple daughter
cells57 and then consider more general mixtures of cells with
different physiological properties53,58, also allowing for pheno-
type switching59,60 or mutation20,61,62. Finally, we stress that our
model as employed here is formally not limited to the inter-
pretation of mimicking mechanical interactions. An alternative
application of our equations would be to conceive an interaction
potential differing from that describing spatial repulsion, such
that it effectively incorporates other effects limiting cell growth,
such as biochemical signaling28,29 or nutrient depletion63.

Further perspectives on the spatiotemporal implications of a
heterogeneous local length distribution open up when additionally
resolving positions and orientations. Both our generalized DDFT
(see the Methods section) and our cell-based simulations allow us to

Fig. 5 Moments of the length distribution. a, b Experiments using three biological replicates under similar growth conditions at a temperature of 30 °C.
Data are shown until the mono-to-multilayer transition7 (upward arrows). c, d Deterministic DDFT predictions with both oblique (solid lines) and directed
(dotted lines) boundary conditions (see Eqs. (17) and (16) in the Methods section). e, f Cell-based simulations. The simulation parameters are the same as
in Fig. 4 and chosen to be comparable to those in DDFT, cf. Fig. 1q. The corresponding standard deviation is of the same magnitude as in Fig. 1q. Blue lines in
(c–f) indicate that the mechano-response is increased by a factor of ten compared to the orange lines. For our three different methods, we compare the
mean cell length �lðtÞ (a, c, e) and the normalized variance Δ(t) of the cell length (b, d, f).
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include and compare the mechano-response with respect to different
externally applied forces affecting the growth process on the single-
cell level. For example, the bacteria can be immersed in a stiff gel12,
grown on rough surfaces64,65 or spatially confined26,66,67. It is also
possible to investigate the detailed colony structure55,68–70, topolo-
gical defect dynamics10,11,42,71–73, emerging smectic order22,74–78,
growth within porous media79,80 or the explicit onset of three-
dimensional growth11,46,47,81,82. Moreover, attractions through pili
bonds83,84, or the motility of individual bacteria85–87 can be mod-
eled. In view of a comprehensive biological picture, one could study
interactions and competition between multiple colonies or cell
strains83,84,88,89 alongside their cross-talk with other spatially dis-
tributed agents90, such as signaling molecules28,29 nutrients63,91,
antibiotics58,92, parasites like bacteriophages93 or a secreted extra-
cellular matrix mediating biofilm formation70,91.

Finally, our DDFT equations allow for a systematic
derivation94,95 of phase-field crystal models96 to recover hydro-
dynamic field equations6,71,72 and explicitly incorporate aspects
related to bacterial length. Exploring the relation to active
nematics97,98 constitutes a possible direction for future work.

Methods
General DDFT for growing bacterial colonies. We propose a
dynamical density functional theory (DDFT) to model growing
bacterial colonies through a time-dependent density ρ(r, p, l, t),
which resolves the spatial position r, orientation p and a size
parameter l, which here represents the cell length. In its most
general form, the DDFT reads

∂ρ

∂t
¼� ∇r � Jr � R̂p � Jp �

∂

∂l
J l

þ δðl � LÞJl rþ L
2
p; p; 2L; t

� �

þ δðl � LÞJl r� L
2
p; p; 2L; t

� �
� δðl � 2LÞJl r; p; 2L; tð Þ;

ð3Þ

with the currents Jr(r, p, l, t), Jp(r, p, l, t) and Jl(r, p, l, t) in posi-
tional, orientational and length space, respectively. The former
two terms are given in their standard DDFT form as37–39

Jr ¼� Dr∇rρ� γ�1
r ρ∇r

δF ex ρ
� �

δρ
þ Vext

� �
;

Jp ¼� DpR̂pρ� γ�1
p ρ R̂p

δF ex ρ
� �

δρ
þ Vext

� � ð4Þ

with the diffusion coefficients Dr and Dp, the friction coefficients
γr and γp and the derivative operators ∇r and R̂p ¼ p ´∇p in
positional and rotational space, respectively. The internal inter-
actions between the cells and interactions with an externally
imposed field are described by the excess part F ex½ρ� of the free
energy and an external potential Vext(r, p, l, t), respectively99.

As the central ingredient of our model, the length current

Jl ¼ G ρ� D
∂ρ

∂l
� S

kBT
ρ
∂

∂l
δF ex½ρ�

δρ
þ Vext

� �
ð5Þ

drives the length-dependent changes of the density, where the
thermal energy kBT is used as a scaling factor. The first term
describes cell growth according to the growth function G(r, p, l, t)
and thus drives the system out of equilibrium, while the
remaining terms have a similar form as the currents in Eq. (4)
but possess a slightly different interpretation. The term∝D is of
diffusive nature and describes fluctuations of the growth function,
while the terms∝ S describe the response of the cell growth to
internal and external interactions, where S is related to the
substrate friction. Finally, the source and sink terms in Eq. (3)
describe cell division after a length L(t) is reached. A more
detailed introduction to Eq. (3) and the framework of DDFT in
general can be found in Supplementary Note 1.

Overview of related approaches. In Eq. (3) we have presented the
most general form of our basic model in the language of DDFT
which we can, in principle, even further extend in several direc-
tions along the lines of the Discussion section. What is left to be

Fig. 6 Stationary properties of two competing bacterial strains.We compare DDFT results of binary mixtures with different elongation rates GB and strength
SB of the mechano-response of species B, but with fixed values GA=G as a scaling factor and SA ¼ 10�4G=�ρ0 for species A and the same growth fluctuations
D= 10−2GL of both species. a, b Stationary total densities �ρðiÞ1 (solid lines) and mean lengths�l

ðiÞ
1 (dashed lines) of the two strains i=A (green) and i= B (orange)

as a function of GB for two values of SB (as labeled). The vertical dotted line indicates the value GB=Gth at which �ρðAÞ1 ¼ �ρðBÞ1 in each case. c State diagram showing
the difference in the total density. As labeled, the color indicates the dominance region of species A over B (blue) or vice versa (red). The white color corresponds
to GB=Gth at which a transition happens for a certain SB. d State diagram showing the difference of the mean lengths in the same fashion.
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specified are the explicit interactions between the cells. Instead of
evaluating the full multidimensional DDFT, we focus in the main
text on different approaches based on this model, which are
further described in the remaining paragraphs of this Methods
section.

Specifically, we provide in Eqs. (6), (7), and (9) a set of
stochastic Langevin equations in two dimensions, which are
formally equivalent to our DDFT in Eq. (3) and allow for a cell-
resolved investigation of the mechano-response. On the DDFT
side, we consider various versions of Eq. (3) focusing on different
aspects. First, we introduce a one-dimensional version of our
DDFT in Eqs. (12) and (13) to illustrate the positional
dependence of the evolving length distribution. Second, we
derive a homogeneous size-resolved DDFT in Eqs. (14) and (15),
which formally assumes a well-mixed system and can be
analytically investigated. Third, we also generalize this size-
resolved DDFT by Eqs. (20) and (21) to a version valid for
multiple bacterial species. Fourth, we demonstrate that a logistic
growth equation, Eq. (22) can be recovered upon further
averaging our homogeneous DDFT over the cell size. After
presenting details on our experimental system, we conclude the
Methods section with a discussion of how the different versions of
our model are related and which experimental aspects we intend
to describe.

Cell-based Langevin simulations. In the particle-based approach
to modeling growing bacterial colonies, the cells are considered as
rigid rods. Their positions ri, orientations θi and lengths li (of their
long axis) evolve in time according to coupled Langevin equations.
Here i= 1,…,N is the cell index, where the total number N(t) of
bacteria may increase after each time step due to cell division. The
short axis of each rod is kept fixed with length d0.

The position ri of rod i evolves according to

dri
dt

¼ 1
γli

∑
j
Fij; ð6Þ

where γ is the friction coefficient and Fij are steric forces
stemming from the interactions with other rods. Further, the
orientation of the rod is measured by the angle θi with respect to
the x-axis in a Cartesian coordinate system. The dynamics of the
angles are given by

dθi
dt

¼ 12

γl3i
∑
j

rij ´ Fij

� 	
� ez; ð7Þ

where rij= ri− rj is the distance vector between particles i and j
and ez is the vector perpendicular to the rods’ plane of motion.
The forces between rods are calculated by a Hertzian repulsion

Fij ¼ F0d
1=2
0 h3=2ij nij; ð8Þ

where hij is the overlap of rods i and j, F0 is the strength of the
force, and nij is the vector normal to the closest point of contact of
the particles.

In the same spirit, we now allow the length of a rod i to evolve
as

dli
dt

¼ Gþ
ffiffiffiffiffiffi
2D

p
ξi � ~S∑

j
h3=2ij ð9Þ

with the constant elongation rate G, a white noise ξi of unit
variance accounting for fluctuations of magnitude D and
mechanical interactions mediated by the overlap between
particles hij. The parameter ~S quantifies the strength of this
mechano-response and takes the role of an inverse friction
coefficient. Here, we have absorbed the other parameters from Eq.
(8), such that ~S is formally different from S in Eq. (19) given the
different nature of interactions considered. When the length li of

a cell exceeds the value 2L after a certain time step, it is reset to
li= L, where L is the length-at-birth. Then, a second cell with a
new particle label and the same length L is introduced and the
total cell count N is increased accordingly. In the course of this
cell division, the positions of the two daughter cells are shifted
from the rod’s original position by L/2 along the direction of the
rod axis.

In the main text, the repulsion strength is fixed as F0= 106G/(γL)
and the length of the short axis of each rod is d0= L/8. The data
presented in our plots are averaged over five simulation runs.

DDFT in one spatial dimension. To illustrate the spatial evo-
lution of the length distribution in DDFT, we consider a system
in one spatial dimension described by the density ρ(x, l, t). As a
minimal model, we take the growth function G as a constant
elongation rate6,7, focus on a freely growing colony in the absence
of an external potential Vext= 0 and employ a soft-repulsive pair
interaction

Uðx � x0; l; l0Þ ¼ kBT
2ffiffiffi
π

p exp � 4ðx � x0Þ2
ðl þ l0Þ2

 !
ð10Þ

in the form of Gaussian cores100 whose width follows from the
lengths l and l0 of two interacting bacteria. Such a potential is
conveniently included through the mean-field functional

F ex ρ
� � ¼ 1

2

Z Z Z Z
dx dx0 dl dl0 ρðx; lÞUðx � x0; l; l0Þ ρðx0; l0Þ;

ð11Þ
where the integrals over x and x0 run over the full one-
dimensional space, while l and l0 are restricted under the present
assumptions to the interval [L, 2L]. More general interactions
could also be incorporated through appropriate alternative free-
energy functionals99,101–103.

With the above choices, we rewrite the length current from
Eq. (5) as

Jl ¼ G ρ� D
∂ρ

∂l
� S

kBT
ρ
∂

∂l
δF ex½ρ�

δρ
: ð12Þ

The one-dimensional version of Eq. (3) then reads

∂ρ

∂t
¼Dx

∂2ρ

∂x2
þ γ�1

x
∂

∂x
ρ

∂

∂x
δF ex½ρ�

δρ

� �

� G
∂ρ

∂l
þ D

∂2ρ

∂l2
þ S

kBT
∂

∂l
ρ
∂

∂l
δF ex½ρ�

δρ

� �

þ δðl � LÞ Jl x þ L
2
; 2L; t

� �

þ δðl � LÞ Jl x � L
2
; 2L; t

� �
� δðl � 2LÞ Jl x; 2L; tð Þ;

ð13Þ

where a detailed derivation is given in Supplementary Note 1D.
Although the cell length l can, in principle, take any positive

value, we restrict it here to the fixed interval l∈ [L, 2L] with
constant length-at-birth L and consider a directed boundary
condition (see Supplementary Note 5 for a detailed description
and also Eq. (16) below). At l= L, this corresponds to a specific
no-flux boundary condition in Eq. (12) imposed for the
fluctuations (the term∝D) and to enforcing a vanishing density
ρ(x, l= L, t)= 0 if the drift-like terms (those∝G and∝ S) result
in a negative contribution to the current. At l= 2L, we use an
absorbing boundary.
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Homogeneous size-resolved DDFT. For the size-resolved cal-
culations presented here, we employ a version of Eq. (3) for the
dynamics of ρ(l, t) after averaging over positional and orienta-
tional coordinates, while assuming again that the external
potential Vext(l, t) vanishes (or does not depend on the cell length)
and taking a constant elongation rate G. The resulting DDFT
reads

∂ρ

∂t
¼� ∂

∂l
J lðl; tÞ

þ 2δðl � LÞ Jl 2L; tð Þ � δðl � 2LÞ Jl 2L; tð Þ;
ð14Þ

where the length current Jl(l, t) is given by

Jl ¼ Gρðl; tÞ � D∂lρðl; tÞ � Sρðl; tÞ�ρðtÞ: ð15Þ
The third term of Jl(l, t) is derived assuming a mean-field

expression of F ex½ρ�, Eq. (11), for soft interactions in the form of
Gaussian cores, Eq. (10). Hence, this size-resolved DDFT is fully
consistent with Eqs. (13) and (12) in one spatial dimension. The
expression in Eq. (15) can also be used in any spatial dimension
after absorbing a trivial dimensional scaling factor into S.

The spatially homogeneous nature of our size-resolved DDFT
allows us to consider two types of boundary conditions for
l∈ [L, 2L]. First, when working with Eq. (14), we use the directed
boundary condition (compare Supplementary Note 5A)

D∂
∂l ρðl; tÞ

��
l¼L

¼! 0;

ρðl ¼ L; tÞ ¼! 0 if S�ρðtÞ>G;

ρðl > 2L; tÞ ¼! 0

ð16Þ

for the current in Eq. (15). Second, a convenient alternative is to
incorporate cell division through the oblique boundary condition

ρðL; tÞ ¼ 2ρð2L; tÞ; ð17Þ
assuming that individual cell growth is homeostatic, while
rewriting Eq. (15) as

∂ρðl; tÞ
∂t

¼ � ∂

∂l
J lðl; tÞ; ð18Þ

which yields the DDFT equation

∂ρ

∂t
¼ ∂

∂l
�Gρðl; tÞ þ D

∂ρðl; tÞ
∂l

þ Sρðl; tÞ�ρðtÞ
� �

: ð19Þ

This approximation allows for a detailed analytic under-
standing of the length-distribution dynamics, where the
effective elongation rate Geff(t) in Eq. (2) can be conveniently
defined from the term on the right-hand side. A more precise
specification of Geff(t), a full derivation of Eq. (15), details on
the role of the different boundary conditions, analytic analysis
and further results are provided in Supplementary Notes 2, 4,
and 5.

DDFT for multiple bacterial species. It is in general straight-
forward to generalize a given DDFT model to mixtures of κ
species with different properties by adding an additional species
label i= 1,…, κ and consider the individual evolution equations
for ρi, which are coupled via their collective interactions39. For the
purpose of the present study, we generalize the size-resolved
DDFT from Eq. (14) to

∂ρðiÞ

∂t
¼� ∂

∂l
J ðiÞl ðl; tÞ

þ 2δðl � LÞ J ðiÞl 2L; tð Þ � δðl � 2LÞ J ðiÞl 2L; tð Þ
ð20Þ

with the currents

J ðiÞl ¼ Giρ
ðiÞðl; tÞ � D∂lρ

ðiÞðl; tÞ � ∑
κ

j¼1
Sijρ

ðiÞðl; tÞ�ρðjÞðtÞ: ð21Þ

In these equations, we assumed for simplicity that all species have
the same length-at-birth L and the same magnitude D of growth
fluctuations. Moreover, we consider κ= 2 different species A and B
and define the elongation rates GA≔G1 and GB≔G2, as well as the
strengths SA≔ S11 and SB≔ S22 of the intra-species mechano-
response, where we assume S12= S21= (SA+ SB)/2 for the cross-
interactions (see Supplementary Note 6 for further discussion).

Size-averaged logistic growth. The phenotemporal description of
ρ(l, t) in Eq. (19) represents an averaged model after integrating
out positions and orientations of a more general DDFT for
ρ(r, p, l, t). In turn, if one is only interested in the increase of the
density �ρðtÞ (or number of cells), we can show upon further
averaging out the dependence of the cell size (see Supplementary
Note 3) that our model is consistent with the logistic growth
equation

∂t�ρðtÞ ¼ �ρðtÞ R� S ln 2
L

�ρðtÞ
� �

; ð22Þ

widely used to describe (space-resolved) population
dynamics104–107. From our Eq. (19) we identify here the overall
growth rate R :¼ G lnð2Þ=Lþ Dðlnð2Þ=LÞ2. Solving Eq. (22) with
the initial condition �ρ0 :¼ �ρð0Þ, we find an analytic expression for
the time evolution of the total density �ρðtÞ, as given by Eq. (1).
Note that generalized growth equations108,109 can also be derived
within our framework from different microscopic interactions.

Experiments on growing bacterial colonies. We use non-motile
strains of E. Coli bacteria, NCM3722 delta-motA, growing at
30 °C on a millimeter-thick agarose matrix. The experimental
time scales are short enough to ensure that the growing bacterial
monolayers remain nutrient-replete and do not undergo phy-
siological changes throughout the duration of the experiments.
Nutrient-limitation, if any, will impact all cells irrespective of
their location in the colony. This setup ensures that collective
(mechanical) stresses constitute the main cause of (locally) lim-
ited cell growth reported in Fig. 1a–h.

All experiments have been performed for a minimum of three
distinct biological replicates. Cells were grown and monitored
using standard protocols and control experiments11. The growth
of a single bacterium (or two initial cells, in some cases) into
colonies was imaged while maintaining the growth temperature
of 30 °C within the microscope environment. Single bacteria
acting as monoclonal nucleating sites expand horizontally on the
nutrient-rich agarose layers. Initially, the colony expanded in two
dimensions as a bacterial monolayer over multiple generations,
subsequently penetrating into the third dimension.

We visualize the colony growth over the entire period using
time-lapse phase-contrast microscopy. For the current work, we
focus primarily on the horizontal spreading of the colony and
analyze the data till the transition to the multilayer structure sets
off. Images were acquired using a Hamamatsu ORCA-Flash
Camera (1 μm= 10.55 pixels) that was coupled to an inverted
microscope (Olympus CellSense LS-IXplore). We use a 60X oil
objective and, in some cases, 100X oil objectives to zoom into
specific regions of the growing colonies. Overall, this gave a
minimum resolution of 0.11 μm.

Each experiment lasted typically 15–18 h, allowing us to
capture the mono-to-multilayer configurations and the structure
and dynamics of multilayer colonies. Prior to image acquisition,
multiple locations on the agarose surface (where a single
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bacterium or up to two cells were present) were identified and
recorded, allowing us to additionally extract technical replicates
from the same sample. The microscope was automated to scan
these pre-recorded coordinates and to capture the images of the
gradually increasing colonies after every five minutes while
maintaining the focus across all the colonies captured.

We extracted the cell dimensions (width and length), position
(centroid) and orientation of each bacterium from the phase-contrast
images using the combination of open-source packages of Ilastik110

and ImageJ as well as MATLAB (MathWorks). The combination of
phase contrast and time-lapse imaging allowed us to quantify
phenotypic traits at the resolution of individual cells and thereby
extract the reported statistics after image analyses while ensuring that
the cells do not tilt out of the plane46,47 (see Supplementary Fig. 8). A
detailed description of cell culturing, fabrication and imaging of cell
monolayers can be found in Supplementary Note 7. The obtained
cell-length statistics are shown in Supplementary Tables 1–3 and
provided as Supplementary Data 1–3.

Comparison of different approaches. Our cell-based Langevin
model essentially describes the same physics of growing bacterial
colonies as our general DDFT. However, the former conveniently
ignores positional and rotational diffusion terms, which are typically
required in DDFT. Apart from this minor difference, Eqs. (6)
and (7) are conceptually equivalent to the first and second terms in
Eq. (3), respectively (the sole difference being the way interactions
are chosen and implemented, as discussed below). The dynamical
description of cell size is the heart of our model and the four
ingredients illustrated in Fig. 1i are accounted for in all our
approaches. While the implementation of cell division is straight-
forward in the Langevin model, our DDFT requires the translation
to a slightly different directed boundary condition (16). The
description of growth and fluctuations in the Langevin model is
stochastically equivalent to our DDFT when we compare the
first two terms in Eq. (9) to those of the probability current in
Eqs. (5), (12) and (15), or to those on the right-hand-side of Eq. (19).
Finally, despite the different appearance of the third term in these
equations, the treatment of collective interactions is also conceptually
equivalent: they are derived from the same expression as in con-
figurational space (steric forces Fij in the Langevin model and an
excess free energy F ex in DDFT), which is the defining feature of the
mechano-response.

The specific choice and implementation of the interaction
terms is what distinguishes our two computational approaches.
As we are interested in the basic phenomenology resulting from
our model we have chosen to work with expressions that are
standard in each case. Hence, we implement our Langevin
simulations with the established Hertzian overlap function (8)5–7

and equip our DDFT with a Gaussian soft-repulsive potential (10)
which can be treated in the mean-field way (11). To corroborate
the general compatibility of both approaches, let us note that, for
a well-mixed system, the DDFT equation from Eq. (19) is
stochastically equivalent to the Langevin model

dli
dt

¼ Gþ
ffiffiffiffiffiffi
2D

p
ξi � S

N
V
; ð23Þ

where N=∑i1 is the current number of particles and V is the
total volume of the system, thus �ρ ¼ N=V . As shown in
Supplementary Fig. 4, the simulations of Eq. (23) with li∈ [L, 2L]
yield practically the same length distributions as DDFT with the
directed boundary condition.

In view of the most accurate description of our experiments, a
specific interaction potential would have to be measured for
interacting cells and implemented in our mechanical terms.
However, our qualitative observations are largely independent of
such a choice, as long as the assumed interaction is sufficiently

repulsive. The parameters entering our model equations are
empirical and specific to the experimental nonequilibrium
systems of interest. In particular, the strength S (or ~S) of the
mechano-response is a measure of how strongly the growth
behavior of a cell is actually affected by a mechanical stimulus—
just like friction with the substrate determines the extent of the
spatial drift induced by a repulsive force. If desired, other growth-
limiting effects that are not of mechanical origin (such as nutrient
depletion) can be effectively described by an appropriate adaption
of this parameter to experimental measurements.

Although it is not the focus of the present work, we stress that the
onset of cell division can also be affected by different biological or
mechanical mechanisms. Hence, to better represent the real bacterial
system, our basic model could be fine-tuned by allowing for a time-
dependent length-of-birth L(t) in future work. For example,
individual Escherichia coli cells grow according to the adder model
and divide after having grown by a certain length15–17. More
specifically, taking a closer look at our experimental data, we find
that the periodicity of the oscillations in Fig. 5 decreases in the
course of the colony evolution, i.e., on average, a cell divides every
33–36min in the dilute case and every 24–27min in the dense case.
As the elongation rate, averaged over the colony, also decreases over
time, this observation is accompanied by a reduction of the
maximum length an individual cell reaches before the division event,
i.e., the length-at-birth decreases from generation to generation. In
addition, the length-at-birth depends on a cell’s local position in
relation to its neighbors in the growing colony. Hence, we conclude
that the observed decrease of the mean cell length in Fig. 5 is
consistent with our current model of a mechano-response
depending on the local density (even in the simple form with a
constant length-at-birth L) and that the individual growth kinetics
play only a minor role. In an extended model, the length-at-birth
should thus also depend on the density, which could be modeled by
similar terms as used for the length current in Eq. (5).

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
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provided as Supplementary Movies 1–4. Animations of the data shown in Fig. 3 are
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